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Maxwell fish eye for polarized light
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We consider the propagation of polarized light in a medium with Maxwell fish eye refraction index profile. We
show that polarization violates the additional symmetries of the medium so that ray trajectories no longer remain
closed. Then we suggest a modified, polarization-dependent Maxwell fish eye refraction index which restores
all symmetries of the initial profile and yields closed trajectories of polarized light. Explicit expressions for the
polarization-dependent integrals of motion and the solutions of corresponding ray trajectories are presented.
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I. INTRODUCTION

It is well known that the minimal action principle came
into physics from geometric optics. Initially, it was invented
for the description of the propagation of light and is presently
known as the Fermat principle:

SFermat = 1

λ̄0

∫
dl̃, dl̃ := n(r)|dr/dτ |dτ, (1)

where n(r) is the refraction index and λ̄0 is the wavelength
in vacuum. This action could be interpreted as the action of a
system on a three-dimensional curved space equipped with the
“optical metrics” or the Fermat metrics (see [1]) of Euclidean
signature

dl̃2 = n2(r)dr · dr. (2)

Thus, the symmetries of the system which describe the prop-
agation of light in a particular medium are coming from the
symmetries of the optical metrics of that particular medium. In
systems with a maximal number of functionally independent
integrals of motion (2N − 1 integrals for an N-dimensional
system), all the trajectories of the system become closed.
The closeness of the trajectories makes such profiles highly
relevant in the study of cloaking and perfect imaging phenom-
ena. The most well-known profile of this sort is the so-called
Maxwell fish eye profile which is defined by the metrics of a
(three-dimensional) sphere or pseudosphere [by pseudosphere
we mean the upper (or lower) sheet of a two-sheet hyper-
boloid]:

nM f e(r) = n0

|1 + κr2| , κ = ± 1

4r2
0

, (3)

where the plus (minus) sign in the expression for κ corre-
sponds to a sphere (pseudosphere) with the radius r0, and
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n0 > 0. Apart from applications in cloaking and perfect imag-
ing phenomena [2–4], the Maxwell fish eye is a common
profile in quantum optics with single atoms and photons [5],
optical resonators [6], discrete spectrum radiation [7], etc.
Moreover, there are many experimental implementations of
Maxwell fish eye lenses [8–10].

In most of the listed studies, scalar wave approximation
was used and polarization of electromagnetic waves was not
taken into account. In these systems, the ray trajectories
belong to the plane which is orthogonal to the angular momen-
tum. Introduction of spin (polarization) results in the rotation
of this plane by a constant angle proportional to spin; more-
over, it breaks the nonrotational symmetries of optical systems
with the Maxwell fish eye profile, so that photon trajectories
no longer remain closed [11]. Thus, the key property of the
Maxwell fish eye profile which makes it relevant in cloaking
and perfect imaging phenomena is violated.

In the present paper, we continue our study of a polarized
light passing through the Maxwell fish eye profile within the
geometrical optics approximation. The key point of our study
is that we introduce a polarization-dependent deformation of
the Maxwell fish eye profile:

ns
M f e(r) = nM f e(r)

2

(
1 +

√
1 − 4κs2λ̄2

0

n0

1

nM f e(r)

)
, (4)

where nM f e(r) is the original Maxwell fish eye profile given
by (3), and s is the light polarization. For linearly and circu-
larly polarized light we have s = 0 and s = ±1 respectively.
The proposed deformation restores all the symmetries of the
optical Hamiltonian, with Maxwell fish eye profile, which
were broken after the inclusion of polarization. It also ensures
the closeness of the trajectories for polarized photons and
can be used for cloaking and perfect imaging of polarized
photons. It is seen that the spin-induced term is propor-
tional to the dimensionless parameter s2λ̄2

0/r2
0 , where r0 is the

characteristic length of the profile defined in (3). This means
that spin will play a significant role only in the vicinity of the

2469-9926/2021/104(5)/053502(6) 053502-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3602-6419
https://orcid.org/0000-0002-0758-5342
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053502&domain=pdf&date_stamp=2021-11-01
https://doi.org/10.1103/PhysRevA.104.053502


DAVTYAN, GEVORKIAN, AND NERSESSIAN PHYSICAL REVIEW A 104, 053502 (2021)

wave and geometrical optics border sλ̄0/r0 ∼ 1, since we are
working in the framework of a geometrical optics approxima-
tion, λ̄0 � r0. Below we will investigate the influence of spin
(polarization) on the ray trajectories in the deformed Maxwell
fish eye profile given by (4).

