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Bayesian inference for plasmonic nanometrology
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We introduce a Bayesian method for the characterization of plasmonic nanoparticles, which is applicable to
both near- and far-field problems. Designed to combine data generated from any photon-plasmon interaction
experiment with physically motivated theoretical models, our approach leverages state-of-the-art Markov chain
Monte Carlo sampling techniques and returns parameter estimates on nanometric scales. Simulated spectral
data sets, describing resonant scattering of photons from ellipsoidal and toroidal nanoparticles, are explored as
concrete examples of our approach, with the resulting Bayesian estimates showing excellent agreement with the
ground truth, even under conditions of high statistical noise. By incorporating Bayes factors into the method as
well, we reveal how model selection can determine which one of competing geometric shapes better explains
the observed data. Our comprehensive nanometrology procedure can be tailored to a variety of light-particle
interaction models, and its reliance on Bayesian inference furnishes automatic uncertainty quantification. In
addition to applicability to a host of plasmonic configurations such as nanoparticle dimers, trimers, and array
studies, it is proposed that the presented analysis can be extended to the quantum regime, where nonclassical
photon statistics may provide additional insight for inference of scatterer properties.
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I. INTRODUCTION

In atomic, molecular, and optical physics, statistical meth-
ods are ubiquitous for processing signals associated with
photon detection. Light generated via radiative decay of ex-
cited states or via absorption and scattering of photons can
carry information about the light-emitting or scattering sys-
tem, which has motivated longstanding studies of inverse
problems. For example, in applications based on dynamic
light scattering [1], interest rests on inference of particle and
aggregate size distributions, leading to a parameter estima-
tion problem. Since validating estimates is difficult without
invoking an independent measurement of the parameters, a
range of estimates is often desired that can be scrutinized
via accepted statistical procedures. In previous studies to this
end, a monochromatic beam of light has been scattered from
an ensemble of particles in liquid or aerosol medium, with
scattered light measured at a given angle as a function of
time. Due to stochastic processes (e.g., Brownian motion) in
such media, an inhomogeneous Fredholm integral equation
results from the time autocorrelation analysis of the measured
intensity signal, and through equation inversion, one seeks
the particle size distribution. It is generally recognized that
such a procedure is mathematically ill-posed, so that there can
be many parameter combinations or candidate aggregate size
distributions that produce results consistent with the observed
data.

To tackle ill-posed problems, several approaches have
been proposed, including Bayesian inference as nicely de-
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scribed by Huber et al. in the context of characterizing
aerosolized fractal aggregates of soot [2]. As a general pro-
cedure, Bayesian inference [3] provides a principled and
conceptually straightforward approach for estimating any pa-
rameters x of interest given experimental observations D. A
probability distribution over unknowns can be defined and
updated with experimental observations via Bayes’ theorem,
P(x|D) = P(D|x)P(x)/P(D), where the distribution P(D|x)
is based on a model of the physical process and P(x) de-
lineates any prior beliefs on the system. By furnishing a
complete probability distribution for x, Bayesian inference
provides uncertainties automatically, while also revealing any
assumptions explicitly via the prior P(x). Moreover, the
Bayesian mean estimator of any function f (x), defined as
fB = ∫

dx P(x|D) f (x), is optimal in terms of attaining the
minimum squared error on average [4].

Bayesian concepts are receiving increasing attention in
metrology in general. This is noted for example by Hejazi
et al. [5], who place their work on parameter estimation for
single-wavelength photodetectors within the broader context
of data analytics in condensed matter and materials sciences.
Another example of how Bayesian inference may aid mea-
surements on physical systems has been contributed by Bera
et al. [6], who describe estimation of the parameters that con-
trol the dynamics of an optically trapped Brownian particle.
In the work of Aihara et al. [7], the physical system on which
measurements were carried out took the form of an evaporated
bismuth thin film, and Bayesian estimates were obtained for
the parameters characterizing the transient profile of coherent
phonons. Similarly, a thin film superlattice was characterized
via Bayesian analysis of the measured photoluminescence
spectrum in the work of Iwamitsu et al. [8]. In a differ-
ent direction, Bayesian optimization techniques [9] have also
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FIG. 1. Simplified workflow for the Bayesian inference of plas-
monic nanoparticle properties.

been applied in the design of subwavelength structures with
engineered scattering patterns [10,11]. Here, Bayes’ theorem
facilitates efficient search and optimization over a complicated
design space, rather than being used for the inference of un-
known parameters from experimental data.

In this work, we are interested in Bayesian inference as-
sociated with light scattering from plasmonic nanoparticles,
as broadly depicted in Fig. 1. When an electron or pho-
ton interacts with a nanoparticle, under proper conditions of
field polarization, wavelength, and momentum, as well as
nanoparticle geometric shape, surface morphology, and di-
electric properties, resonant photonic modes can be excited
in the surface or bulk regions of the particle. In the case of
metallic nanoparticles, these modes are associated with col-
lective electronic oscillations, where the minimum involved
energy is called a plasmon. The decay of these modes can
occur radiatively or nonradiatively, with the former leading to
emission of a photon and the latter resulting in nanoparticle
heating [12]. Thus, calculation of emission probabilities and
experimental measurement of photons are important in the
nanometrology of the emitting particles.

