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Vortex mode decomposition of the topology-induced phase transitions in spin-orbit optics
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The topology-induced phase transition (TPT) in spin-orbit optics refers to a process of topological transition
from one kind of spin-orbit interaction (e.g., spin-controlled vortex generation) to another (e.g., photonic
spin-Hall effect). However, it is not clear in the TPT how a light beam evolves from a vortex state with
a topological charge of ±2 to nonvortex states with spin-Hall shifts. Here, we examine the orbital angular
momentum content (vortex harmonics) of a typical TPT process, i.e., the spin-orbit interactions of a light beam
transmitted through an optically thin slab, based on vortex mode decomposition. It is found that the two kinds
of spin-orbit interactions and the intermediate states can be described in a unified framework by considering the
superposition and competition of three vortex modes with topological charges of 2, 1, and 0 (or −2, −1, and 0).
These findings provide an alternative perspective for understanding the two spin-orbit interactions of light in a
unified form and can be extended to the TPT-like processes in other physical systems.
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I. INTRODUCTION

The spin-orbit interaction (SOI) of light manifests as the
coupling and conversion between the spin angular momentum
and the orbital angular momentum (OAM) [1–3]. There are
two main SOI phenomena in optics, namely, spin-controllable
vortex generation and photonic spin-Hall effect (for reviews,
e.g., see Refs. [1–5]), which are, respectively, associated with
the intrinsic and extrinsic OAM [3,6,7]. These two SOIs
are widely found in many fundamental optical processes,
such as light beam reflection and refraction at sharp inter-
faces [8–13], strong focusing [14–16], and passing through
structured media [17–20], which make the SOI play an in-
creasingly important role in nano-optics, plasmonics, and
topological photonics [21–28].

The two SOIs of light seem to be apparently distinct phe-
nomena. In some systems, however, there exists a transition
from spin-dependent vortex generation (intrinsic OAM) to
photonic spin-Hall effect (extrinsic OAM) in certain condi-
tions, that is, from one topological state to another [29]. This
effect is called a topology-induced phase transition (TPT)
process which can be described in a unified form in terms
of the competition and coupling of the intrinsic and extrinsic
OAM. Typically, recently we have revealed that the TPT of a
circular-polarization (CP) light beam reflected and refracted
at sharp interfaces manifests as a topological transition from
a spin-dependent vortex with a topological charge of 2 or −2,
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whose sign depends upon the handedness of the incident CP
beam, in normal incidence to a nonvortex beam with a spin-
Hall shift (with a topological charge of 0) at oblique incidence
[29]. The underlying mechanism is attributed to the wave
vector-dependent Pancharatnam-Berry phase, which consists
of two competing and coupled parts, i.e., an azimuthal phase
and a one-dimensional gradient phase. The former generates
spin-dependent vortices, while the latter results in photonic
spin-Hall effect. However, it is still not clear how the light
beam evolves from a vortex with a topological charge of ±2
to a nonvortex spin-Hall beam with a topological charge of 0.

In this paper, based on vortex mode decomposition
[30–33], we examine the OAM contents in the TPT process
and provide an alternative perspective to understand the two
kinds of SOIs in a unified form. We find that a CP light beam
scattered by an optical interface consists of a spin-reversed
abnormal component and a spin-maintained normal one. A
TPT process appears in the abnormal beam, which can be
described as the competition and superposition of three vortex
modes, including the states with topological charges of 2, 1,
and 0 (or −2, −1, and 0). The averaged OAM per photon of
the abnormal beam is fractional, which is a full quantum av-
erage over the three modes. With the physics fully uncovered,
we finally extend the method to a TPT-like optical process,
when a Gaussian beam is misaligned to pass through a fork
hologram or a spiral phase plate.

