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When a macroscopic-sized noncrystalline sample is illuminated using coherent x-ray radiation, a bifurcation
of photon energy flow may occur. The coarse-grained complex refractive index of the sample may be considered
to attenuate and refract the incident coherent beam, leading to a coherent component of the transmitted
beam. Spatially unresolved sample microstructure, associated with the fine-grained components of the complex
refractive index, introduces a diffuse component to the transmitted beam. This diffuse photon-scattering channel
may be viewed in terms of position-dependent fans of ultrasmall-angle x-ray scatter. These position-dependent
fans, at the exit surface of the object, may under certain circumstances be approximated as having a locally
elliptical shape. By using an anisotropic-diffusion Fokker-Planck approach to model this bifurcated x-ray energy
flow, we show how all three components (attenuation, refraction, and locally elliptical diffuse scatter) may be
recovered. This is done via x-ray speckle tracking, in which the sample is illuminated with spatially random
x-ray fields generated by coherent illumination of a spatially random membrane. The theory is developed and
then successfully applied to experimental x-ray data.

DOI: 10.1103/PhysRevA.104.053505

I. INTRODUCTION

Speckle-based phenomena and associated measurement
techniques, for both radiation and matter wave fields, ap-
pear in numerous optical-physics settings. Examples include
speckle arising from the passage of coherent light through
spatially random screens [1], speckle interferometry [2],
photon correlation spectroscopy [3], speckle correlography
[4], Ronchigram aberrometry [5], fluctuation microscopy [6],
ghost imaging [7], vortex networks associated with fully
developed speckle [8], turbulence in time-dependent optical
speckles [9], speckled microdiffraction patterns arising from
focused electron beams that scatter from amorphous materials
[10], and speckled cross-spectral densities arising from mod-
ern undulator sources [11]. This list is far from complete. For
a broad overview, see, e.g., the book by Goodman [12].

*konstantin.pavlov@canterbury.ac.nz

Our specific focus is x-ray speckle [13]. Again, the
breadth of x-ray speckle phenomena is extensive. Techniques
employing x-ray speckle include x-ray photon correlation
spectroscopy [14], x-ray ghost imaging [15,16], x-ray near-
field speckle analysis [17], x-ray particle image velocimetry
[18], analysis of the x-ray scattering of focused probes from
disordered materials [19], x-ray coherent diffractive imaging
[20], and analysis of x-ray speckles arising from coherent
surface diffraction [21]. One particular use of x-ray speckles
is the core topic of the present paper: x-ray speckle tracking
[22,23].

Recent years have seen the emergence of new x-ray imag-
ing approaches that tap into x-ray phase information to reveal
weakly absorbing samples and access an x-ray dark-field
signal that reveals the location of spatially unresolved mi-
crostructure within the sample. The first phase and dark-field
imaging approach used either crystals or multiple gratings
to analyze the x-ray wave field downstream of the sample
[24]. More recently, high-resolution approaches without an
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analyzer grating have been shown, instead of using a high-
resolution detector to directly capture how the introduction
of the sample alters the periodic illumination produced by
the primary grating. An x-ray phase shift introduced by the
sample upon the x-ray wave field will locally transversely
shift or warp the image of the grating pattern, analogous
to the warping of a scene that is viewed with visible light
through an old uneven glass window. This is analogous to
early visible-light experiments that photographed a grating
pattern to pick up the refractive index variations introduced
by a jet of gas or hot air placed between the camera and
the reference pattern [25–27]. In this approach, the dark-field
signal will be seen as a blurring of the grating pattern, similar
to how a scene viewed through a ground glass window is
blurred. The x-ray phase and dark-field images are retrieved
by analyzing sample-induced changes to the grating pattern
either in Fourier space, in the case that the illumination is well
described by a sinusoid [28,29], or in real space, via a series
of local cross correlations [30].

Because the real-space approach to phase and dark-field
retrieval does not require a periodic reference pattern, a new
setup was proposed where a highly textured random object
like a piece of sandpaper could be used to create a speckle
reference illumination [22,23]. The approach has come to be
known in the x-ray regime as speckle tracking and initially
retrieved phase and dark-field images by comparing a refer-
ence speckle image without the sample to a single exposure
where the sample has now been introduced. This speckle
reference pattern, created by the local focusing or defocusing
of the x-ray illumination by sandpaper grains, is reminiscent
of early work on x-ray wavefront characterization that ana-
lyzed a reference intensity pattern created by an array of x-ray
lenses [31], a form of Shack-Hartmann sensor. This approach,
taking advantage of the speckle characteristics in the deep
Fresnel region where the Fresnel number is on the order of
unity, proved particularly advantageous in the x-ray regime
where the range of usable propagation distances is elongated
by the short photon wavelength [17]. Later, equivalent meth-
ods were developed with visible light where the so-called
speckle-memory effect also permits tracking of individual
grains between images [32].

While the speckle-based approach provides improved spa-
tial resolution compared to the early x-ray lens approach,
because any x-ray speckles will be spread across several de-
tector pixels, the spatial resolution of the retrieved images will
be limited with this single-sample-exposure approach. As a
result, the speckle-tracking method has evolved to incorporate
information from multiple exposures, captured as speckles are
scanned across the sample [33]. Since the first demonstration
[33], a number of additional phase and dark-field retrieval
methods have been shown that use multiple sample exposures
[34–37]. Another key step has been the demonstration of
this technique on laboratory x-ray sources in both the single
[38,39] and multiple-exposure approaches [40]. Several recent
reviews on speckle-tracking provide a full picture of the devel-
opments [41–43].

Two major formalisms for x-ray speckle tracking are x-ray
speckle-vector tracking (XSVT) [35] and unified modulated
pattern analysis (UMPA) [37]. Both have a broad domain of
applicability and incorporate multiple important factors in a

robust manner, via a variational approach based on a suit-
able functional. The incorporated factors include attenuation
and refraction (transverse phase shifts) due to the sample.
In addition, XSVT and UMPA can incorporate and retrieve
the dark-field speckle-visibility reduction associated with the
position-dependent small-angle x-ray scattering (SAXS) [44]
fans that emerge from each point on the exit surface of
the sample on account of spatially unresolved microstructure
[33,38,45–51]. For many samples, these position-dependent
SAXS fans may be modeled as each being rotationally sym-
metric. When the position-dependent SAXS fans are not
rotationally symmetric, e.g., if they can be modeled as ellip-
tical, one can instead speak of directional dark-field (DDF)
imaging [52–54]. The DDF signal may be accessed using
methods employing periodic gratings [52–54] and spatially
random gratings [55].