In this article, we extend the applicability of Bayesian
inference to plasmonic systems in which field enhancement,
energy confinement, and strong coupling to emitters are
known to play important roles in the radiative processes.
Leveraging advanced Markov chain Monte Carlo (MCMC)
methods and able to incorporate any first-principles, phe-
nomenological, or empirical model of interest, we test the
method on simulated experimental data sets from ellipsoidal
and ring-toroidal gold nanoparticles, demonstrating accurate
estimation of specific geometric parameters. As an important
additional capability, we also compute the ratio of poste-
rior probabilities from alternative geometrical models, finding
convincing evidence in favor of the ground truth in all data
sets examined and thereby indicating our method’s utility for
both parameter estimation and model selection. While we con-
centrate explicitly on the estimation of geometric properties
from nanoparticle scattering data, the presented approach is
applicable to many other situations of interest in plasmonics,
such as plasmonic tomography [13], qubit-particle interac-
tions [14], and surface plasmon resonance sensors [15], thus
providing a valuable complementary capability to standard
near- or far-field techniques in nanometrology.

We have organized our presentation as follows. Section II
briefly introduces how plasmon modes may be computed in a

broad spectral band for an arbitrarily shaped nanoparticle of a
given material. This section provides the needed background
for the models to be used later in inference. In Sec. III,
we overview the applied Bayesian method, including de-
tails of the MCMC sampling procedure that enables efficient
numerical evaluation. Section IV describes the nanoparticle
geometries considered for simulated data sets, with Sec. V
summarizing the results obtained from these with Bayesian in-
ference. Section VI considers the question of model selection,
showing how Bayes factors can identify the more probable
of competing models given observations. Concluding remarks
are provided in Secs. VII and VIII.

II. NANOPARTICLE PLASMONICS

Light-matter interaction [16] in the form of photon scatter-
ing from nanoparticles [17] plays a central role in important
applications ranging from chemical and biological sensing
[18] to emerging experiments in quantum sensing [19]. With
the development of new light sources (e.g., single photons
[20]), as well as with the discovery of increasingly sensi-
tive nanometrological techniques (e.g., scattering near-field
scanning optical microscopy [21]) that can probe the electro-
magnetic environment of the nanoparticles, studies of coupled
photon-particle systems are gaining further momentum. These
include ion trapping [22], quantum plasmonics [23], and qubit
entanglement control [24], to mention a few.

For nanoparticles that support resonant surface modes,
significant absorption and inelastic scattering occurs, which
may be revealed from a broadband excitation of the modes
with specific polarization states. Under optimum resonance
conditions, high degrees of field confinement may occur in
the vicinity of the nanoparticles and their sub- and super-
strates. Such electromagnetic environments can be probed via
near-field scattering to provide information that may not be
recoverable in the far field. Far-field detection of the scattered
photons, however, offers the advantage of noninvasiveness,
simplifying the light-particle interaction model. For example,
in tip-enhanced or scattering-type near-field measurements,
any model must account for the convolution of the particle
near field with the scattering tip. Statistical methods that can
help deconvolute the data and infer information regarding the
scatterer are therefore important.

Consider a typical measurement scenario for character-
izing both radiative decay and nanoparticle attributes, as
depicted in Fig. 2. The polarization state of an incoming beam
of photons of flux � is controlled with a linear polarizer and a
polarization rotator, and the beam is directed toward a single
or a many-nanoparticle system. Although the probability of
a photon-particle plasmon interaction does change with the
particle’s geometric cross section, the differential scattering
cross section dσ , that is, the ratio of the scattered power at d�

to �, is the quantity of interest since it properly accounts for
the resonance properties of the excited surface modes, which
are known to lead to significantly higher scattering than could
be accounted for from geometric effects alone. Following this
interaction with the system under test, subsequent plasmon
excitation, and radiative decay, the emanating photons may be
detected with a properly positioned photodetector at the apex
of the solid angle d�. In the left panel of Fig. 2, the plasmon
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FIG. 2. Overview of plasmonic inference problem. Light emitted from a plasmonic system is detected in the near- or far-field regime,
giving a data set D of counts. Bayes’ theorem combines this data with a model and prior information to define a probability distribution on
the unknown parameters. Through Monte Carlo techniques, samples are obtained to estimate any function of interest. As visual examples, we
show the norm of the near-field electric field distribution and the far-field (radiation pattern) computed at λ = 400 nm for a circular ellipsoid
with major (minor) radius of 45 nm (10 nm). Example cross sections for five nanoparticle shapes highlight the types of data expected. Other
dimensions assumed were 50 nm radius for the sphere, 25 nm radius and 100 nm height for the rod, 100 nm × 100 nm base and 100 nm height
for the pyramid, and 40 nm (21 nm) major (minor) radius for the ring.

excitation is exemplified for a single ellipsoidal nanoparticle,
where the norm of the induced surface field is visualized. The
displayed radiation pattern of the excited mode is obtained
from near- to far-field transformation. The excited plasmon
mode and its radiation pattern were obtained computation-
ally in the frequency domain using the finite element method
(FEM) [25]. To generate the data sets D, shown in the right
panel of Fig. 2, we employ the finite difference time domain
(FDTD) method, as will be discussed in Sec. IV. Data sets
D describe the photon scattering cross sections for various
nanoparticles, as annotated in Fig. 2.

Following a single d� measurement, the detector position
may be changed incrementally in � to cover the upper half-
space above the substrate. Accordingly, for each wavelength,
the end result is a map of the angular distribution of the
emitted photons, which can be kept as a function of � or
integrated over all angles of interest (as in the examples in
Figs. 2 and 4). We note that, instead of wavelength scanning,
one may choose to probe with a broadband pulse and measure
the transient response of the nanoparticles, performing an
inverse Fourier transform to acquire the emission spectrum
for a single angular position of the detector.