II. THEORY AND MODEL

We consider the scattering of a CP beam of light by
an optically thin, nonmagnetic slab placed in air which is
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FIG. 1. Topology-induced phase transitions of light beam re-
flected and refracted from an optically thin slab. (a) Left: E -field
and polarization distribution of the incident beam on its waist plane.
Right: Schematic picture of a CP light beam reflected and refracted at
an optically thin slab placed in air. Here |+〉 and |−〉 represent left-
and right-handed CPs, respectively. (b) Transverse field patterns of
the spin-reversal abnormal modes at different incident angles under
left-handed (upper row) and right-handed (lower row) CP beam
illumination.

homogeneous and isotropic with thickness h and dielectric
permittivity ε. The beam is composed of many interfering
plane waves with slightly different propagation directions,
each of which has a different incident plane and Fresnel
coefficients. We set (x, y, z) as the laboratory Cartesian co-
ordinate, (xa, ya, za) as local coordinate with za parallel to the
beam propagation direction [Fig. 1(a)], and y and ya point to
the same direction, where the superscript a = {i, r, t} labels
incident, reflection, and transmission, respectively.

In the CP basis (spin basis), light beams in a transverse
reference plane za = da [Fig. 1(a)] can be written as

Ea
⊥(ra) =

∫
d2ka

⊥eika
⊥·ra

⊥+ika
z za

∑
σ=+,−

U a
σ (ka)V̂a

σ , (1)

where ka · ra = ka
⊥ · ra

⊥ + ka
z za, with ka

⊥ = ka
x x̂a + ka

y ŷa and
ra
⊥ = xax̂a + yaŷa being transverse wave vector and position

vector, respectively, ka
z = [(ka)2 − (ka

⊥)2]1/2 is the longitudi-
nal wave vector component with ka being the wave number,
V̂a

± = (x̂a ± iŷa)/
√

2 denote unit vectors of left- (+) and
right-handed (–) CPs defined in the laboratory coordinate
system, and U a

±(ka) dictate the transverse patterns of the ath
beam in k space.

As the reflection and transmission share the same physics,
we here only consider the transmission case. In our recent
work [29], we have established a full-wave theory to connect
the transmitted and incident beam, i.e.,[

Ut
+(kt )

Ut
−(kt )

]
= M(t )

[
U i

+(ki )
U i

−(ki )

]
, (2)

where the 2×2 Fresnel Jones matrix M(t ) can be written as

M(t ) ≈
[

t++(k||) t+−(k||)e−i�abn
B

t−+(k||)ei�abn
B t−−(k||)

]
. (3)

Here, t++(k||) = t−−(k||) = [tTM(k||) + tTE(k||)]/2 and
t+−(k||) = t−+(k||) = [tTM(k||) − tTE(k||)]/2 are Fresnel
transmission coefficients of waves in CP basis with
tangential wave vector k|| defined in the laboratory
coordinate system, and �abn

B ≈ 2φk cos θ i is the wave
vector-dependent Pancharatnam-Berry phase resulting
from the spin reversal of the abnormal mode [29,34–36].
Such spin reversal comes from the effective “anisotropy”
[i.e., t+− = (tTM − tTE)/2 �= 0] of TM- and TE-polarized
plane waves possessed by the interface under oblique
incidence. Here, θ i is the incident angle of the light beam,
φk = tan−1(ky/kx ) is the azimuthal angle of the incident
planes of any noncentral plane wave with respect to that of
the central one with kx = ka

x cos θa + ka
z sin θa and ky = ka

y
being the transverse wave vector components of arbitrary
plane wave in the laboratory coordinates.

For an optically thin slab placed in free space, we have [37]

tTM(k||) =
[

cos
(
k(2)

z h
) − i

2

(
k(1)

z ε

k(2)
z

+ k(2)
z

k(1)
z ε

)
sin

(
k(2)

z h
)]−1

tTE(k||) =
[

cos
(
k(2)

z h
) − i

2

(
k(1)

z

k(2)
z

+ k(2)
z

k(1)
z

)
sin

(
k(2)

z h
)]−1

,

(4)

where k(1)
z = ki cos ϑ i and k(2)

z = kS cos ϑS with ϑS =
sin−1[sin ϑ i/

√
ε] and kS = √

εki. Here, ϑ i = sin−1(k||/ki )
is the incident angle of arbitrary plane waves with k|| =
(k2

x + k2
y )1/2.