The paper is organized as follows. In Sec. II, we describe
the Hamiltonian formulation of the geometric optical system
given by the action (1). We also present some other text-
book facts on the duality between Coulomb and free-particle
systems on a (pseudo)sphere which allow us to relate the
Maxwell fish eye and Coulomb profiles and will be used in
our further consideration.

In Sec. III, we present the Hamiltonian formalism for the
polarized light propagating in an optical medium and pro-
pose the general scheme of the deformation of an isotropic
refraction index profile which allows us to restore the initial
symmetries after the inclusion of polarization.

In Sec. IV, we use the proposed scheme for the con-
struction of a “polarized Maxwell fish eye” profile (4) which
inherits all the symmetries of the original profile (3) when
light polarization is taken into account. We present the explicit
expressions for the symmetry generators of the corresponding
Hamiltonian system and find the expressions of the Casimirs
of their symmetry algebra.

In Sec. V the explicit expressions for the trajectories of
polarized light are presented. It is shown that these trajectories
are no longer orthogonal to the angular momentum but turn to
a fixed angle relative to it. Despite deviations from circles,
these trajectories remain closed.

Through the text we will use the notation r := |r|, r :=
(x1, x2, x3), p := (p1, p2, p3), p := |p|, and so on.

II. SCALAR WAVES

Due to reparametrization invariance of the action (1), the
Hamiltonian constructed by the standard Legendre transfor-
mation is identically zero. However, the constraint between
momenta and coordinates appears there:

� := p2

n2(r)
− λ̄−2

0 = 0. (5)

Hence, in accordance with the Dirac’s constraint theory [12]
the respective Hamiltonian system is defined by the canonical
Poisson brackets

{xi, p j} = δi j, {pi, p j} = {xi, x j} = 0 (6)

and by the Hamiltonian

H0 = α(p, r)� = α(p, r)

(
p2

n2(r)
− λ̄−2

0

)
≈ 0. (7)

Here α is the Lagrangian multiplier which could be an arbi-
trary function of coordinates and momenta, and i, j = 1, 2, 3.
The notation “weak zero,” H0 ≈ 0, means that when writing
down the Hamiltonian equations of motion we should take
into account the constraint (5) only after the differentiation:

df (r, p)

dτ
= { f ,H0} = { f , α}� + α{ f ,�} ≈ α{ f ,�}. (8)

The arbitrariness in the choice of the function α reflects the
reparametrization invariance of (1). For the description of the

equations of motion in terms of arc length of the original
Euclidian space one should choose (see, e.g., [13])

α = n2(r)

p + λ̄−1
0 n(r)

⇒ HOpt = p − λ̄−1
0 n(r). (9)

With this choice, the equations of motion take the conven-
tional form [14]

dp
dl

= λ̄−1
0 ∇n(r),

dr
dl

= p
p
, (10)

where dl := α(r, p)dτ is the element of arc length. These
equations describe the motion of a wave package with center
coordinate r and momentum p in a medium with refraction
index n(r).

Assume we have a Hamiltonian system given by the Pois-
son bracket (6) and by the Hamiltonian

H = p2

2g(r)
+ V (r). (11)

In accordance with the Maupertuis principle, after fixing the
energy surface H = E , we can relate its trajectories with the
optical Hamiltonian (7) with the refraction index

n(r) = λ̄0

√
2g(r)[E − V (r)]. (12)

Clearly, the optical Hamiltonian (7) [as well as the Hamil-
tonian (9)] with the refraction index (12) inherits all the
symmetries and constants of motion of the Hamiltonian (11).

Canonical transformations preserve the symmetries of the
Hamiltonians and their level surfaces. Hence, we are able
to construct the physically nonequivalent optical Hamilto-
nians (and refraction indices) with the identical symmetry
algebra. The simplest illustration is the well-known relation
between the Coulomb Hamiltonian which defines the so-
called Coulomb refraction index profile and the free-particle
Hamiltonian on the three-dimensional sphere, which defines
the “Maxwell fish eye” refraction index (see, e.g., [15]). First,
we fix the energy surface of the Coulomb Hamiltonian and get
the respective refraction index:

HCoul − E := p2

2
− γ

r
− E = 0

⇒ nCoul = λ̄0

√
2(E + γ /r), where γ > 0. (13)

The constants of motion of the Coulomb problem (and of
the respective optical Hamiltonian) are given by the rotational
momentum and by the Runge-Lenz vector

L = r × p, A = L × p + γ
r
r

(14)

which form the algebra

{Ai, Aj} = −2εi jkHCoulLk, {Ai, Lj} = εi jkAk,

{Li, Lj} = εi jkLk . (15)

Now, let us perform a simple canonical transformation,

(p, r) → (−r, p). (16)