III. OVERVIEW OF BAYESIAN PLASMONIC
CHARACTERIZATION METHOD

A. Preliminaries

As our prototypical physical system, we consider nanopar-
ticles of various materials and morphologies, such as the
well-studied systems of gold and silver spheroids. When per-

forming measurements on the proposed physical system, a
single event is defined as the detection of a photon of a
particular wavelength and polarization state at a given point
in the near or far field. The collection of all such events
can be summarized as a data set D. In order to relate this
data set to the unknown parameters of interest—which can be
defined generically as a vector x—one must invoke a physical
model that specifies P(D|x), i.e., the probability of observing
the data D given the parameters x. Lastly, we define some
prior distribution P(x) that encompasses all beliefs about the
system’s parameters before performing experiments. P(x) can
be chosen as informative or as uninformative as desired to
reflect the knowledge and objectives of the inference pro-
cedure. These three elements—data, model, and prior—then
are united into a single probability distribution according to
Bayes’ theorem [P(x|D) = P(D|x)P(x)/P(D)]. This con-
ditional probability of parameters x, given observations D,
formally solves the problem.

Yet, the theoretical simplicity of Bayes’ rule belies the
computational challenges associated with utilizing it in prac-
tice. For all but the simplest models, integrals of the form
fB = ∫

dx P(x|D) f (x) cannot be performed analytically,
and numerical approaches are hindered by the often high-
dimensional nature of x. However, if samples of P(x|D) can
be obtained reasonably efficiently, then the Bayesian mean es-
timator fB can be computed directly. Monte Carlo techniques
offer the possibility to obtain such samples, and the efficiency
of these methods has improved significantly in recent years,
opening a valuable opportunity for the application of Bayesian
estimation in plasmonic characterization.
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B. Formal problem formulation

Returning to the scenario of Fig. 2, we can represent the
unknown geometric properties of the system under test by
a vector of parameters y. Then, for a particular measure-
ment m ∈ {1, 2, . . . , M}, this system is illuminated by a flux
�m(λ, q): the number of incident photons per unit time, area,
and wavelength, with q ∈ {1, 2} denoting possible projections
onto two orthogonal polarization states. The scattered photons
are detected according to an efficiency function gm(λ, q,�) ∈
[0, 1], which specifies the probability of successfully detect-
ing a scattered photon at wavelength λ, polarization q, and
solid angle �. Both �m and gm are free to vary with m,
reflecting a tunable excitation source or tunable measurement
device, respectively.

The core of the theoretical model centers on the scattering
cross section (though it may be formulated for the absorp-
tion cross section as well) of the plasmonic nanostructure,
expressed in differential form as ∂σ (y, λ, q,�)/∂�. We will
assume a spectral region λ ∈ �, with � sufficiently broad
to recover the resonance features of the nanoparticle excita-
tion. Furthermore, as depicted in Fig. 2, we assume that the
emitted photons can be probed only from the upper (z > 0)
half-space encompassing angles �+, which is reasonable for
substrate-bound nanoparticles or nanostructures, although ra-
diative plasmon decay can also be observed from the substrate
domain, for example when used in prism-based experiments.
The rate of detections for measurement setting m can then be
written as

μ̃m(y)

=
∑

q

∫
�

dλ

∫
�+

d��m(λ, q)
∂σ (y, λ, q,�)

∂�
gm(λ, q,�).

(1)

This expression utilizes detailed information from all aspects
of the experiment—source, nanoparticles, and detection—so
that the absolute cross section of the structure under test can
in principle be harnessed to aid in inference. Experimen-
tally, however, the level of calibration required for absolute
cross-section determination can be quite difficult to attain.
Uncertainties in the spot size of the probe beam, collection
efficiency, and detector responsivity must all be minimized.
While techniques such as spatial modulation spectroscopy
[26–28] or calibration with a known reference nanostructure
[29,30] can be used to determine absolute efficiencies in prac-
tice, the majority of plasmonic scattering experiments provide
results on a relative scale.

Accordingly, we remove the need to independently es-
tablish the absolute efficiencies in μ̃m(y) by introducing a
constant scale factor K (z) that is a function of an addi-
tional to-be-inferred parameter z. Then, by defining μ̃m(y) =
K (z)μm(y), where μm(y) is normalized to sum to unity via

μm(y) = μ̃m(y)∑M
m′=1 μ̃m′ (y)

, (2)

any reference to absolute efficiencies is avoided. Importantly,
since K (z) is of the same order as the total number of detection
events, an initial estimate can be found easily from the data,
making it a relatively straightforward addition to the Bayesian

procedure. Thus, the experimental challenge of system effi-
ciency calibration can be eliminated by incurring one extra
parameter, extending the full parameter vector to

x = (y, z). (3)

Of course, with this simplification, inference based on overall
scatterer efficiency is no longer possible; two systems having
cross sections that differ by a constant scale factor (σA ∝ σB)
cannot be distinguished. Yet, this ambiguity reflects the ex-
perimental conditions we consider, and not the inference
procedure, which could be adapted to the case of absolute
rates by working with μ̃m(y) directly.