More recently, another random-mask speckle-tracking ap-
proach was developed. This third approach is the optical flow
(OF) method [56], together with its Fokker-Planck generaliza-
tion [multimodal intrinsic speckle tracking (MIST)] [57,58].
We now focus attention on this third method, which implic-
itly rather than explicitly tracks speckles. The OF method is
based on a simple second-order partial-differential equation,
namely, a continuity equation that has strong parallels with the
transport-of-intensity equation of paraxial optics [59]. This
simplicity is obtained at the cost of being significantly less
general than the XSVT and UMPA approaches. In the MIST
extension of OF, a Fokker-Planck [60] generalization of OF
speckle tracking is employed [57,58,61]. Multimodal intrin-
sic speckle tracking implicitly tracks the transverse motion,
lensing, and diffusion of speckles. Its associated partial-
differential equation [57], which is of Fokker-Planck form, is
amenable to closed-form solution [58]. The latter fact is the
core motivation for pursuing this particular approach.

The paper is structured as follows. Section II develops a
theoretical description for directional dark-field x-ray speckle
tracking via a forward-finite-difference anisotropic-diffusion
Fokker-Planck equation. The key aim, underpinning this the-
ory, is robust means for extracting the position-dependent
symmetric rank-2 diffusion tensor associated with unresolved
microstructure in a sample. Sections III and IV give an ex-
perimental demonstration of these ideas, using hard x-ray
radiation. Section V discusses some broader implications of
this work, together with some possible avenues for future
investigation. A brief summary is given in Sec. VI.

II. THEORY

Here we develop the theory for both forward and inverse
problems [62] of directional dark-field x-ray speckle track-
ing, using an anisotropic-diffusion Fokker-Planck equation.
We begin by obtaining the requisite forward-finite-difference
Fokker-Planck equation, which models speckle formation
and subsequent sample-induced deformation, in a manner
accounting for the attenuating, refracting, and diffusive prop-
erties of the sample. We then consider the inverse problem
associated with two different special cases of this model,
namely, (i) a phase object, for which there is no attenu-
ation by assumption, and (ii) a monomorphous object, in
which the object-induced phase shifts are proportional to
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FIG. 1. Experimental setup for x-ray MIST.

the logarithm of the associated attenuation. We then ex-
amine the relationship between the diffusion-tensor field
appearing in our Fokker-Planck equation and the associated
position-dependent SAXS fans associated with unresolved
microstructure in the sample.

A. Anisotropic-diffusion Fokker-Planck formalism for x-ray
speckle tracking

Consider the x-ray speckle-tracking setup that is sketched
in Fig. 1. Here we see a quasimonochromatic x-ray source
that paraxially illuminates a thin spatially random speckle-
generating mask to produce a reference speckle image IR(x, y)
over the planar surface of a position-sensitive detector which
is perpendicular to the optical axis z. The reference speckle
image may be produced via either or both of the following
mechanisms: (i) attenuation contrast due to the position-
dependent absorption of x rays as they traverse the spatially
random mask and/or (ii) phase contrast due to the position-
dependent phase shifts imparted upon the x rays as they
traverse the mask, with these phase shifts leading upon free-
space propagation to intensity variations over the surface
of the position-sensitive detector [63]. Having recorded the
reference speckle image, we may then perform a second mea-
surement, in which a thin nonabsorbing object is placed in
between the speckle-generating mask and the detector. The
distance � from the sample to the detector should be suffi-
ciently large that the transverse deflections, induced by the
refractive profile of the sample, lead to measurable transverse
shifts in the reference speckles measured in the absence of
the sample. Conversely, � should be sufficiently small that
the transverse shifts of the reference speckles should not
be more than around two detector pixels in magnitude. The
speckle image IS(x, y), measured in the presence of both the
sample and the mask, will then have the following property:
Every x-ray photon that strikes a given location (x, y) in IS

will have struck a nearby position (x + δx, y + δy) in IR, and
conversely. This property, which arises from the previously ar-
ticulated assumption that � be sufficiently small, implies that
IR and IS are connected via a conserved current that locally
preserves the number of detected photons. Stated differently,
local conservation of energy implies there is a geometric flow,
which may also be termed an optical flow [64,65] or a Noether
conserved current [66], that can be used to smoothly deform
IR into IS [56].

It is natural to assume that this flow, which deforms IR

into IS, will have both coherent and diffuse components. The
coherent component will be due to the near-monochromatic
nature of the illuminating radiation, together with the

position-dependent phase and amplitude shifts that are coher-
ently imparted by both the sample and the speckle-generating
mask. The diffuse component will be due to several mecha-
nisms: (i) the partially coherent nature of the illumination, (ii)
the presence of spatially unresolved random microstructure in
the sample and mask, and (iii) the presence of sharp edges
in both the sample and mask. Spatially unresolved random
microstructure leads to diffusive x-ray energy flow on account
of position-dependent SAXS [44]. Sharp edges lead to diffu-
sive flow via Young-Maggi-Rubinowicz boundary-diffraction
waves (edge scattering, edge-diffracted rays) [67–71].

