
PHYSICAL REVIEW A 104, 053327 (2021)

Discrete time crystals in Bose-Einstein condensates and the symmetry-breaking edge
in a simple two-mode theory
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Discrete time crystals (DTCs) refer to a novel many-body steady state that spontaneously breaks the discrete
time-translational symmetry in a periodically driven quantum system. Here, we study DTCs in a Bose-Einstein
condensate bouncing resonantly on an oscillating mirror, using a two-mode model derived from a standard
quantum field theory. We investigate the validity of this model and apply it to study the long-time behavior
of our system. A wide variety of initial states based on two Wannier modes are considered. We find that in
previous studies the investigated phenomena in the evolution time window (�2000 driving periods) are actually
“short-time” transient behavior though DTC formation signaled by the subharmonic responses is still shown if
the interboson interaction is strong enough. After a much longer (about 20 times) evolution time, initial states
with no “long-range” correlations relax to a steady state, where time-symmetry breaking can be unambiguously
defined. Quantum revivals also eventually occur. This long-time behavior can be understood via the many-body
Floquet quasieigenenergy spectrum of the two-mode model. A symmetry-breaking edge for DTC formation
appears in the spectrum for strong enough interaction, where all quasieigenstates below the edge are symmetry
breaking while those above the edge are symmetric. The late-time steady state’s time-translational symmetry
depends solely on whether the initial energy is above or below the symmetry-breaking edge. A phase diagram
showing regions of symmetry-broken and symmetric phases for differing initial energies and interaction strengths
is presented. We find that, according to this two-mode model, the discrete time crystal survives for times out to
at least 250 000 driving periods.
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I. INTRODUCTION

Traditionally, spontaneous symmetry breaking (SSB)
refers to a situation where the ground state or a thermal
ensemble at a finite temperature of a many-body system is
less symmetrical than its parent Hamiltonian. Breaking of
different symmetries plays a profound role in many aspects
of physics, including (spatial) crystal formation, magnetism,
superconductivity, and the origin of particle masses via the
Higgs mechanism. However, spontaneous time-translational
symmetry breaking had rarely been considered until Wilczek
proposed the controversial concept of a “time crystal” [1].
Wilczek’s original proposal, breaking of continuous time-
translational symmetry in the ground state (or any thermal
equilibrium state), was later rejected by the “no-go” theorem
of Watanabe and Oshikawa [2,3]. Nevertheless, physicists
have recently demonstrated that spontaneous discrete time-
translational symmetry breaking (SDTTSB), i.e., discrete time
crystals (DTCs), can exist in out-of-equilibrium systems, such
as Floquet systems that are periodic in time with period T
[4–7]. Experimental evidence of time crystallinity has been
reported recently in a variety of different platforms [8–15].
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Discrete time crystals have developed rapidly recently and
have attracted a lot of attention [16–23]. Reviews on the topic
of time crystals can be found in Refs. [24–27].

However, a generic many-body system under periodic driv-
ing would normally keep absorbing energy and approach an
infinite-temperature state, a featureless state that cannot sup-
port SDTTSB [28–30]. Therefore, the existence of a DTC
relies on the prevention (or at least long-time suppression)
of Floquet heating to stabilize the nonequilibrium quantum
state. Indeed, several innovative mechanisms can help to
avoid the heating problem in quantum many-body systems,
including many-body localization (MBL) [31–33], prether-
malization [34–36], and, more recently, many-body quantum
scars [37–40].

On the other hand, generalizing SSB to time-dependent
Floquet systems where no well-defined ground state or any
thermal equilibrium states exist requires a careful theoretical
development [2]. It is now argued that a natural generalization
of the equilibrium notion of SSB can be defined via the long-
time steady state [26]. Following the nomenclature in [26],
steady states in Floquet many-body systems are defined as
those with expectation values of local observables that relax
to constants at stroboscopic times t = T, 2T, 3T, . . . . In the
case where time-translational symmetry is broken, we extend
the definition to states with constant expectation values of
local observables at t = sT, 2sT, 3sT, . . . with s being an
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integer. In a generic many-body system, any short-ranged cor-
related initial state would usually approach a steady state after
some possible transient evolution. Therefore, in isolated quan-
tum systems out of equilibrium, SSB can be defined as the
situation where the steady state (in the thermalization limit) is
less symmetrical than its parent Hamiltonian. In particular, a
DTC refers to the case where the steady state has a period sT
that is a multiple s of the drive period T . In the simplest case,
for s = 2, this amounts to a period doubling or a subharmonic
response at 0.5ω ≡ π/T .