We consider M experimentally obtained photon counts Nm,
making up the data set

D = {N1, N2, . . . , NM}. (4)

For each measurement m, the mean photon count according to
the model is K (z)μm(y), making up the set

M = {K (z)μ1(y), K (z)μ2(y), . . . , K (z)μM (y)}. (5)

We utilize a Poissonian model with means Mm = K (z)μm(y),
where each measurement is assumed independent of the
others. In this way, the likelihood LD(x) ∝ P(D|x) can be
written as

LD(x) = e−K (z)
M∏

m=1

MNm
m . (6)

Bayes’ theorem for the posterior π (x) ≡ P(x|D) can then be
expressed in the convenient form

π (x) = 1

Z LD(x)π0(x), (7)

where Z is a normalizing constant and π0(x) the prior distri-
bution on x. Equation (7) is equivalent to the standard formula
P(x|D) = P(D|x)P(x)/P(D), yet we have chosen the π (x)
notation to emphasize that only the functional dependencies
on x need be considered in the MCMC approach below, and
the likelihood LD(x) has no requirement for normalization
like a true probability distribution P(D|x).

In lieu of direct integration, the inference procedure obtains
R samples {x(1), x(2), . . . , x(R)} from the distribution π (x)
such that the Bayesian mean estimator of any function f (x)
can be computed as

fB =
∫

dx π (x) f (x) ≈ 1

R

R∑
r=1

f (x(r) ). (8)

To proceed, we must therefore consider a strategy for Monte
Carlo sampling of π (x) (next step in Fig. 2).

C. Preconditioned Crank-Nicolson algorithm
and numerical procedure

Efficient methods to generate the samples x(r) comprise
a longstanding research program in Bayesian statistics [3,4]
and historically have posed a significant entry barrier to the
adoption of Bayesian methods in a variety of fields. Markov
chain Monte Carlo (MCMC) techniques attack this problem
by implementing a stochastic process such that samples there-
from converge to the target distribution π (x) for sufficiently
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FIG. 3. Outline of steps required to generate samples x( j) from
the posterior π (x) ∝ LD (x)π0(x). The unspecified distribution Fπ0

and function Gπ0 are assumed to be chosen such that the acceptance
probability reduces to a ratio of likelihoods only (pCN condition).

long chains. Some common MCMC algorithms include
Metropolis-Hastings [31,32], Gibbs [33], slice sampling [34],
hybrid Monte Carlo [35], and sequential Monte Carlo [36],
each facing unique trade-offs in its implementation. For our
inference procedure, we adopt the relatively recent MCMC
algorithm known as preconditioned Crank-Nicolson (pCN)
[37], a modification to Metropolis-Hastings designed specifi-
cally for dimension-independent performance.

Consider a Markov chain in state x; a possible next state
x′ is generated according to the proposal distribution q(x′|x).
Metropolis-Hastings will accept x′ with probability

A(x′, x) = π (x′)
π (x)

q(x|x′)
q(x′|x)

. (9)

In the case of pCN, the proposal distribution is chosen
such that it is reversible with respect to the prior, i.e.,
it satisfies q(x|x′)π0(x′) = q(x′|x)π0(x); thus, from Eq. (7)
the acceptance probability reduces to A(x′, x) = LD (x′ )

LD (x) . This
simplification can facilitate massive speed-ups in MCMC con-
vergence, eliminating the step size/acceptance rate trade-off
intrinsic to standard random-walk proposals [37,38]. We re-
cently applied pCN methods to develop a highly efficient
Bayesian procedure for quantum state tomography [39], and
here we expand these concepts to the types of likelihoods and
priors encountered in plasmonic nanometrology.

The basic numerical procedure is outlined in the flowchart
in Fig. 3. The vector β scales the step sizes for all param-
eters, while the randomly drawn η defines the individual
jumps. The acceptance decision is made probabilistically by
drawing a ∈ [0, 1] from a uniform distribution and comparing
to the likelihood ratio. In this flowchart, we have expressed
the procedure as generically as possible, leaving distribution
Fπ0 and function Gπ0 unspecified. Algorithmically speak-
ing, one must determine the combination (Fπ0 , Gπ0 ) carefully
such that reversibility with respect to the prior is maintained
[q(x|x′)π0(x′) = q(x′|x)π0(x)]. For reference, we list known

pCN proposals for three common prior distributions—normal,
gamma, and uniform—in the Appendix, which can be applied
to many situations encountered in practice, including the ex-
amples in the following sections.

Computationally speaking, each step in the chain requires
evaluation of LD(x′) for a new point x′, so it is critical to be
able to compute this efficiently with minimal cost. Therefore,
rather than performing the integral expressed in Eq. (1) in real
time for each proposed point, an analytical or approximate
expression would be preferred. If not available, we suggest
precomputing μm(yn) for a sufficiently dense set of points yn,
leaving the results in the form of a look-up table which can
then be used to interpolate the value μm(y) at any given y.
This approach is particularly well suited to the use of com-
putational electrodynamic methods, which can be executed
to model the variety of configurations expected in the prior
before Bayesian inference.

Together, Eqs. (1)–(8) and Fig. 3 complete the Bayesian
plasmonic inference method we introduce here. In what fol-
lows, we apply this approach to several test cases, specializing
the general framework to realistic experimental scenarios.

IV. EXAMPLE DATA SETS

Except for nanoparticles with simple geometries, analytical
calculation of electrodynamic quantities is either not feasible
or requires high degrees of approximations. Thus, numeri-
cal approaches are indispensable. To compute the scattering
cross sections we use the FDTD method [40], a versatile
platform for solving partial differential equations [41]. Within
the framework of FDTD, one defines a computational domain
with sufficient spatial and temporal resolution, the proper and
proportional choices of which assure numerical stability and
minimal numerical dispersion. In the standard implementa-
tion of FDTD, one considers a rectilinear 3D mesh, where
Maxwell’s equations are discretized via approximation of the
involved differential operators by finite differences, which can
be developed to various orders of accuracy. Though FDTD
is typically formulated in rectilinear coordinates, general co-
ordinate systems also can be explored, albeit at the cost of
additional complexity pertaining to discretization of the dif-
ferential operators in curvilinear coordinates. For example,
a spherical FDTD domain allows for natural modeling of
particles with spherical symmetry, but particles without spher-
ical symmetry will lack smooth boundaries. So rather than
tailoring coordinate systems for each simulation to match the
geometry under test, we consider the standard Cartesian 3D
mesh in all cases.