All of the above considerations, namely, a locally
energy-preserving optical flow, possessing both coherent and
diffuse components, that maps IR into IS, may be quanti-
fied using a forward-finite-difference Fokker-Planck equation
[57,60,61,72]. In particular, Eq. (55) in Ref. [57] generalizes
the optical-flow method for x-ray speckle tracking [56] to give

IR(r⊥) − IS(r⊥) = �

k
∇⊥ · [IR(r⊥)∇⊥φob(r⊥)]

− �∇2
⊥[Deff(r⊥; �)IR(r⊥)]. (1)

Here r⊥ ≡ (x, y), IR(r⊥) and IS(r⊥) are the intensities of a
reference speckle image acquired in the absence and presence
of a sample, respectively, � is the sample-to-detector distance,
k = 2π/λ is the wave number of the x rays, λ is the wave-
length, φob is the phase shift caused by the sample, and ∇⊥ =
(∂/∂x, ∂/∂y) denotes the transverse gradient operator. The
first term on the right-hand side of Eq. (1) quantifies the coher-
ent energy flow that was described earlier. An identical term
appears in the transport-of-intensity equation (TIE) [59]. In-
deed, the entire first line of Eq. (1) is mathematically identical
in form to a first-order finite-difference form of the TIE. This
correspondence exists because local energy conservation, un-
der transverse energy flow, is the underpinning principle in
both the TIE and the first line of Eq. (1). The difference lies
in the fact that (i) the transverse flow in the TIE is induced
by free-space propagation from plane to parallel downstream
plane in vacuo, whereas (ii) in the first line of Eq. (1) the
transverse flow occurs in a fixed plane, with the flow induced
by a phase object whose presence smoothly perturbs IR(r⊥)
into IS(r⊥) [56]. The second term on the right-hand side of
Eq. (1) describes the diffusive flow via the effective diffusion
coefficient Deff(r⊥; �). If we assume the mask to be spatially
statistically stationary and the source to be an extended in-
coherent source, then the diffusive effects due to source-size
blur will be describable via a position-independent addi-
tive constant term in Deff(r⊥; �). With this understanding in
place, we henceforth consider Deff(r⊥; �) to quantify only
sample-induced contributions that are due to both (i) local
position-dependent SAXS fans emerging from each point on
the exit surface of the sample and (ii) edge-diffracted x rays.
Note also that the position-dependent sample-induced SAXS
fans, as described by the above formalism, are considered to
be rotationally symmetric (by assumption) at each transverse
location over the exit surface of the thin sample.

To generalize Eq. (1) to the case of directional dark-field
imaging [52,53], in which the position-dependent SAXS fans
have an elliptical transverse profile [53,73], we introduce the
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symmetric rank-2 diffusion tensor field [57,61]

Deff(r⊥; �) −→
[

D(xx)
eff (r⊥; �) 1

2 D(xy)
eff (r⊥; �)

1
2 D(xy)

eff (r⊥; �) D(yy)
eff (r⊥; �)

]
. (2)

This enables us to write down a directional dark-field
generalization of Eq. (1), namely, the following anisotropic-
diffusion forward-finite-difference Fokker-Planck speckle-
tracking equation due to Pavlov et al. [58]:

IR(r⊥) − IS(r⊥) = �

k
∇⊥ · [IR(r⊥)∇⊥φob(r⊥)]

− �
∂2

∂x2

[
D(xx)

eff (r⊥; �)IR(r⊥)
]

− �
∂2

∂y2

[
D(yy)

eff (r⊥; �)IR(r⊥)
]

− �
∂2

∂x∂y

[
D(xy)

eff (r⊥; �)IR(r⊥)
]
. (3)

Let us now assume that an attenuating object is placed in
the well-resolved reference speckle field. This causes varia-
tions in the registered speckle image, which can be described
by [cf. Eq. (9) in Ref. [74], with incorporation of Eq. (4) in
Ref. [61] and Eq. (51) in Ref. [57]]

IR(r⊥)Iob(r⊥) − IS(r⊥)

= �

k
∇⊥ · [IR(r⊥)Iob(r⊥)∇⊥φob(r⊥)]

− �
∂2

∂x2

[
D(xx)

eff (r⊥; �)IR(r⊥)Iob(r⊥)
]

− �
∂2

∂y2

[
D(yy)

eff (r⊥; �)IR(r⊥)Iob(r⊥)
]

− �
∂2

∂x∂y

[
D(xy)

eff (r⊥; �)IR(r⊥)Iob(r⊥)
]
. (4)

Here Iob(r⊥) is the object’s attenuation term. We also as-
sume that the components of the diffusion tensor D(xx,yy,xy)

eff
are slowly varying functions of the transverse position (i.e.,
we can neglect their transverse spatial derivatives, which are
small compared to the retained terms).

The second-order transverse spatial derivatives, applied to
the diffuse-scatter terms on the right-hand side of Eq. (4),
yield several components. For example, the first of these three
diffusely scattering components gives

∂2

∂x2

[
D(xx)

eff (r⊥; �)IR(r⊥)Iob(r⊥)
]

= [
D(xx)

eff (r⊥; �)Iob(r⊥)
] ∂2

∂x2
IR(r⊥)

+ IR(r⊥)
∂2

∂x2

[
D(xx)

eff (r⊥; �)Iob(r⊥)
]

+ 2
∂

∂x
[IR(r⊥)]

∂

∂x

[
D(xx)

eff (r⊥; �)Iob(r⊥)
]

≈ D(xx)
eff (r⊥; �)Iob(r⊥)

∂2

∂x2
IR(r⊥)

+ IR(r⊥)D(xx)
eff (r⊥; �)

∂2

∂x2
[Iob(r⊥)]. (5)

We have neglected the terms IR(r⊥)Iob(r⊥) ∂2

∂x2 D(xx)
eff (r⊥; �)

and 2IR(r⊥) ∂
∂x [D(xx)

eff (r⊥; �)] ∂
∂x [Iob(r⊥)] on the right-hand side

of Eq. (5) because we have assumed that D(xx)
eff is a slowly

varying function everywhere. We have also neglected the term
2 ∂

∂x [D(xx)
eff (r⊥; �)Iob(r⊥)] ∂

∂x [IR(r⊥)] for the following reason.
The intensity of a reference speckle image IR(r⊥), acquired
in the absence of a sample, is produced by a spatially random
mask. Therefore, the gradient of such an intensity map will
be a vector field that is rapidly changing in both direction and
magnitude. Thus the scalar product of such a random vector
field with a more slowly changing gradient of the product of
two functions can be neglected. A similar approximation was
previously employed in Refs. [58,74]. Bearing all of the above
points in mind, we can simplify Eq. (4) as follows:

IR(r⊥)Iob(r⊥) − IS(r⊥)

= �

k
IR(r⊥)∇⊥ · [Iob(r⊥)∇⊥φob(r⊥)]

− �D(xx)
eff (r⊥; �)Iob(r⊥)

∂2

∂x2
IR(r⊥)