A well-known property of Floquet systems is that a
time-independent effective Hamiltonian, namely, the Flo-
quet Hamiltonian HF , determines the stroboscopic (t =
T, 2T, 3T, . . .) dynamics [41–43]. Therefore, the eigenstates
and eigenvalues (namely, Floquet states and Floquet ener-
gies, respectively) of HF or its equivalent Floquet evolution
operator UF ≡ exp(−iHF T ) also encode all the necessary
information to define SDTTSB. Indeed, Refs. [44–46] have
shown that all eigenstates of UF for a (s = 2) MBL DTC
come in pairs with eigenvalues that have a phase difference
π , which is associated with the period doubling of the steady
state for systems starting with physically relevant initial states.
In contrast, only one pair of eigenstates shows the π pairing
in a many-body quantum scar system studied in [40].

Here, we revisit the initial proposal [4] that identified the
possibility of realizing DTCs in a bouncing Bose-Einstein
condensate (BEC) under periodic driving, where not all
but an extensive set of eigenstates with eigenvalues un-
der a symmetry-breaking edge come in pairs. This initial
work [4] and some of the following studies apply a mean-
field approximation [47,48] or a time-dependent Bogoliubov
approximation [49], which might artificially preclude or un-
derestimate Floquet heating in this system since only one or a
few modes are included. Mean-field theories assume that there
is no depletion from the condensate mode, and Bogoliubov
theory assumes any depletion is small. As well as allowing
for large depletion and allowing for quantum fluctuations, a
multimode treatment is needed to examine the possibility of
thermalization, as this could prevent DTC formation [25,26].
We recently investigated the case s = 2 via a fully compre-
hensive multimode quantum treatment based on a phase-space
many-body approach involving the truncated Wigner approxi-
mation (TWA) [50], which can include thermalization effects.
However, thermalization is found to be absent in our system,
and we find a robust subharmonic response for interactions
stronger than some critical value |gcN | and lasting for a sig-
nificant period of time, which is a practical criterion of DTC
formation commonly adopted [5–7]. Nevertheless, at present,
the TWA is limited in the time regime that can be computed
due to computation resource constraints.

Interestingly, we find for the parameter regime studied that
only two (Wannier) modes were significantly occupied for
s = 2, suggesting that a many-body theory based on just two
dominant modes should work well in this regime [50]. The
two-mode model allows us to investigate the dynamics over
much longer evolution times. In this long-time regime, the
system indeed relaxes to a steady state, where the dynamics is
purified and the order parameter for time-symmetry breaking
can be unambiguously determined. References [4,49] also
developed a beyond-mean-field two-mode model. However,

the approximation adopted in the derivation was not clearly
justified. Here, we derive the two-mode model from a standard
quantum field theory. We examine the two-mode approxima-
tion in comparison with the multimode TWA, and argue that
the two-mode approximation for s = 2 can be applied to a
long evolution time. We also find that the spectrum of this
model Hamiltonian determines the behavior and symmetry
of the long-time steady state. We note that our two-mode
model is not the same as two-mode treatments in mean-field
theory (such as in [51]) where the condensate wave function
is written as a linear combination of two mode functions.
In contrast, our two-mode model includes beyond-mean-field
effects and allows atoms to macroscopically occupy more
than one mode. We found in our previous multimode TWA
treatment that near the critical value of the interaction strength
|gcN | (which corresponds to the onset of DTC formation), the
mean-field theory does not provide a good description of the
position probability density or one-body projector, nor can it
account for depletion from the condensate mode [see Figs. 6,
9(b), 9(f), and 11 in Ref. [50]]. The present two-mode model
can account for all of these features.