The computational domain can be formulated to generate
either the total field or the scattered field. Such total-field
scattered-field formulation offers a number of advantages
for plane-wave nanoparticle excitation. Various nanoparticles
may then be modeled by occupying the computational domain
such that each object will have (staircase) boundaries resulting
from a voxelization (volume pixeling) process, which can be
improved, especially for high-curvature surfaces, using the
technique of conformal meshing. The field components are
then properly staggered across the unit cell (Yee cell) so as
to satisfy Maxwell’s equations. Each mesh point is ascribed
a dielectric function which in our case is imported from
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Johnson and Christy’s compilation for gold [42]. Unlike FEM-
based methods, in FDTD the time domain representation of
the dispersion, as opposed to the Fourier domain representa-
tion D(ω) = ε(ω)E (ω), is implemented (typically, assuming
a local dielectric function). An ultrashort excitation pulse cov-
ering the spectral range of 300–1000 nm, and a sufficiently
dense sampling of frequencies, generates the scattered near
fields, which can then be transformed to the far field via proper
integration. Here, we compute the near fields and generate the
needed scattering cross sections for a given excitation field
polarization state.

The spatial resolution or mesh cell size δi (i = 1, 2, 3)
can be quantified with respect to the free-space wavelength
λ. The time increments for evolving the fields will then
be set, obeying the (Courant) stability criterion [40] �t �
(με/

∑
i δ

−2
i )1/2, where μ = 1 for nonmagnetic materials and

ε is the permittivity. In our simulation, the smallest wave-
length is λ = 300 nm. To adequately resolve the fields, the
(largest) mesh cell δi � aλ, where a is a suitably small num-
ber, typically in the range a ∈ [0.05, 0.1]. For a more precise
estimate, the dielectric properties of the materials involved
can be taken into account. In such cases, a ∈ [0.05, 0.1]/nmax,

where nmax is the largest refractive index in the computational
domain. Therefore, a sufficient number of mesh points both
per λ and per plasmon decay length can be obtained. Since
the skin depth for gold over � can be as small as ∼2 nm, cell
sizes of δi � 2 nm were employed to compute the fields inside
the nanoparticles.

As specific examples, we consider an ellipsoid with minor
radius of 10 nm and a ring with major radius 40 nm. These
nanostructures can be conveniently modeled in three dimen-
sions using available software packages [43]. By performing
parametric studies involving the radius of each structure made
of a given material, the wavelength, polarization, and inci-
dence angle of the exciting field, the scattering cross sections
can be readily calculated from the computed near fields, as
shown in Fig. 4. Each is integrated over all angles in the upper
hemisphere and normalized by the corresponding geometric
cross section to obtain the dimensionless “effective” cross
section σe. Since no resonances appear in the wavelength
range 300–500 nm for the considered parameter ranges, we
plot the cross section over the domain � = [500, 1000] nm.
The parameters scanned in these studies—major radius of
ellipsoid, denoted by Y , and minor radius of ring, denoted
by Y ′—represent the geometric features to be estimated from
Bayesian inference; the other characteristic dimensions in
each system are assumed fixed and known. Figure 4 presents,
within the considered spectral and shape parameter windows,
the complete plasmon dispersion for the nanoparticles without
resorting to dipole or quasistatic approximation, for 50 evenly
spaced values of Y and Y ′. The slight island-like appearance
in Fig. 4(a) is caused by the specifics of the meshing which
was not optimized here, and does not impact the presented
approach.

Using the cross-section calculations in Fig. 4, we simulate
scattering experiments for a variety of ground truth geometric
parameters: major radii of Yg ∈ {10, 15, . . . , 55} nm for the
ellipsoid, and minor (tube) radii of Y ′

g ∈ {6, 7, . . . , 20} nm for
the ring. In what follows, the subscript g always denotes a
ground truth value, to distinguish it from a result of Bayesian

FIG. 4. Models to be employed in Bayesian inference. The effec-
tive scattering cross sections σe for (a) gold ellipsoidal and (b) gold
toroidal nanoparticles are obtained from registering the fields in the
near-field zone of the nanoparticles. The polarization states E⊥z and
E‖z of the interacting photons are shown in the insets along with the
characteristic nanoparticle dimensions Y and Y ′.

inference (subscript B). The computed cross sections corre-
spond to a fixed linear excitation polarization q and integration
over a far-field hemisphere, so that the detection rate in Eq. (1)
reduces to an integral over λ only:

μ̃m(y) =
∫

�

dλ �m(λ)σ (y, λ)gm(λ). (10)

We assume each measurement setting m is centered at wave-
length λm such that �m(λ)gm(λ) = h(λ − λm), where h(λ) is
a singly peaked positive function centered at λ = 0. If σ (y, λ)
is slowly varying with λ compared to h(λ)—the natural con-
dition for a high-resolution measurement—we further obtain
μ̃m(y) ∝ σ (y, λm), so that the normalized theoretical rates are

μm(y) = σ (y, λm)∑M
m′=1 σ (y, λm′ )

, (11)

which can be computed for any (y, λm) via interpolation of
the results in Fig. 4. For simplicity in these examples, the
spectral shape and relative efficiency of the flux/collection
combination are taken as uniform over m, but experimental
variations could be readily incorporated via an m-dependent
scale factor in Eq. (10).