− �D(xx)
eff (r⊥; �)IR(r⊥)

∂2

∂x2
Iob(r⊥)

− �D(yy)
eff (r⊥; �)Iob(r⊥)

∂2

∂y2
IR(r⊥)

− �D(yy)
eff (r⊥; �)IR(r⊥)

∂2

∂y2
Iob(r⊥)

− �D(xy)
eff (r⊥; �)Iob(r⊥)

∂2

∂x∂y
IR(r⊥)

− �D(xy)
eff (r⊥; �)IR(r⊥)

∂2

∂x∂y
Iob(r⊥). (6)

Above, we have used an additional approximation, similar to
that used earlier, namely, the neglect of the term ∇⊥[IR(r⊥)] ·
[Iob(r⊥)∇⊥φob(r⊥)] (see also Refs. [58,74]). Here we are
again making use of the fact that the intensity of a refer-
ence speckle image, acquired in the absence of a sample IR,
is produced by a random mask. Therefore, the gradient of
such a field is again a vector field that is rapidly changing
in both direction and magnitude. Thus, the scalar product
of such a random vector field with a more slowly chang-
ing phase gradient can be neglected. It is also worth noting
that the terms on the right-hand side of Eq. (6), containing
the second-order derivatives of the object’s attenuation term,
become more prominent at the object’s internal and external
boundaries.

A further modification of of Eq. (6) can be achieved by
dividing both sides by IR and rearranging to give

IS(r⊥)

IR(r⊥)
= Iob(r⊥) − �

k
∇⊥ · [Iob(r⊥)∇⊥φob(r⊥)]

+�D(xx)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂x2 IR(r⊥)

IR(r⊥)
+ ∂2

∂x2
Iob(r⊥)

]

+�D(yy)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂y2 IR(r⊥)

IR(r⊥)
+ ∂2

∂y2
Iob(r⊥)

]
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+ �D(xy)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂x∂y IR(r⊥)

IR(r⊥)

+ ∂2

∂x∂y
Iob(r⊥)

]
. (7)

This equation describes a general case of speckle-based
imaging for an attenuating object, where several terms incor-
porating the diffusion tensor field are taken into account. This
forward-finite-difference anisotropic-diffusion Fokker-Planck
equation completes our description of the forward problem as-
sociated with image formation and subsequent data collection,
in the context of x-ray speckle tracking.

B. Two inverse problems

The formulation of the forward problem in Eq. (7) estab-
lishes the model upon which the associated inverse problem
[62], of recovering sample properties based on one or more
pairs of reference-only and reference-plus-sample speckle
images, may be based. Here we consider two such in-
verse problems, corresponding to two different limit cases of
Eq. (7). These two special cases are (i) the sample is assumed
to be a phase object, i.e., it is nonattenuating, and (ii) the
sample is taken to be monomorphous, i.e., its phase shifts are
proportional to the logarithm of the associated attenuation, as
is the case, e.g., for a thin object that is composed of a single
material.

1. Case 1: Phase object

By definition, Iob(r⊥) = 1 for a pure phase object. Equa-
tion (7) can then be simplified as [cf. Eq. (10) in Ref. [58] and
Eq. (3) above]

1 − IS(r⊥)

IR(r⊥)
= �

k
∇2

⊥φob(r⊥)

− �D(xx)
eff (r⊥; �)

∂2

∂x2 IR(r⊥)

IR(r⊥)

− �D(yy)
eff (r⊥; �)

∂2

∂y2 IR(r⊥)

IR(r⊥)

− �D(xy)
eff (r⊥; �)

∂2

∂x∂y IR(r⊥)

IR(r⊥)
. (8)

Equation (8) contains four unknown functions: ∇2
⊥φ(r⊥) and

D(xx,xy,yy)
eff (r⊥; �), which can be found from any four in-

dependent measurements of IS(r⊥) and IR(r⊥) by varying
experimental conditions, e.g., the mask positions.

2. Case 2: Monomorphous object

For a monomorphous (e.g., single-material) object, its
complex index of refraction n can be represented as

n = 1 − δ + iβ = 1 − γ β + iβ = 1 + β(i − γ ), (9)

where

γ = δ

β
. (10)

Here the real numbers δ and β denote the refractive index
decrement and the imaginary (absorptive) part of the complex

refractive index, respectively. The value of γ is considered
known from tables or can be experimentally adjusted by trial
and error to match the sample composition and density (see,
e.g., Ref. [75]). Then the phase shift is

φ(r⊥) = −kδt (r⊥), (11)

where t (r⊥) is the projected thickness of the object. The
object’s attenuation term is

Iob(r⊥) = exp[−2kβt (r⊥)]. (12)

Then Eq. (7) can be rewritten as follows [cf. Eq. (14) in
Ref. [74]]:

IS(r⊥)

IR(r⊥)
=

(
1 − γ�

2k
∇2

⊥

)
Iob(r⊥)

+�D(xx)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂x2 IR(r⊥)

IR(r⊥)
+ ∂2

∂x2
Iob(r⊥)

]

+�D(yy)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂y2 IR(r⊥)

IR(r⊥)
+ ∂2

∂y2
Iob(r⊥)

]

+ �D(xy)
eff (r⊥; �)

[
Iob(r⊥)

∂2

∂x∂y IR(r⊥)

IR(r⊥)

+ ∂2

∂x∂y
Iob(r⊥)

]
. (13)

As we assume that D(xx,yy,xy)
eff (r⊥; �) are slowly varying func-

tions, we can solve Eq. (13) for four unknown functions,
namely,

G1(r⊥) =
(

1 − γ�

2k
∇2

⊥

)
Iob(r⊥)

+ �

[
D(xx)

eff (r⊥; �)
∂2

∂x2
Iob(r⊥)

]

+ �

[
D(xy)

eff (r⊥; �)
∂2

∂x∂y
Iob(r⊥)

]

+ �

[
D(yy)

eff (r⊥; �)
∂2

∂y2
Iob(r⊥)

]
, (14)

G2(r⊥) = �
[
D(xx)

eff (r⊥; �)Iob(r⊥)
]
, (15)

G3(r⊥) = �
[
D(yy)

eff (r⊥; �)Iob(r⊥)
]
, (16)