The paper is organized as follows. In Sec. II we introduce
the many-body model for a BEC of bosonic atoms bouncing
resonantly on an oscillating mirror and investigate the validity
of the two-mode model for the case of s = 2 and period dou-
bling. In Sec. III we present details of our two-mode model
and calculations of the evolution of the system out to very
long times. In Sec. IV we discuss the symmetry breaking in
terms of a symmetry-breaking edge of the two-mode Hamilto-
nian. Our results are summarized in Sec. V. Details and some
derivations of equations are given in the Appendices.

II. MANY-BODY MODEL

We consider N bosons bouncing vertically on an os-
cillating mirror under strong confinement in the transverse
directions, which can be regarded as a one-dimensional (1D)
system. The quantum dynamics is determined by the many-
body Schrödinger equation ih̄∂t |�(t )〉 = Ĥ |�(t )〉, where the
Hamiltonian can be written

Ĥ =
∫

dz
[
�̂(z)†Hsp�̂(z) + g

2
�̂(z)†�̂(z)†�̂(z)�̂(z)

]
, (1)

in terms of the field operators �̂(z) and �̂(z)† for the annihi-
lation and creation of a bosonic atom of mass m at position
z. Here, the single-particle Hamiltonian is given by Hsp =
−∂2

z /2 + V (z, t ) using gravitational units for convenience,
where the length, time, and energy in gravitational units
are lG = (h̄2/m2gE )1/3, tG = (h̄/mg2

E )1/3, and EG = mgE lG
with gE being the gravitational acceleration. (Throughout this
work, quantities shown in the figures are either dimensionless
or are given in terms of gravitational units.) g = 2ω⊥as is
the 1D coupling constant, where as is the s-wave scattering
length and ω⊥ is the oscillation frequency for the BEC atoms
in a transverse trap. In the coordinate frame moving with the
oscillating mirror (which can be transformed from the labora-
tory frame via a gauge transformation [4,52]), the temporally
periodic potential is given by

V (z, t ) = z(1 − λ cos ωt ), (2)
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with z � 0. Here, ω = 2π/T is the driving frequency of the
mirror, and T is the corresponding period. The parameter
λ determines the driving amplitude. A formal method to
solve the single-particle problem is the Floquet formalism,
where the T -periodic Floquet eigenenergies εν and eigenstates
φν (z, t ) = φν (z, t + T ) can be defined as

[Hsp − i∂t ]φν (z, t ) = ενφν (z, t ). (3)

The single-particle classical motion under Hsp is chaotic for
large λ, and only becomes regular with some suitable driving
parameters and initial conditions. This regular motion can be
recognized by the existence of regular resonance islands in the
classical phase space that are located around periodic orbits
with period sT , where s is an integer [17,23,47]. Quantum
mechanically, such regularity of the classical motion corre-
sponds to the existence of s special Floquet states φν (z, t ),
where ν = 1, 2, . . . , s. Applying a unitary transformation to
these Floquet states, one can construct s Wannier-like states
that are localized both in space and time and with temporal
period sT [47].

In this work, we focus on the s = 2 case with λ = 0.12
and ω = 1.4 as an example [49]. The Floquet states of in-
terest φ1(z, t ) and φ2(z, t ) have quasienergies ε1 ≈ 0.410 and
ε2 ≈ 1.109. The two Wannier-like states are related to the two
special Floquet states via

�1(z, t ) = 1√
2

[φ1(z, t ) + e−iπt/T φ2(z, t )],

�2(z, t ) = 1√
2

[φ1(z, t ) − e−iπt/T φ2(z, t )], (4)

where one can verify that �ν (z, t ) = �ν (z, t + 2T ) and
�1(z, t + T ) = �2(z, t ). These Floquet states and Wannier-
like states have been studied elsewhere [49,50] and are plotted
in Fig. 1 of Ref. [50]. The key property we note here is
that at t = 0, �2(z, t = 0) is a Gaussian-like wave packet.
Therefore, if we prepare a weakly interacting BEC confined
in a harmonic trap with suitable initial position h̃0 above the
oscillating mirror and trap frequency ω̃0, almost all the atoms
will initially occupy the mode �2(z, t = 0). In our previ-
ous TWA calculations in Ref. [50], we chose h̃0 = 9.82 and
ω̃0 = 0.68, and found that at t = 0, N2 ≈ 591 atoms occupy
mode �2(z, t = 0) out of a total atom number N = 600. We
used over 50 gravitational modes in our TWA treatment, and
listed the other parameters in the Table 1 of Ref. [50]. This
small difference between N2 and N is mainly due to the small
mismatch between �2(z, t = 0) and a Gaussian wave packet.
We also find that the values of h̃0 and ω̃0 do not need to be
fine tuned: A finite perturbation does not significantly reduce
N2 [49].