As a result, the first equation in (13) reads

r2 − 2γ

p
− 2E = 0 ⇒ p − 2γ

r2 − 2E
= 0. (17)
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Interpreting the second equation as an optical Hamiltonian,
we get the refraction index profile known as the “Maxwell
fish eye” (3) with the parameters κ and n0 defined as

κ := − 1

2E
,

n0

λ̄0
:= 2εκγ , (18)

where ε = −sgn(r2 + 1/κ ).
The integrals of motion (14) result in the symmetry gen-

erators of the optical Hamiltonian with the Maxwell fish eye
refraction index:

L → L, A → T
2κ

,

T = (
1 − κr2

)
p + 2κ (rp)r =

(
2 − n0

nM f e(r)

)
p + 2κ (rp)r.

(19)

These integrals form the so(4) algebra for κ > 0, and so(1.3)
algebra for κ < 0:

{Li, Lj} = εi jkLk, {Ti, Lj} = εi jkTk, {Ti, Tj} = 4κεi jkLk .

(20)
In the next sections we will use the above described du-

ality for the construction of the Maxwell fish eye profile for
polarized light.

III. INCLUSION OF POLARIZATION

Let us briefly discuss the inclusion of polarization.
To this end we should add to the scalar Lagrangian L0 =

pṙ − p + λ̄−1
0 n the additional term L1 = −sA(p)ṗ, where s is

the spin of the photon and A is the the vector-potential of the
“Berry monopole” [i.e., the potential of the magnetic (Dirac)
monopole located at the origin of momentum space] [13]:

F := ∂

∂p
× A(p) = p

p3
. (21)

From the Hamiltonian viewpoint this means to preserve the
form of the Hamiltonian (7) and replace the canonical Poisson
brackets (6) by the twisted ones

{xi, p j} = δi j, {xi, x j} = sεi jkFk (p), {pi, p j} = 0, (22)

where i, j, k = 1, 2, 3, and Fk are the components of the Berry
monopole (21). On this phase space the rotation generators
take the form

J = r × p + s
p
p

(23)

while the equations of motion read

dp
dl

= λ̄−1
0 ∇n(r),

dr
dl

= p
p

− s

λ̄0
F × ∇n(r). (24)

However, the above procedure, i.e., twisting the Poisson
bracket with preservation of the Hamiltonian, violates the
nonkinematical (hidden) symmetry of the system. To get the
profiles admitting the symmetries in the presence of polariza-
tion, we use the following observation [16] (see [17] for its
quantum counterpart). Assume we have the three-dimensional
rotationally invariant system

H0 = p2

2g(r)
+ V (r), {xi, p j} = δi j,

{pi, p j} = {xi, x j} = 0. (25)

For the inclusion of interaction with a magnetic monopole,
we should transition from the canonical Poisson brackets to
the twisted ones:

{xi, p j} = δi j, {pi, p j} = sεi jk
xk

r3
, {xi, x j} = 0. (26)

The rotation generators then read

J = r × p + s
r
r

: {Ji, Jj} = εi jkJk . (27)

By modifying the initial Hamiltonian to

Hs = p2

2g(r)
+ s2

2g(r)r2
+ V (r), (28)

we find that trajectories of the system preserve their form, but
the plane to which they belong fails to be orthogonal to the the
axis J. Instead, it turns to the constant angle

cos θ0 = s

|J| . (29)

For systems with hidden symmetries, one can find the ap-
propriate modifications of the hidden symmetry generators
respecting the inclusion of the monopole field.

To apply this observation to systems with polarized light,
we should choose the appropriate integrable system with a
magnetic monopole, and then perform the canonical transfor-
mation (16) which yields the Poisson brackets for polarized
light (26). Afterwards we need to solve the equation

r2 + s2

p2
− 2g(p)[E − V (p)] = 0 ⇒ p = ns

inv (r)

λ̄0
. (30)

For example, to get the “polarized Coulomb profile” we
have to start from the free-particle Hamiltonian on a three-
dimensional sphere or hyperboloid interacting with the Dirac
monopole:

Hs = (1 + κr2)2

2

(
p2 + s2

r2

)
. (31)

Then, after fixing the energy surface Hs = E and performing
canonical transformation (16) we arrive at the third-order
(with respect to p2) algebraic equation

(1 + κ p2)2

(
r2 + s2

p2

)
= 2E (> 0) ⇔ y3u − y2(u − κs2)

− Ey + E = 0, (32)

with y := 1 + κ p2, u := r2.
This equation has either one real and two complex solu-

tions or three real solutions, which describe the “polarized
Coulomb profiles.”