G4(r⊥) = �
[
D(xy)

eff (r⊥; �)Iob(r⊥)
]
. (17)

This can be done by using four independent measurements
of IS(r⊥) and IR(r⊥), which may be obtained by varying ex-
perimental conditions, e.g., the mask positions. Then we can
apply the second-order derivatives to the functions G2,3,4(r⊥):

∂2

∂x2
G2(r⊥) ≈ �D(xx)

eff (r⊥; �)
∂2

∂x2
Iob(r⊥),

∂2

∂y2
G3(r⊥) ≈ �D(yy)

eff (r⊥; �)
∂2

∂y2
Iob(r⊥),

∂2

∂x∂y
G4(r⊥) ≈ �D(xy)

eff (r⊥; �)
∂2

∂x∂y
Iob(r⊥). (18)
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Here we have again used our assumption that D(xx,yy,xy)
eff (r⊥; �)

are slowly varying functions. By combining Eqs. (14) and (18)
we can form a new function

G(r⊥) = G1(r⊥) − ∂2

∂x2
G2(r⊥) − ∂2

∂y2
G3(r⊥)

− ∂2

∂x∂y
G4(r⊥) =

(
1 − γ�

2k
∇2

⊥

)
Iob(r⊥). (19)

Now we can obtain the object’s projected thickness map [cf.
Eq. (18) in Ref. [74]]

t (r⊥) = − 1

2kβ
loge F−1

{ F[G(r⊥)]

1 + πγ�λ(u2 + v2)

}
(20)

and subsequently the components of the diffusion tensor:

D(xx)
eff (r⊥; �) = G2(r⊥)

�Iob(r⊥)
,

D(yy)
eff (r⊥; �) = G3(r⊥)

�Iob(r⊥)
,

D(xy)
eff (r⊥; �) = G4(r⊥)

�Iob(r⊥)
. (21)

Here, F denotes Fourier transformation with respect to x
and y, with F−1 denoting the corresponding inverse Fourier
transformation.

C. Relation between diffusion-tensor field
and position-dependent SAXS fans

Here we consider the relationship between the diffusion-
tensor field [Eq. (2)] and the associated position-dependent
elliptical SAXS fans emanating from each point on the exit
surface of the sample. If we consider the transverse location
(x0, y0) at the nominally planar exit surface of the sample, then
the resulting anisotropic blurring due to the locally elliptical
SAXS fan will correspond to an ellipse of (x, y) coordinates in
the plane at distance � > 0 downstream of the sample, with
these (x, y) coordinates obeying

(x − x0)2

D(xx)
eff (x0, y0; �)

+ (y − y0)2

D(yy)
eff (x0, y0; �)

+ (x − x0)(y − y0)

D(xy)
eff (x0, y0; �)

� �. (22)

The above ellipse field, in which we have a different ellipse for
each transverse location (x0, y0), incorporates the effects of
two distinct but related factors: (i) the opening angles θ (x0, y0)
of the elliptical SAXS fans that emanate from each point
(x0, y0) over the nominally planar exit surface of the sample
and (ii) the corresponding dimensionless fractions F (x0, y0) of
the incident x-ray photons that are converted to the diffusely
scattering channel, on account of unresolved microstructure
and edge scatter from the sample.

See Fig. 3 of Ref. [57] for the relations connecting the fol-
lowing quantities: (i) the effective diffusion coefficients, (ii)
the position-dependent SAXS fan opening angles, and (iii) the
diffuse-scatter fractions. For an example of such connecting

relations, for the xx diffuse-scatter channel we have

D(xx)
eff (x0, y0; �)

�
= F (xx)(x0, y0)[θ (xx)(x0, y0)]2. (23)

Here F (xx)(x0, y0) is a dimensionless quantity taking values
between zero and unity that denotes the fraction of the inci-
dent x rays (at the specified energy) that are converted to xx
diffuse scatter by the sample at the transverse location (x0, y0),
with θ (xx)(x0, y0) being the corresponding local SAXS fan
opening angle. Similar expressions may be written down, by
replacing (xx) with either (yy) or (xy). Note also that these
three opening angles may be converted to (i) an angle for
the SAXS ellipse semimajor axis, (ii) an angle for the SAXS
ellipse semiminor axis, and (iii) an angle denoting the angular
orientation of the semimajor ellipse axis.

The form of the right-hand side of Eq. (23) implies that the
effective diffusion coefficients are invariant under the concur-
rent mappings

F (x0, y0) → F (x0, y0)

α(x0, y0)
,

θ (x0, y0) → θ (x0, y0)
√

α(x0, y0). (24)

Here α(x0, y0) is a real positive function which may assume
otherwise-arbitrary values provided that, both before and after
the above mapping, the scattering fractions obey F (x0, y0)�1
and the scattering angles obey θ (x0, y0) � 1. The physical
origin of this invariance is as follows. Decreasing F (x0, y0) at
any fixed transverse location will decrease the degree of local
SAXS blurring in the detection plane. Conversely, increasing
the corresponding SAXS fan opening angle at the same sam-
ple location will increase the degree of such blurring. These
two opposing influences can be chosen to exactly balance one
another (in the sense of providing an identical measured map
of radiant exposure), in a continuous infinity of different ways,
corresponding to all of the different choices that can be made
for the scalar field α(x0, y0). This is a fundamental ambiguity
in the Fokker-Planck formalism that underpins the present
paper.

The above ambiguity implies that, rather than recovering
the SAXS fan ellipse at any transverse location (x0, y0), the
method is only able to recover a family of similar concentric
ellipses at each (x0, y0) location. Each member of this family
is similar to the actual SAXS ellipse at each transverse loca-
tion (x0, y0), in the sense of having the same eccentricity and
orientation angle, but which member of the family is the actual
SAXS ellipse remains undetermined.