We generate random data for M = 100 equispaced wave-
lengths in 500–1000 nm from Poisson distributions of mean
Kgμm(y): the mean number of detected photons, chosen as
Kg ∈ {102, 103, 104}, allows us to explore the impact of statis-
tical noise. Considering the 10 ground truth values of Yg and
15 values of Y ′

g noted above, this produces 75 distinct data
sets D, one for each (Yg, Kg) or (Y ′

g, Kg) pair; Fig. 5 plots six
of these as examples, three each for the ellipsoid and ring.
Appreciable statistical fluctuations appear in the Kg = 100
cases, which reduce significantly as Kg increases. The two
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FIG. 5. Example data sets D from simulated experiments. (a) Scattering from ellipsoidal nanoparticle. (b) Scattering from ring. Histograms
show the raw count data; solid lines provide the ground truth cross section for the given geometry and counts.

ring examples with Y ′
g = 12 nm and Y ′

g = 14 nm have nearly
identical scattering spectra. This effect can be seen directly
in Fig. 4(b), which contains two intervals (roughly 12–14 nm
and 17–19 nm) over which the cross section varies minimally
with Y ′

g. This offers an important opportunity for comparison,
since inference of the tube radius would be expected to prove
more challenging in these regions than others.

We have selected this case study in order to focus on the
basics of the method with minimal technical distractions that
may arise when studying more complex cases. For example,
considering angle-resolved detection, as allowed in the gen-
eral expression of Eq. (1), would lead to more complexities
in the calculation of μm(y) but would also provide additional
information that should reduce uncertainty in the inference
process. As discussed in Sec. VII, no fundamental limitations
prevent our method from handling significantly more complex
systems and measurement conditions such as these, but the
feasibility of any specific model will require its own investi-
gation.

V. BAYESIAN INFERENCE

Armed with the data sets simulated above, we next apply
the full method of Sec. III for Bayesian inference. This en-
tails setting up a prior π0(x) and then calculating posterior
probabilities π (x) based on the prior and likelihood LD(x), as
indicated in Fig. 2. Through this process, the prior probabili-
ties are updated via data collection D.

The plasmonic geometries considered contain a single
unknown, Y (Y ′), which we express in terms of the dimen-
sionless parameter y ∈ [−1, 1] as

Y (y) = (y + 1)YH − (y − 1)YL

2
, (12)

and analogously for Y ′. Here, YH (YL) is the maximum (mini-
mum) value in the simulated domain of Fig. 4. The scale factor
K is parametrized as K (z) = K0(1 + kz), with K0 and k con-
stant. On this parameter set x = (y, z), one must then specify a
prior distribution π0(x). In lieu of specific information which

may heavily favor some regions of the parameter space over
others, it is generally good practice to define a prior that is
as “uninformative” as possible, giving appreciable weight to
all possible parameter values. This results in a relatively con-
servative estimation procedure that returns low uncertainties
only when justified by the amount of data gathered. In our
specific case, we take y uniformly distributed in its domain
[y ∼ U (−1, 1)] and z following a standard normal distribution
[z ∼ N (0, 1)] so that the hyperparameters K0 and k specify
the mean and standard deviation of an arbitrary normal distri-
bution on K . As an empirically convenient choice, we select
K0 = ∑

m Nm (the sum over all observed counts) and k = 0.1
[44], which we have found gives a sufficiently uninformative
prior for the numbers of counts in these test data sets. Thus,
the total prior is π0(x) ∝ 1[−1,1](y)e−z2/2, where 1[−1,1](·) is
the indicator function. Both y and z distributions have pCN-
compatible proposals (see Appendix) so that the conditions
presupposed in Fig. 3 are satisfied.

For efficient computation of the likelihood in the sampling
procedure, we precompute the cross section at discrete values
yn and measured wavelengths λm; then during the algorithm,
we obtain σ (y, λm) for a specific y ∈ [yn, yn+1] via linear in-
terpolation:

σ (y, λm) = σ (yn+1, λm) − σ (yn, λm)

yn+1 − yn
(y − yn) + σ (yn, λm),

(13)
from which the normalized rates follow per Eq. (11). This
formulation is computationally efficient and reveals how the
results of complex cross-section modeling can be incorporated
seamlessly into our inference method.

We then perform the pCN MCMC algorithm for all 75
data sets, employing the appropriate model (ellipsoid or ring)
in each case. As a slight enhancement over Fig. 3, we also
adaptively tune the step sizes β, which amounts to increasing
or decreasing β at selected iterations j to maintain an accep-
tance rate in a desired range (0.1–0.3 in our case) [39,45,46].
The total MCMC chain length is RT : R = 1024 is the
number of samples x(r) kept for estimation, and T is a thinning
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FIG. 6. Bayesian inference results for data sets from the (a) ellipsoid and (b) ring. Points are the mean of the Bayesian posterior, and error
bars the standard deviation. Each column denotes a specific ground truth average photon number Kg.

parameter, which is doubled successively until the estimate of
Yg (Y ′

g) converges in both mean and standard deviation. We
found T = 215 sufficient for all cases except Kg = 10 000 on
the ring, where we sampled up to T = 217. For reference, the
total wall clock time for running each T = 217 MCMC chain
was approximately 24 min on a CPU with 2.5 GHz clock. The
final results appear in Fig. 6; points are the Bayesian means YB

(Y ′
B) estimated from the R samples, error bars are the posterior

standard deviations, and the solid lines trace the ground truth
values for comparison.