Conversely, when we start from the Coulomb problem with
a Dirac monopole we will arrive at the “polarized Maxwell
fish eye,” i.e. the deformation of the “Maxwell fish eye” which
preserves, in the presence of polarized light, all symmetries of
initial scalar system. The latter is considered in detail in the
next section.
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IV. POLARIZED MAXWELL FISH EYE

Let us consider the Coulomb system with a Dirac
monopole, which is known as the “MICZ-Kepler sys-
tem” [18]. It is defined by the twisted Poisson brackets (26)
and by the Hamiltonian

HMICZ = p2

2
+ s2

2r2
− γ

r
. (33)

Besides the conserved angular momentum (27), this system
has the conserved Runge-Lenz vector

As = J × p + γ
r
r
, (34)

which forms the symmetry algebra of Coulomb problem (20)
[with the replacement (L, A) → (J, As)]. After performing
canonical transformation (16), we get

HMICZ = E ⇔ r2 + s2

p2
− 2γ

p
− 2E = 0. (35)

Solving this quadratic equation for p, we get the refraction
index given by the expression (4), where the notation (18) is
used.

The rotation generator (27) transforms to (23), and the
Runge-Lenz vector (34) transforms to Ts/κ , where

Ts =
(

2 − n0

ns
M f e(r)

)
p + 2κ (rp)r + 2κs

ns
M f e(r)

J. (36)

Along with (23), these generators form the symmetry algebra
of the original Maxwell fish eye profile (20) [where the pair
(L, T) is replaced by (J, Ts)]. The Casimirs of the symmetry
algebra are given by the expressions

T2
s + 4κ (J2 − s2) = n2

0

λ̄2
0

, Ts · J = sn0

λ̄0
. (37)

Hence, for κ > 0 the vectors
√

4κJ and Ts form a parallelo-
gram with the fixed lengths of diagonals

|Ts ±
√

4κJ| =
∣∣∣n0

λ̄0
±

√
4κs

∣∣∣. (38)

This immediately leads to the conclusion that for κ > 0 the
generators Ts and J reach the lower or upper bounds being
parallel to each other:(

|J|min = s, |Ts|max = n0

λ̄0

)
,

×
(

|J|max = n0

λ̄0

√
4κ

, |Ts|min =
√

4κs

)
. (39)

Notice also that for κ > 0 we get a restriction of rays in the
finite domain

κ > 0 : r �
√

n2
0

4s2λ̄2
0κ

2
− 1

κ
. (40)

One can also note that spin appears in the expression for the
refraction index (4) along with the factor κλ̄0

2 = (λ̄0/2r0)2.
In order to stay within the bounds of the geometrical optics
approximation, this factor must be reasonably small. There-
fore, the influence of the spin will be far more notable within
a certain range of distance from the core of the fish eye.

FIG. 1. Maxwell fish eye refraction index profile for s = 0 and
s = 1 when n0 = 1.5, λ̄0 = 1, r0 = 5.

The latter happens when the condition 4κs2λ̄2
0/n0 ≈ nM f e(r)

holds. At these distances the refraction index in the presence
of spin can be much smaller compared to the refraction index
with zero spin (see Fig. 1).

V. TRAJECTORIES

Let us study the ray trajectories of the polarized light prop-
agating in the medium with the above constructed profile (4).
One can see that

r · J = s
rp
p

, r · Ts = n0

λ̄0

rp
p

⇒ r ·
(

J − sλ̄0

n0
Ts

)
= 0.

(41)
Hence, ray trajectories are orthogonal to the axis

E3 = J − sλ̄0

n0
Ts, (42)

and, therefore, the trajectories belong to the plane spanned by
the following vectors:

E1 = Ts × J,

E2 = E3 × E1 = (J2 − s2)

(
Ts − 4sλ̄0κ

n0
J
)

:

E3 · E2 = E3 · E1 = 0. (43)

Then, from the expression J · (r × Ts) we immediately obtain
the solution for the ray trajectories:

r · (Ts × J) = (J2 − s2)

(
2 − n0

ns
m f e

)
. (44)

This prompts us to introduce the following orthogonal frame:

ei = Ei

|Ei| : ei · e j = δi j, (45)

where

|E1|2 = (J2 − s2)

(
n2

0

λ̄2
0

− 4κJ2

)
,

|E3|2 = (
J2 − s2

)(
1 − 4s2λ̄2

0κ

n2
0

)
, |E2|2 = |E1|2|E3|2.