As pointed out in the Introduction, we have previously
studied this system with finite interaction g �= 0 using a mul-
timode phase-space method, namely, the truncated Wigner
approximation (TWA) [50]. Interestingly, we find that for
s = 2 during the whole evolution time t � 2000T only these
two Wannier-like modes are occupied. In Fig. 1(a), we show
the total occupation of these two Wannier-like modes Ns(t ) =
N1(t ) + N2(t ), where Ni ≡ Nii is the occupation number of
the mode �i. One can see that the fractional change of Ns(t )
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FIG. 1. (a) TWA calculation of the change in number of atoms
in the two Wannier-like modes Ns = N1 + N2 as a function of time.
The initial condition is realized by preparing a BEC with N = 600
in a harmonic trap at initial height h̃0 = 9.82 and trap frequency
ω̃0 ≈ 0.68. The change of Ns is less than 1% and remains constant
within the fluctuations. (b) Comparison of the occupation numbers Ni

of mode �i between the TWA results from Fig. 10 in Ref. [50] and
the two-mode results in this work. The solid (dashed) line shows the
TWA results for N2 (N1), and the circles (crosses) show the two-mode
results for N2 (N1). The two-mode calculation assumes an initial
condition that N2 = 591 atoms occupy mode �2(z, 0). To compare
with the TWA calculation at the critical value gN = −0.012, we
also need to use a slightly different value gN = −0.01185 in the
two-mode model for the best comparison.

as a function of time essentially has just small fluctuations
around zero. There is also no obvious trend of it increas-
ing during the time window investigated. [In stark contrast,
many modes will be occupied if we switch off the driving
for the same initial condition and interaction strength (see
Ref. [50].] The fluctuations shown in this figure reflect the sto-
chastic nature of the TWA calculations [and imply the actual
value of 1 − Ns(t )/Ns(0) might be smaller than the calculation
uncertainty]. In view of only two modes being important
in the TWA calculations for s = 2, in this work we ap-
ply a so-called two-mode approximation, where we project
the Hamiltonian onto the Hilbert subspace spanned by Fock
states based on the two modes �1 and �2, which we name
the stable-island Hilbert space. We emphasize here that, in
contrast to fermionic systems that are limited by the Pauli
exclusion principle, our bosonic modes can be occupied by
an arbitrary number of atoms. Therefore, the two-mode model
is a generic many-body problem for large particle number N ,
and the stable-island Hilbert space has a dimension of N + 1.

While the two-mode model is described in detail in the
next sections, here in Fig. 1(b), we first show the excellent
agreement of the TWA and the two-mode results for different
interaction strengths gN . We emphasize that our TWA calcu-
lations [50] show that a DTC forms for interaction strengths
above gcN = −0.012 for an initial state prepared in a har-
monic trap with initial position h̃0 and trap frequency ω̃0.
Quantum fluctuations become significant near this critical in-
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teraction strength gcN , and the TWA deviates strongly from
the mean-field results. Nevertheless, the two-mode model
is still in excellent agreement with the TWA in this case.
The TWA can in principle include effects of many (much
more than two) modes, and describe the many-body quan-
tum dynamics exactly in the asymptotic N → ∞ limit. On
the other hand, although the two-mode model only includes
two modes, it can describe the quantum evolution within
the truncated stable-island Hilbert space exactly for any ar-
bitary N . The excellent agreement between these two models
gives us confidence that leakage of atoms to modes other
than �1 and �2 is negligible during t � 2000T and most
of the atoms seem to be able to remain in the stable-island
Hilbert space for a much longer time. The fact that most
atoms are “trapped” in this stable-island Hilbert space for a
long time breaks the ergodicity of the system and prevents
Floquet heating. The underlying physics may be related to a
quantum version of the Kolmogorov-Arnold-Moser (KAM)
theory as pointed out in Ref. [27], where the existence of a
stable island (as tori in phase space) is robust against weak
interactions [53]. However, nonergodicity in KAM theory can
be destroyed by an Arnold diffusion after an astronomically
long time [27], implying DTC in our system has a finite
lifetime.