Overall, the estimates are extremely close to the ground
truth, even in the Kg = 100 cases with high statistical noise.
However, lower accuracies and higher uncertainties were
obtained in the two regions of the ring radius identified
in Sec. IV (12–14 nm and 17–19 nm)—precisely where
the cross section varies slowly with Y ′. These uncertain-
ties reduce with increasing photon number and generally
hone in on the ideal curve, apart from Y ′

g = 13 nm, for
which Y ′

B = 11.8 nm at Kg = 10 000. Close inspection of
Fig. 4(b) at these two radii in particular show very similar
shapes, indicating again that the observed deviation from
ground truth reflects inherent ambiguities in the cross section
itself.

VI. MODEL SELECTION

In the above examples, the inference models employed
match the actual plasmonic structures under test; i.e., the
ellipsoid model was applied to data sets generated from a
ground truth ellipsoid, and likewise for the ring. The defin-
ing parameters were unknown, but the model was assumed
accurate. The specification of a single well-posed model is
certainly the desired case in practice, but may not be feasible
in all situations, in which case Bayesian methods can again be
invoked for model comparison and selection. In this section,
we outline through example how this can be implemented in
our plasmonic nanometrology workflow.

Taking the data sets corresponding to Kg = 1000, we redo
Bayesian inference utilizing mismatched cross-section mod-
els in the likelihood: the ring model [Fig. 4(b)] for the data
actually generated by an ellipsoid, and the ellipsoid model
[Fig. 4(a)] for data produced by a ring. Figure 7 plots the
results obtained in these “cross-model” tests. The general neg-
ative slope of the inferred parameters stems from the opposite
spectral trends for the two nanoparticles: the scattering peak
of the ellipsoid redshifts with increasing dimension, and vice
versa for the ring. The flat, almost clipped portions of both
curves correspond to regions where the peak of the observed
cross section reaches the edge of the range supported by the
model. Thus, these results can be viewed as competitors to
those found earlier: Fig. 7(a) provides an alternative analysis
of the same data that are utilized in the center plot of Fig. 6(a),
while Fig. 7(b) serves as an alternative to the center plot of
Fig. 6(b). Without knowing the ground truth already, how can
one rank these competing models?

Bayes’ rule again offers a principled solution. Let E (R)
denote the hypothesis of ellipsoid (ring). Then the posterior
odds in favor of E over R can be written as

P(E |D)

P(R|D)
= P(D|E )

P(D|R)

P(E )

P(R)
= BER

P(E )

P(R)
, (14)

FIG. 7. Bayesian inference using a mismatched model on data
sets corresponding to Kg = 1000. (a) Ellipsoid ground truth, ring
inference model. (b) Ring ground truth, ellipsoid inference model.
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FIG. 8. Bayes factors for competing models. (a) Ellipsoid ground
truth. (b) Ring ground truth. The horizontal line at 100 marks the
threshold above (below) which the ellipsoid (ring) model is more
probable.

where BER is the Bayes factor [47], equal to the posterior odds
whenever the prior model weights are equal. Across-model
Bayesian strategies, such as reversible jump MCMC [48], deal
with multiple models directly by sampling over a joint distri-
bution of models and parameters. As computationally simpler
alternatives, within-model approaches estimate the marginals
P(D|E ) and P(D|R) independently, through the integral

P(D|H) =
∫

dxH P(D|xH,H)P(xH|H), (15)

for each hypothesis H ∈ {E , R}, where the subscript H has
been added to explicitly note conditioning on a specific model.
Computing Eq. (15) is equivalent to determining the normal-
ization factor Z in Eq. (7)—a significantly more challenging
endeavor than sampling from the unnormalized posterior as in
conventional MCMC. Approaches to compute these marginal
probabilities have been built on Gibbs sampling [49], simu-
lated annealing [50], and power posteriors [51].

In our case, however, the small number of parameters
involved allows us to use direct Monte Carlo integration:
drawing samples x(r)

H from the prior P(xH|H) for each hy-
pothesis gives the approximation [47]

P(D|H) ≈ 1

R

R∑
r=1

P
(
D|x(r)

H ,H
)
, (16)

where P(D|xH,H) is equal to the likelihood LD(x) defined
in Eq. (6) multiplied by Poissonian factors

∏M
m=1(Nm!)−1 for

normalization. The final results for R = 220 samples (no thin-
ning) appear in Fig. 8. The horizontal dotted line corresponds
to BER = 1: all points above (below) this line denote higher
odds for the ellipsoid (ring) model. The Bayes factors for
all data sets convincingly favor the ground truth model over
its competitor; BER > 107 for all points in Fig. 8(a), while
BER < 10−6 for all points in Fig. 8(b). The Bayes factors for
Yg � 20 nm and Y ′

g � 8 nm are so extreme that they do not
even appear on this logarithmic scale.

As practical alternatives to the Bayes factor when estimat-
ing the marginal probabilities may be much more difficult
than in the present examples, the computationally simpler
Akaike [52] or Schwarz [53] information criteria could be
invoked instead. In cases such as Fig. 8 where one model is
unambiguously superior, the differences between all methods
are expected to be minimal. However, the Bayes factor has the
advantage as a directly interpretable metric of comparison for

any amount of data, even when the differences in models may
be small [BER ∼ O(1)].