(46)
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FIG. 2. Deformations of the ray trajectories for different values
of r0 when n0 = 1.5, λ̄0 = 1. The black curves correspond to the
basic trajectories where T = Tmin = s/r0. The red (light gray) curves
correspond to trajectories with intermediary value of T . Dashed
curves are the trajectories corresponding to the same value of T but
for circularly polarized light (s = 1). The first figure (r0 = 20) cor-
responds to the case when the deformations of the profile only result
in the shift of the centers of the trajectories, without affecting their
shapes. Conversely, in the second figure (r0 = 2), the deformations
of the Maxwell fish eye result in highly deformed trajectories.

Decomposing r over this frame, we introduce the polar coor-
dinates

r = x1e1 + x2e2, x1 = r cos ϕ, x2 = r sin ϕ. (47)

Then, having in mind Eqs. (43) and (46), we can immediately
rewrite the equation (44) in polar coordinates:

1 − |κ||as|r cos ϕ = 1 + κr2

1 +
√

1 − 4κs2λ̄2
0

n2
0

(1 + κr2)

, (48)

where

|as|2 := R2
s − 1

κ
, R2

s := n2
0 − 4κs2λ̄2

0

4λ̄2
0κ

2(J2 − s2)
. (49)

So the trajectories of polarized light are not circles anymore,
in contrast to the case of scalar waves. However, they can be
described by the parameters as and Rs (49) which, in the limit
s → 0, become the center coordinate and the radius of the
circle, respectively. Indeed, for s = 0 the solution (44) results
in the the equation for a circle with the center located at the e1

axis:

s = 0 : r · (
T × L

) = L2(1 − κr2) ⇒ (r − a0)2 = R2
0,

(50)

where

a0 := T × L
2κL2

, |a0|2 = R2
0 − 1

κ
, R0 := n0

2|κ|λ̄0L
. (51)

Given sλ̄0 � n0/κ , the deformation of the circle is negligible,
which is not the case for sλ̄0 ∼ n0/

√
κ .

As we can see from Fig. 2, for r0 = 20 the only notable
manifestation of the polarization is the shift of the center of the
trajectory. However, it is worth noting that since the dashed
lines are not circles anymore when talking about the center of
the trajectory for s = 1, we refer to the point which becomes
the center of the circular trajectory when we pass from s = 1
to s = 0. The second picture illustrates the circular trajectories

and their deformations for sλ̄0 ∼ n0/
√

κ . In this case, the
original profile (3) and the deformed one (4) differ drastically.
The circular trajectories are notably deformed.

Detailed knowledge of trajectory parameters (49) can be
used in different applications. For example, in the conformal
mapping scheme the cloaking area is the outer space of closed
trajectories [3]. Therefore as it follows from (49) there is no
cloaking for polarized photons when J → s.

VI. CONCLUDING REMARKS

The standard Maxwell fisheye profile does not ensure
closed ray trajectories for polarized photons (the only ex-
ceptions are linearly polarized photons corresponding to the
s = 0 spin statistic), while the closeness of trajectories is the
main property that is used in perfect imaging and cloaking
phenomena. In this paper, we suggested the deformation of the
Maxwell fisheye profile, which ensures the closeness of the
trajectories of the ray trajectories for the polarized photons.
We examined the properties of the deformed profile and have
shown that the main difference between the cases of polarized
and nonpolarized photons is observed at the vicinity of wave
and geometrical optics border sλ̄0/r0 ∼ 1.

The proposed modification scheme is applicable for any
isotropic refraction index n(r). Namely, to preserve the quali-
tative properties of scalar wave trajectories for the propagating
polarized light, we should replace it with the modified index
ns(r) which is the solution (with respect to p) of the following
equation:

p = 1

λ̄0
n

(√
r2 + s2

p2

)
⇒ p = ns(r), (52)

where s is polarization of light. The proposed deformation
preserves the additional symmetries of the system (if any),
and thus guarantees the closeness of trajectories of polarized
light.

Seemingly, the suggested scheme could be extended to
some nonisotropic but integrable profiles as well. On the other
hand, nonisotropic integrable profiles are not common objects
in the present study, though they obviously can be constructed
by the use of existing integrable models. For example, choos-
ing a textbook integrable system, the two-center Coulomb
problem [1], and performing trivial canonical transforma-
tion (16) we can construct (taking into account the expressions
for constants of motion; see, e.g., [19]) an anisotropic pro-
file which could be interpreted as a superposition of two
“Maxwell fish eye” profiles. Furthermore, using the proposed
scheme, we can construct a “polarized Maxwell double fish
eye” profile as well, starting from the “two-center MICZ-
Kepler problem” [20], i.e., from the two-center Coulomb
problem specified by the presence of magnetic monopoles
located at the attraction centers. We hope to consider this
problem elsewhere.
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