Fortunately, there are two absolute quantities that may be
extracted, since they are both independent of α(x0, y0) and are
therefore the same for all ellipses in the previously mentioned
family of similar ellipses. These two invariant directional
dark-field quantities are the eccentricity ε(x0, y0) of the SAXS
ellipse at each transverse location (x0, y0) and the angular
orientation ψ (x0, y0) of each SAXS ellipse (note that these
angular orientations are only meaningful modulo π radians,
since the major axes of the ellipses form a director field rather
than a vector field, i.e., they are arrowless vectors). Both
ε(x0, y0) and ψ (x0, y0) (positive direction is counterclock-
wise) may be extracted from the symmetrical quadratic form
[see Eq. (2.4-1) in [76]] of an ellipse, where we assume that
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the center of this ellipse is at (x0, y0):

a11x2 + 2a12xy + a22y2 + a33 = 0. (25)

Hence

ε(x0, y0) =
√

2ϒ/(a11 + a22 + ϒ),

ψ (x0, y0) = 1

2
arctan

(
2a12

(a22 − a11)

)
, (26)

where

ϒ =
√

(a11 − a22)2 + 4a2
12, (27)

which corresponds to Eq. (22).
Subsequently, using Eq. (26), both ε(x0, y0) and ψ (x0, y0)

may be extracted directly from the effective diffusion tensor
in Eq. (2), via the following relations:

a11 = D(yy)
eff (r⊥; �)D(xy)

eff (r⊥; �),

a22 = D(xx)
eff (r⊥; �)D(xy)

eff (r⊥; �),

a12 = 1
2 D(xx)

eff (r⊥; �)D(yy)
eff (r⊥; �). (28)

Thus, while this symmetric rank-2 diffusion tensor contains
three independent components at each transverse location
(x0, y0), the invariance under the mapping of Eq. (24) implies
that only two independent invariant quantities may be ex-
tracted using our Fokker-Planck speckle-tracking formalism.

Evidently, we have four independent recoverable channels
of information in total, corresponding to four different scalar
fields at the exit surface of the sample. The first pair of scalar
fields, which is associated with the coherent channel for x-ray
energy flow, is the intensity Iob(x0, y0) and phase φob(x0, y0)
at each point (x0, y0) on the exit surface of the sample. The
other pair of scalar fields, which is associated with the diffuse
channel for x-ray energy flow, is the eccentricity ε(x0, y0) and
ellipse orientation ψ (x0, y0) of the local position-dependent
SAXS ellipses emerging from each point on the sample’s exit
surface. A fifth scalar field, namely, the dimensionless scat-
tering fraction F (x0, y0), is not recovered by the formalism
developed in the present paper.

The recovered ellipse-eccentricity and ellipse-orientation
fields, namely, ε(x0, y0) and ψ (x0, y0), respectively, can be
represented in various ways, including a color representa-
tion in which the brightness of each pixel is proportional to
ε(x0, y0) and the color is a function of ψ (x0, y0) (modulo π

radians), a grayscale representation where the brightness of
each pixel is proportional to ε(x0, y0), and a color representa-
tion in which the color of the pixel is a linear combination of
three different hues (e.g. red, green, and blue) for the three
components of the diffusion tensor. Other choices of color
space may also be employed.

III. EXPERIMENTS

To validate the proposed theoretical approach, experimen-
tal x-ray speckle tracking data were collected at the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France.
The experimental setup corresponds to Fig. 1. Two distinct
experiments were performed.

The first analysis reuses the data collected and processed
in our previous article [58]. These data consist of images of

a red currant sample collected at ESRF beamline BM05. The
sample was located approximately 55 m downstream of the
source, in the beam path of the x-ray photons produced by
synchrotron radiation from a 0.85-T dipole bending magnet.
The x-ray beam energy was narrowed to a bandwidth of
�E/E ≈ 10−4 at the energy of E = 17 keV, using a double
Bragg crystal Si(111) monochromator located 27 m from the
x-ray source. The speckle generator consisted of a piece of
sandpaper with grit size P800 that was fixed on piezoelectric
translation motors located 0.5 m upstream of the sample. A
fast readout low-noise (FRELON) [77,78] e2V camera, cou-
pled to an optic imaging a thin scintillator, was used to image
the sample from a distance � = 1 m downstream of it. The
effective pixel size of this imaging optical system was 5.8 μm,
with a signal-to-noise ratio greater than 500.

The second experiment employed a similar type of setup,
but on another beamline of the ESRF, which is dedicated to
biomedical imaging (ID17). Here the imaged sample was a
mouse knee, with the x-ray photons being produced using
a 3-T wiggler. The continuous spectrum of the x-ray source
was filtered to a 52-keV narrow energy band by a double bent
silicon crystal monochromator in a Laue-Laue configuration.
The speckle-generating diffusive membrane was composed
of Cu powder (mean grain size 36 μm). This membrane
was placed approximately 140 m downstream of the x-ray
source, with the sample being placed 1 m downstream of
the membrane. The x-ray detector intercepted the beam at a
distance � = 11 m beyond the sample. This imaging detector
consisted of a scientific complementary metal-oxide semi-
conductor (PCO 5.5, Germany) camera coupled to an optic
imaging a LuAG scintillator, with the full system providing
an effective pixel size of approximately 6.31 μm. While the
FRELON detector was designed for having a higher signal-to-
noise ratio, this second detector design was driven by a higher
velocity of readout and correspondingly lower-radiation-dose
deposition. Its use eventually resulted in noisier images that
were obtained using a fraction of the exposure time that was
used for the first sample. Regarding the mouse sample, the
images were obtained several months after the sacrifice of
the animal in accordance with Directive 2010/63/EU, with
the experiments having been performed in an agreed ani-
mal facility (C3851610006) evaluated and authorized by an
Ethical Committee for Animal Welfare (APAFIS No. 13792-
201802261434542 v3).

For both experiments, the set of reference-speckle images
IR was collected in the absence of the sample and by moving
the diffusive membrane (either sandpaper or the custom-built
membrane composed of Cu powder) to defined positions of
the speckle-generator motors. The sample images IS were
acquired while replacing the sandpaper at precisely the same
locations with an accuracy on the order of 0.1 μm. The sets of
images were then processed by running a PYTHON3 code on a
simple desktop machine [79].