III. TWO-MODE APPROXIMATION

In the two-mode approximation, we assume the bosonic
atom field operator can be expanded solely in terms of the
two Wannier-like modes

�̂(z) =
∑
i=1,2

âi(t )�i(z, t ), �̂†(z) =
∑
i=1,2

â†
i (t )�∗

i (z, t ), (5)

where âi(t ) and â†
i (t ) are the annihilation and creation oper-

ators of a boson in the time-dependent mode �i(z, t ). The
time dependence of the creation operators obeys a†

i (t ) =
a†

i (t + 2T ) and a†
1(t + T ) = a†

2(t ), which are determined by
the properties of �i(z, t ), and similar rules apply to the anni-
hilation operators. One can obtain a many-body basis set via
the Fock state [54]

|n1, n2; t〉 = [â†
1(t )]n1

√
n1!

[â†
2(t )]n2

√
n2!

|0, 0〉, (6)

where n1 is the number of atoms in mode �1 and n2 is the
number of atoms in mode �2. Expanding the many-body state
vector in this basis set gives

|�(t )〉 = exp(−iμt )
N∑

n=0

bn(t )|n, N − n; t〉, (7)

where the total number of bosonic atoms N is a good
quantum number and μ is a suitable frequency (chosen
below). These Fock states also satisfy |n1, n2; t + 2T 〉 =
|n1, n2; t〉 and |n1, n2; t + T 〉 = |n2, n1; t〉. We note that, while
both the creation and annihilation operators and the Fock-
state basis are time dependent, the matrix elements of
any direct product of creation and annihilation operators
at the same time are time independent, e.g., 〈n1 + 1, n2 −
1; t |â†

1(t )â2(t )|n1, n2; t〉 = √
(n1 + 1)n2.

The time evolution of the expansion coefficients bn(t ) is
determined by the many-body Schrödinger equation, in a vec-
tor form

[H̃ (t ) − ih̄∂t ]�b(t ) = 0, (8)

where H̃ (t ) is a time-dependent matrix with matrix elements
H̃mn(t ) = 〈m, N − m; t |Ĥ(t )|n, N − n; t〉. Here, the effective
Hamiltonian operator is given by

Ĥ(t ) = J (â†
1â2 + H.c.) + 1

2
g

2∑
i jkl=1

Ui jkl (t )â†
i â†

j âk âl , (9)

where J = (ε1 − ε2 + h̄ω/2)/2 and Ui jkl (t ) =∫
dz �∗

i (z, t )�∗
j (z, t )�k (z, t )�l (z, t ). The phase factor μ

occurring in the quantum state |�(t )〉 is given by μ = Nε/h̄,
where ε = (ε1 + ε2 − h̄ω/2)/2. The derivation is given in
Appendix A 1. With an understanding that the creation and
annihilation operators will always act on the Fock basis and
introducing time-independent matrix elements, we hereafter
leave implicit the time dependence of âi and â†

i . The only
explicit time dependence remains in the parameter Ui jkl (t ),
which is periodic with period T̃ = 2T and ω̃ = ω/2. The
effective Hamiltonian matrix H̃ (t ) also shares the same
periodicity, implying that Eq. (8) can be formally solved
using a Floquet approach. A many-body Floquet state and
Floquet energy can be defined as

[H̃ (t ) − ih̄∂t ] �Fν (t ) = Ẽν �Fν (t ), (10)

and the time evolution can be obtained via �b(t ) =∑
ν Cν �Fν (t )e−iẼν t and Cν = �F†

ν (t = 0)�b(0) (see Appendix B).
We emphasize here that this approach, namely, the many-body
Floquet (MBF) approach, is a full and exact many-body quan-
tum calculation as long as only two modes are occupied and
depletion to other modes is negligible.