As the incident beam is known, which is assumed as a CP
Gaussian one in its waist plane [see Fig. 1(a)],

Ei
+(ri

⊥)|zi=di = exp[−(ri
⊥/w0)2]V̂i

+, (5)

whose angular spectrum U i
+(ki ) = w2

0
2 exp[−(ki

⊥w0)2
/4] and

U i
−(ki ) ≡ 0 can be obtained by Fourier transforming the

Gaussian term, where w0 is the half-width of the beam waist.
Inserting U i

±(ki ) into Eq. (2) to get Ut
±(kt ), finally we obtain

the real fields by putting Ut
±(kt ) into Eq. (1) as

Et
+(rt

⊥) =
∫

d2kt
⊥eikt ·rt

t++(k||)U i
+(ki )

Et
−(rt

⊥) =
∫

d2kt
⊥eikt ·rt

t−+(k||)ei�abn
B (kt )U i

+(ki ), (6)

which are, respectively, spin-maintained and spin-reversed
beams. We refer to the spin-maintained beam as normal mode
and the spin-reversed one as abnormal mode. The real in-
tensity evolution of the abnormal mode shows a topological
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transition from a vortex state in normal incidence to off-axis
vortex states in small-angle incidence, and finally to nonvortex
spin-Hall beams in large-angle incidence [29], as shown in
Fig. 1(b). For interfaces or slabs composed of general materi-
als (e.g., air and glass), the weight or conversion efficiency of
the abnormal mode is extremely low (|t−+,+−| � |t++,−−|);
however, it is expected to be greatly enhanced by some spe-
cially designed metamaterials [29,38].

III. RESULTS AND DISCUSSION

A. Vortex mode decomposition

We now decompose the abnormal mode into a set of vortex
harmonics. Since the Laguerre-Gaussian (LG) beams [39]
form a complete, orthogonal, and infinite-dimensional basis
for the solutions of wave equation in paraxial approximations,
any field distribution can be decomposed into a superposition
of that basis [30–33]. Two integers p and m are employed
to describe the LG beams, where p is non-negative and de-
termines the radial shape of beam, and m can be any integer
values and determines the topological charge of the azimuthal
phase. A higher-order LG beam (m �= 0) contains an optical
vortex with a topological charge m, and a well-defined OAM
of mh̄ per photon. To obtain the vortex and OAM content, we
can calculate the projection of the abnormal mode into the LG
basis with p = 0:

Et
−(rt

⊥) =
∞∑

l=−∞
cmELGm

, (7)

where

cm =
∫∫

E∗
LGm

Et
−dxt dyt

(∫∫ ∣∣ELGm

∣∣2
dxt dyt

)1/2(∫∫ |Et−|2dxt dyt
)1/2

(8)

is the normalized weight coefficient of the mth-order LG beam
via calculating the inner product between the LG basis and the
abnormal beam, and

ELGm
= A0

w(zt )

[√
2rt

⊥
w(zt )

]|m|
L|m|

[
2

(
rt
⊥

w(zt )

)2]

× exp

[
−

(
rt
⊥

w(zt )

)2]
exp

[
−i

(
kt zt − (kt rt

⊥)2

2R(zt )

)]

× exp [i(|m| + 1)ξ (zt )] exp(imϕ) (9)

is the E -field distribution of the LG mode. Here A0 =√
2π−1|m|−1 is a constant, L|m| is the associated La-

guerre polynomial,zR = kw2
0/2 is the Rayleigh range, w(zt ) =

w0

√
1 + (zt/zR)2 is the beam waist half-width at distance zt ,

R(zt ) = zt + z2
R/zt is the curvature radius of wave front, and

ξ (zt ) = tan−1(zt/zR) is the Gouy phase. In the actual calcula-
tion of Eq. (8), we take a finite number of points to calculate
the integrals numerically. And, cm is a complex constant,
which satisfies