IV. RESULTS

Figure 2 presents the results obtained on the mouse knee,
in lateral view. We used the first approach (pure phase ob-
ject) with a δ value of bone at 52 keV which is equal to
1.52 × 10−7. We report in this figure the recovered phase
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FIG. 2. Results for directional dark-field implicit x-ray speckle tracking of a mouse leg from ten pairs of acquisitions (IR, IS ): (a) retrieved
thickness from MIST converted into a phase map, and dark-field tensor components (b) D(yy)

eff , (c) D(xx)
eff , and (d) D(xy)

eff .

map [Fig. 2(a)] as well as the three components of the dark-
field tensor, i.e., D(yy)

eff [Fig. 2(b)], D(xx)
eff [Fig. 2(c)], and D(xy)

eff
[Fig. 2(d)]. For better statistics and less noisy results, the dis-
played dark-field images were computed with more than the
four pairs of acquisitions (IS, IR) required to solve the system.
In this case, ten pairs of speckle images were used, generating
due to the noise for each pixel an overdetermined system of
equations that was solved in the least-squares sense by QR
factorization for better numerical accuracy. The δ parameter
used for this sample was the value given in [80].

In this figure the different bones can be clearly identified in
the phase and the dark-field images, even though the images
have a noisy appearance on account of the utilized detector.
The three dark-field images [see Figs. 2(b)–2(d)] show differ-
ent signals from each other and are very different compared
to the phase image. The edges of the bones seem to create
a strong dark-field signal and very few other tissues seem to
create a dark-field signal, with the exception of the femoral
tendon (indicated by the arrow labeled 1) that is visible in
Fig. 2(c). Interestingly the menisci (indicated by the arrows
labeled 2) do not seem to create strong dark-field signals
even though they are clearly visible in the phase image. This
is probably due to their composition, as menisci are mainly
composed of calcified solid cartilage [81] while the cortical
bone is composed of hydroxyapatite crystals arranged to form
a porous microstructure. This might be of great interest for
osteoarthritis studies as the thickening of calcified cartilage
appears to be one of the first signs of this disease. Future
studies should be designed to study this phenomenon on a
wider range of samples.

Figure 3 presents the results of the experiment which used
a red currant berry as a sample. We used the second approach
(monomorphous material) with γ = 1146 (value for water at
17 keV), using seven pairs of acquisitions. The respective
panels show the thickness map [Fig. 3(a)], the directional
dark-field eccentricity ε(x, y) [Fig. 3(b)], and the orientation
ψ (x, y) of the SAXS ellipse semimajor axis [Fig. 3(c)]. We
again see that the three presented images display comple-
mentary information regarding the sample. In particular, the
dark-field quantities plotted in Figs. 3(b) and 3(c) reveal infor-
mation that is not evident in Fig. 3(a). The eccentricity plot in

Fig. 3(b) highlights the oval-shaped seed near the center of the
berry, with the interior of this feature being noticeably brighter
than the surrounding background. We also observe higher
diffuse-scatter eccentricity at the edges of the sample, which is
to be expected on account of our previous comments regarding
diffusive flow that is induced by photon scatter from sample
edges [67–71,82]. The angular-orientation plot in Fig. 3(c)
exhibits several features that would be expected for a direc-
tional dark-field signal [52,53,73]. The director field ψ (x, y)
clearly traces out the local tangents to the projected edges of
the sample, as well as the edges of the supporting mount and
the edges of the embedded seed near the center of the sample.
Several fine filaments within the sample also become visible
in this director-field plot. It is also interesting to observe the
textured mixture of many angles in the oval-shaped feature
to the left of the sample, which is suggestive of an ensemble
of unresolved fibrous microstructure with randomly varying
orientations. Finally, the thickness map of the red currant is
quantitative. Indeed, the width of the berry measured from
its width on the image and the pixel size is 8.65 mm, while
the maximum thickness of the berry calculated at its center is
8.71 mm.

V. DISCUSSION

Our Fokker-Planck speckle-tracking model, for the com-
bined coherent-flow and diffuse-flow channels of x rays
traversing a noncrystalline sample, enables us to extract in-
formation pertaining to both channels. This in turn relates
directly to different aspects of the distribution of the complex
refractive index within the sample. The coherent channel cor-
responds to a coarse-grained form of the complex refractive
index, with the coarse graining being induced by the finite
size of the detector pixels as well as the lack of perfect spatial
coherence in the illuminating photon field. Conversely, the
diffuse channel corresponds to a fine-grained form of the com-
plex refractive index, relating to structures that are not directly
spatially resolved by the system but which nevertheless have
a measurable influence that may be extracted from recorded
maps of radiant exposure. In this sense, the method may be
aptly described using the language of Kagias et al. [83], as
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FIG. 3. Results for directional dark-field implicit x-ray speckle tracking of a red currant berry from seven pairs of acquisitions (IR, IS ):
(a) thickness map, (b) eccentricity ε(x, y) of the elliptical SAXS beam, and (c) angular orientation ψ (x, y) of the elliptical SAXS beam. The
orientations are encoded using a HSV color system with hue equal to angle, fixed saturation, and brightness value representing the normalized
area of the local SAXS ellipse.

simultaneously extracting both real-space and reciprocal-
space information regarding the sample.

We have given particular emphasis to the recovery of infor-
mation associated with the diffuse channel and in particular to
the directional dark-field aspects of this channel. The closed-
form analytic solutions, developed in solving the inverse
problem associated with our model, enable computationally
rapid dark-field reconstructions using a relatively small num-
ber of images. We formulated two different sample models:
either a pure phase object or a single-material object. These
two models were tested on two different experimental x-ray
beamlines with two different samples. The obtained results
already seem to show interesting features on the composition
of the bone and calcified cartilage that needs to be confirmed
with histology.

Next, we briefly discuss our use of the term “dark field” in
the context of our paper. This term has a more general usage,
relating to any form of imaging in which unscattered photons
(or other imaging quanta, such as electrons or neutrons) make
no contribution to the output image [84]. This imaging-system
property causes samples, which incompletely cover the field
of view, to appear with positive contrast against a dark back-
ground field. Thus, when we speak of the dark-field signal
in our paper, we are actually referring to a particular form
of dark-field signal, namely, that which is associated with the
diffusion tensors appearing in the anisotropic Fokker-Planck
equation (3) for speckle tracking. For a different form of dark-
field signal in an x-ray imaging setting, see, e.g., the technique
for dark-field x-ray microscopy that is reported in Ref.
[85].