VII. DISCUSSION

The excellent agreement obtained above suggests that the
presented approach for Bayesian plasmonic nanometrology
should apply to many systems for which a model can be
formulated in terms of the parameters involved in the radiative
processes. Ultimately though, the success of the inference
process will hinge on the details of the model, here specifically
the scattering model. For example, strong variation in the spa-
tiospectral distribution of scattered light with the parameters
of interest is a prerequisite for low-uncertainty inference—
the absence of which was highlighted here by the reduced
accuracy of the ring model in spectral regions where the cross
section varies little with tube radius.

With respect to computational cost, the specific functional
features of μ̃m(y) and the efficiency with which it can be
computed significantly impact MCMC speed, in terms of both
the time per step and the total number of steps required to
reach convergence. Unfortunately, theoretically predicting the
operational cost (e.g., wall clock time or chain length) for a
given model is extremely difficult, and must be determined
empirically by performing MCMC. Indeed, we used a total
chain length of RT = 225 for most cases here, a forebodingly
large number given the fact we examine only two parameters.

Nevertheless, more parameters do not necessarily lead to
longer chains; in a previous example, we applied a similar
inference algorithm for quantum state tomography with 512
unknowns, and found RT = 222 sufficient for convergence—
10 min total runtime on the same desktop computer [54].
The fact that a system with a 256-fold increase in param-
eters required shorter chains than those here highlights the
unpredictability of forecasting MCMC performance in gen-
eral. Importantly, the pCN sampling procedure we include
in Fig. 3 is designed specifically to maintain high conver-
gence rates as the number of parameters increases [37] so that
our method furnishes comparative optimism to handle much
more complicated systems. In the end, of course, the speed
of Bayesian methods cannot compete with that of simpler
inferential approaches such as least-squares fitting. Yet the
ultimate motivation for adopting the Bayesian viewpoint is
not computational in nature, but rather based on its optimality
guarantees and uncertainty quantification, which our initial
tests here have shown can be brought to bear on plasmonic
scattering.

Finally, moving beyond the presented scattering use case, it
would be interesting to extend the Bayesian inference method
to other contexts in plasmonic nanometrology, such as the
emerging applications of quantum plasmonics and quantum
sensing in general [55]. Near-field scattering properties offer
a window into the excited nanoparticle surface modes, but
experimental measurements of these modes are notoriously
difficult due to the presence of the probing structure, substrate
coupling, and coupling to neighboring particles. Furthermore,
engineering of the electromagnetic environment to control
plasmon-plasmon/plasmon-emitter coupling and Purcell en-
hancement involves sensitive parameter dependencies with
respect to particle dimensions, orientation, and density, as well
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as the decay characteristics of the excited emitter states, all
of which can alter the radiative decay channels behind the
observation of emitted photons. In each of these potential ap-
plications, the Bayesian formalism’s ability to handle models
with arbitrary functional forms in a single consistent paradigm
should make it a useful tool for highly interacting plasmonic
systems.

VIII. CONCLUSION

In conclusion, we have introduced a Bayesian procedure
for estimating plasmonic nanoparticle geometries from scat-
tering data. Our self-contained method applies highly efficient
pCN sampling and readily incorporates custom cross-section
models. Utilizing simulated data sets from both ellipsoidal
and toroidal geometries, we demonstrated accurate inference
of unknown parameters under multiple levels of statistical
noise. Finally, computation of Bayes factors was shown to
reveal the ground truth nanoparticle morphology (ellipsoid
or ring) in all cases examined, revealing how our method
integrates with model selection as well as parameter estima-
tion. Overall, the presented procedure establishes a valuable
framework that can be specialized to a variety of problems in
plasmonic nanometrology.
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APPENDIX: pCN PROPOSALS FOR SELECTED PRIORS

For reference, here we list pCN proposals for three se-
lected prior distributions. When each parameter (assumed
independent of all others) is updated according these steps,

q(x|x′)π0(x′) = q(x′|x)π0(x) obtains, so that the acceptance
probability follows a simple likelihood ratio. Any parameter
distributed according to the following can be added to the
model seamlessly. Other distributions have pCN proposals as
well, but we have found these three to be particularly useful,
since they cover domains encountered widely in practice:
(−∞,∞), [−1, 1] (a finite interval), and [0,∞).

1. Normal distribution

Consider parameter x ∼ N (0, 1), so that the prior is

π0(x) = 1√
2π

e− 1
2 x2

. (A1)

Define step size β ∈ (0, 1) and draw η ∼ Fπ0 = N (0, 1).
Then the proposal x′ is [37]

x′ = Gπ0 (x, β, η) =
√

1 − β2x + βη. (A2)

2. Uniform distribution

Consider parameter x ∼ U (−1, 1), so that the prior is

π0(x) = 1
2 1[−1,1](x). (A3)

The step size is β ∈ (0, 1); draw η ∼ Fπ0 = U (−1, 1). Then
the proposal x′ is the reflected random walk [38]:

x′ = Gπ0 (x, β, η) =

⎧⎪⎨
⎪⎩

−2 − (x + βη), x + βη � −1,

x + βη, |x + βη| < 1,

2 − (x + βη), x + βη � 1.

(A4)

3. Gamma distribution

Consider parameter x ∼ �(α, 1), so that the prior is

π0(x) = 1

�(α)
xα−1e−x. (A5)

Take step size β ∈ (0, 1). Draw η1 from the beta distribution
η1 ∼ B((1 − β )α, βα), and η2 from the gamma distribution
η2 ∼ �(βα, 1). Then take as the proposal [56]

x′ = Gπ0 (x, β, η) = η1x + η2. (A6)
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