∑ |cm|2 = 1.
We now analyze the vortex harmonics constituent of the

abnormal mode of the transmitted beam under a left-handed
CP illumination. The abnormal mode is composed of three
harmonics, i.e., m = 2, 1, 0 [see Fig. 2(a)]. For the incidence
of a right-handed CP beam, the constituent harmonics are

FIG. 2. Vortex mode weight of the abnormal modes. (a) Weight
coefficients of the vortex harmonics varying against incident angle
with beamwidth w0 = 50 λ. (b) Weight coefficients of the vortex har-
monics vs beamwidth with θ i = 0.5◦. Here we set λ = 1, h = 0.5 λ,
and zt = 10 λ.

m = −2, −1, 0. At normal incidence, there is only m = 2
vortex harmonics, namely a perfect vortex. When the incident
angle is slightly larger, harmonics m = 1 and 0 appear, and
compete with m = 2. Their interference and superposition
result in crescent-shaped intensity patterns [see Fig. 1(b)].
When the incident angle further increases, the abnormal mode
is dominated by the harmonics m = 0. And, the high-order
harmonics m = 1 and 2 become insignificant. Here, we have
arg(c0) ≈ −π/2, arg(c1) ≈ 0, and arg(c2) ≈ π/2 for all in-
cident angles. The beam half-width w0 is also an important
parameter for controlling the TPT [29]. We plot the mode con-
stituent versus w0 in Fig. 2(b). As w0 increases, the evolution
of the weight coefficients of each mode has a similar behavior
as those of increasing the incident angle in Fig. 2(a).

To intuitively illustrate the vortex mode superposition, we
plot the magnitude, real, and imaginary parts of the constituent
harmonics (cmELGm

), respectively (Fig. 3). It is evident that
when the real part of the m = 1 mode is added to the m = 2
mode (real of the m = 0 mode is vanishing), the centroid
of the superimposed beam has a shift in the –yt direction.
Similarly, if the imaginary part of the m = 1 mode is added
to that of m = 0 or 2 modes, the centroid of the superimposed
beam will shift to the –yt direction. Hence, the existence of
m = 1 mode is the origin of the beam centroid shift. The
existence of the m = 2 mode can deform the beam profile.

B. Physical origin of the vortex mode generation

To further reveal the underlying physics of vortex mode
generation with an easily accessible picture, we now ex-
plore the wave vector-dependent Pancharatnam-Berry phase
�abn

B ≈ 2φk cos θ i of the abnormal mode [Eq. (3)] with rea-
sonable approximations. First, for normal incidence (θ i = 0),
we can obtain �abn

B ≡ 2ϕ without employing any approx-
imation, which is a vortex phase with topological charge
of 2. For oblique incidence cases still in the TPT region,
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FIG. 3. Amplitudes (a), real (b), and imaginary (c) parts of the
constituent vortex harmonics (cmELGm

).

that is, θ i is within a few degrees, we approximately have
�abn

B ≈ 2φk cos θ i ≈ 2φk and arrive at

ei2�abn
B ≈

[(
ki

x + α
) + iky

]2

(
ki

x + α
)2 + k2

y

= (ki
⊥)2ei2ϕ + 2αki

⊥eiϕ + α2(
ki

x + α
)2 + k2

y

,

(10)

where α = ki
z sin θ i ≈ ki sin θ i. Equation (10) represents an

asymmetric vortex in k space with its singular point shift-
ing −α to the ki

x direction. Because of the correspondence
between the real space and k space, the real-field patterns
exhibit y-direction shifts [Fig. 1(b)]. In this case, the phase
factor of the abnormal mode can be decomposed into three
vortex phase terms with topological charge of 2, 1, and 0,
respectively. Therefore, the theoretical analysis also verifies
the above numerical calculation. At the same time, we can
clearly know from Eq. (10) that the proportion of the three
vortex modes depends on the incident angle θ i and ki

⊥. The
latter helps us to identify an important parameter w0 to control
the weight of the vortex modes because the half-width of the
angular spectrum (kHW

⊥ ) of the beam is inversely proportion
to w0.