It is also worth pointing out a partial analogy that exists
between our technique based on Eq. (3) and the nonequilib-
rium dynamics of Brownian motion. In this analogy, consider
a thin sheet of (2 + 1)-dimensional fluid in nonuniform flow,
at two closely spaced times t1 and t2 > t1. By assumption,
this fluid has a position-dependent temperature T (x, y, t ), in
addition to being anisotropic at a microscopic level, as would
be the case, e.g., in a flowing liquid crystal [86]. Suppose that
small clusters of pollen grains have been randomly positioned
over the surface of the flowing anisotropic fluid, at time t1.
As the fluid flows, each pollen cluster will be advected. The
time step t2 − t1 is sufficiently small, by assumption, that

the pollen-grain clusters move by distances no larger than
their diameter, in evolving from t1 to t2. The local displace-
ment of the center of mass of each pollen cluster will be a
direct measure of the local velocity of the fluid. This pollen-
cluster advection is analogous to the speckle-tracking first
term on the right-hand side of Eq. (3), if one replaces the
randomly positioned pollen clusters with the randomly posi-
tioned illuminating x-ray speckles and considers the flow to
be induced by placing a transparent sample in the x-ray beam,
rather than letting the pollen-laden anisotropic fluid evolve
from t1 to t2. In this analogy, � ∝ (t2 − t1) and D ∝ T , with
the latter fluctuation-dissipation proportionality arising from
the Sutherland-Einstein-Smoluchowski relation. In addition
to being advected, the pollen clusters will diffuse during the
small time interval from t1 to t2, on account of Brownian
motion associated with the position-dependent temperature
of the fluid. The temperature distribution, together with the
microscopically anisotropic nature of the fluid film, implies
locally elliptical diffusion of the pollen-grain clusters over
small time steps t2 − t1. This is analogous to the second and
subsequent anisotropic speckle diffusion terms on the right-
hand side of Eq. (3).

Here we list several possible avenues for future work.
(i) While the formalism and experiment of the present

paper were developed in the specific context of x-ray radia-
tion, the Fokker-Planck approach is more broadly applicable
to directional dark-field speckle tracking using other parts
of the electromagnetic spectrum such as those already under
study with visible light [87,88]. Imaging techniques based on
alternative particles providing different imaging contrasts like
electrons or neutrons [89] could benefit as well from these
developments to probe smaller or bulkier samples since one
can readily imagine the possibility of developing randomly
structured membranes with a broad range of characteristics.

(ii) Following Refs. [57,61], the symmetric rank-2 dif-
fusion tensor in Eq. (2) may be considered as the first
member in an infinite hierarchy of progressively higher-rank
tensors, which can be used to extend the speckle-tracking
Fokker-Planck equation (3) into a Kramers-Moyal form
[60]. Higher-order diffusion-tensor fields relate to progres-
sively higher-order moments of the position-dependent SAXS
fans emanating from each point on the exit surface of the
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sample. Reference [57] gives explicit expressions for these
higher-order diffusion tensors. See also the earlier papers of
Modregger et al. [90,91] regarding the role of higher-order
SAXS-fan moments in directional dark-field imaging.

(iii) Explicit expressions have been derived for the local
SAXS contribution to the diffusion tensor in Eq. (2), together
with its higher-order Kramers-Moyal generalizations [57]. It
would be interesting to obtain corresponding edge-scatter-
induced diffusion tensors. Recall, in this context, papers
which show DDF arising from sample edges, with the semi-
major axis of the diffuse-scatter ellipse being tangential to
sample edges [53]. This edge-induced DDF signal may be
formulated in at least three different ways: (i) Keller’s concept
of diffracted rays in the geometric theory of diffraction [92],
(ii) the Young-Maggi-Rubinowicz boundary-diffraction wave
[67–71], and (iii) critical points of the second kind, resulting
from sharp sample edges in asymptotic approximations to
diffraction integrals [93]. It is also worth noting, in the context
of edge-induced diffuse scatter, that the parabolic equation of
paraxial optics is a complex diffusion equation with a purely
imaginary diffusion coefficient. Another approach to better
isolate and quantify the edge dark-field effect would be to uti-
lize the approach in Ref. [82] to remove the propagation-based
phase contrast edge fringes from the sample image before
applying the algorithm described here. Further computation
work could look at whether the local stretching of a speckle
due to a strong phase gradient can appear as a dark-field signal
(see, e.g., the discussion in Ref. [61]).

(iv) Our two-dimensional directional dark-field reconstruc-
tions could be extended to three-dimensional reconstructions,
i.e., tensor dark-field tomography, in an analogous manner to
what has already been achieved using periodic-grating meth-
ods [94–99].

(v) Statistical dynamical diffraction theory [100–104]
would form an interesting perspective from which one might
extend the results of the present paper.

(vi) The temporal-coherence requirements on x-ray
speckle tracking are lax [105]. Hence our results might be
extended to paraxial polychromatic radiation from sufficiently

spatially coherent sources, although the model would likely
need in that case to correct for some artifacts observed, for
instance, in Ref. [106].

(vii) As previously mentioned, XSVT and UMPA min-
imize suitable functionals, with MIST instead solving a
particular partial-differential equation. A link between all
three speckle-tracking approaches might be explored by
recalling the Lagrangian formulation of classical field the-
ory [66]. Here minimization of an action-integral functional
leads directly to an associated partial-differential equation,
namely, the Euler-Lagrange equation. Similarly, minimization
of the XSVT and UMPA functionals might lead to a partial-
differential equation for directional dark-field x-ray speckle
tracking.

VI. CONCLUSION

We have developed an anisotropic Fokker-Planck equation
to perform implicit x-ray speckle tracking. The method is able
to recover the directional dark-field signal associated with spa-
tially unresolved microstructure in a noncrystalline sample.
The method employs illumination of the sample with several
spatially random masks. The corresponding directional dark-
field signals are extracted from the measured radiant-exposure
maps, using simple closed-form expressions obtained by solv-
ing the inverse problem set up by the Fokker-Planck forward
model. Our theory has been successfully applied to two dif-
ferent experimental data sets, obtained using hard x rays.
We conjecture that these ideas may also be applied to other
forms of radiation and matter wave field, such as visible-light
photons, electrons, and neutrons.
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