C. Calculation of OAM

To further verify the vortex mode decomposition method,
we now consider the OAM of the abnormal beam. In fact,
from the weighted coefficients of the vortex modes, we can
directly compute the averaged OAM per photon in the zt

direction as [30]

L̄ =
∑

m|cm|2, (11)

which is a full quantum average over all the vortex con-
stituents. The averaged OAM per photon can also be
calculated by [29]

L̄ = 〈E|−i (xt∂yt − yt∂xt )|E 〉/〈E|E 〉, (12)

FIG. 4. Averaged OAM per photon of the abnormal mode cal-
culated by two different methods. Here h = 0.5 λ, w0 = 50 λ, and
zt = 10 λ.

where E contains the two Cartesian components of the abnor-
mal mode Et

−(rt
⊥)V̂t

−. The results of the averaged OAM per
photon calculated by Eqs. (11) and (12), respectively, agree
well with each other, as shown in Fig. 4, which indicates
that the total OAM is fractional and proves the vortex mode
decomposition method.

IV. EXTENSIONS

We now extend the above method and discussion to other
optical systems. In fact, the crescent-shaped intensity patterns
in the TPT process [see Fig. 1(b)] are very akin to the asym-
metric Gaussian optical vortex [Fig. 5(a)] resulting from the
misalignment of the Gaussian beam and the centers of the fork
hologram or the spiral phase plate [40–43], which are readily
observed in experiments. Strictly speaking, the diffraction of
a shifted Gaussian beam by an amplitude fork hologram is
very complex. Here we only consider a simple model situation
and assume that the propagation distance is far less than the
Rayleigh range; then, the field distribution of the transmitted

FIG. 5. Extensions of the vortex mode decomposition to asym-
metric Gaussian optical vortex. (a) Intensity patterns for different
misalignment distance x0. (b) Weight coefficients of the vortex har-
monics varying against x0 with beamwidth w0 = 50 λ.
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beam can be expressed as

Et (x, y) ∝ [(x − x0) + isgn(n)y]|n| exp

(
−x2 + y2

w2
0

)
, (13)

where x0 is the misalignment distance in the x direction
and n is the topological charge of the vortex produced by
the alignment of the Gaussian beam and the centers of the
fork hologram. Corresponding to the previous discussion, let
n = 2, we get

Et (x, y) = (
r2ei2ϕ − 2x0reiϕ + x2

0

)
exp

(
− r2

w2
0

)
. (14)

Here r = (x2 + y2)1/2. Unambiguously, the transmitted
beam is also composed of three vortex harmonics, whose
evolution behavior [see Fig. 5(b)] is the same as that in Fig. 2.
The value of n can be any nonzero integer as long as the
topological geometry of the fork hologram or the spiral phase
plate is properly designed. However, for the model of reflec-
tion and refraction of a beam at an interface discussed in this
paper, the maximum order of the vortex mode is 2 due to the
properties of the wave vector-dependent Pancharatnam-Berry
phase [29,35]. If n is a positive integer, the misalignment
generates n + 1 vortex modes with topological charge of
n, n−1, . . . , and 0, respectively; while n is a negative integer,
then it generates n + 1 vortex modes with topological charge
of n, n + 1, . . . , and 0, respectively.

V. CONCLUSIONS

In summary, based on the vortex mode decomposition,
we have revealed that the TPT process in beam reflection
and refraction at a sharp interface can be described by the
competition and superposition of three vortex harmonics with
topological charges of m = 2, 1, and 0 (or −2, −1, and 0).
Quantitative calculation shows that the complete quantum
average of the vortex mode coefficients equals to the averaged
OAM per photon, which indicates that the vortex mode de-
composition provides an effective way to describe the TPT
in spin-orbit photonics. Since in other SOI systems, such
as a q plates [18,32], and some non-SOI systems, such as
fork holograms and spiral phase plates [40–43], similar TPT
phenomena can also occur, our findings can be generalized to
these systems.
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