Another timescale in the Hamiltonian is given by
ttunneling = 1/J which describes the tunneling of a single par-
ticle between the two modes. ttunneling typically is on the
order of 500T , much longer than 2T , the period of Ui jkl (t ).
An approximation to simplify and understand this prob-
lem is therefore to take a high-frequency expansion (HFE)
of the Hamiltonian matrix H̃ (t ) = ∑

δ hδe−iδω̃t , where hδ =∫ T̃
0 dt H̃ (t )eiδω̃t/T̃ , and keep only the lowest order h0, which

is a time-independent effective Hamiltonian matrix. The cor-
responding Hamiltonian operator ĥ0 of h0 agrees with the
one given in Ref. [4], which can be expressed in the same
form as Eq. (9) with Ui jkl (t ) replaced by the 2T -average value
Ūi jkl = ∫ 2T

0 Ui jkl (t )dt/2T . However, we note that the time-
independent Hamiltonian in Ref. [4] is derived by expanding
and truncating the Floquet Hamiltonian and field operators
in an extended space-time Hilbert space. This expansion
and truncation is thus an approximation that is effectively
equivalent to our HFE approximation. Under the HFE approx-
imation, the time evolution can be approximately given by
�b(t ) = ∑

ν cν �fνe−iEν t and the initial condition cν = �f †
ν
�b(0).

Here, Eν and �fν are eigenenergies and eigenstates of h0:
h0

�fν = Eν �fν .
Discussions on SDTTSB usually refer to initial states with-

out extensive many-body quantum entanglement, which are
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FIG. 2. N1 and N2 as a function of time for (a)–(c) weak interaction gN = −0.006, (d)–(f) near-critical interaction gN = −0.012, and
(g)–(i) strong interaction gN = −0.02, for the initial state |0, N〉 with total particle number N = 1000. The crosses (circles) show results from
the MBF approach (HFE approximation). (a), (d), (g) show the short-time behavior (at t = 0, 20, . . . , 2000T for better resolution), where
the HFE approximation works perfectly. (b), (e), (h) show the behavior on a much longer timescale, where N2 relaxes to some steady value
〈N2〉relax. For small interaction gN = −0.006, 〈N2〉relax = N/2. At interaction gN = −0.012 near the critical value, stronger fluctuations occur
around the relaxation. At strong interaction gN = −0.02, 〈N2〉relax > N/2 without fluctuations. Zoom-ins shown in the insets of (b), (e), and
(h) illustrate minor differences between the MBF and HFE approximation. (c), (f), (i) At very long times, a strong quantum revival at around
trevival (see Fig. 9) appears for both strong and weak interactions, but not for interactions near the critical value. Only data for every 100T are
shown for clarity.

physically accessible by simple preparation schemes. As men-
tioned before, by preparing a BEC in a harmonic trap with
suitable potential height and width, the initial condition can
be well approximated by a product state |0, N〉. If we turn
off the interaction in the preparation stage, the particles can
tunnel from �2 to �1 with a tunneling rate J , and an additional
relative phase can also be induced by some phase-printing
scheme. Therefore, in principle, we can prepare a BEC initial
product state, which in first quantization is

|{θ, ϕ}〉 = |�2〉1|�2〉2 . . . |�2〉N , (11)

where all atoms occupy a single mode �2 = sin θeiϕ�1 +
cos θ�2. Without loss of generality, we choose θ ∈ [0, π ) and
ϕ ∈ [0, π ).

To investigate the dynamical evolution, we study the ob-
servables Ni j (t ) = 〈�(t )|â†

i â j |�(t )〉, which play a similar role
to the one-body reduced density matrix elements. For simpli-
fication of notation, we define Ni(t ) ≡ Nii(t ). Figure 2 shows a
comparison between the MBF approach and HFE approxima-
tion for gN = −0.006, −0.012, and −0.02. The initial state
is chosen as |0, N〉 with N = 1000. Figures 2(a), 2(d), and
2(g) show perfect agreement between the HFE and MBF at
relatively short timescales (0 to 2000T ). At longer timescales
t > trelax, Figs. 2(b), 2(e), and 2(h) show that N2(t ) relaxes
to a constant 〈N2〉relax for the HFE. However, for an inter-
action strength near the critical value gN = −0.012, N2(t )
has a relatively larger fluctuation. The MBF results here also

show excellent agreement with the HFE, except for an almost
negligible oscillation around the 〈N2〉relax that can only be seen
in the insets for a large zoom-in scale. This small oscillation
can be understood as micromotion originating from the time
dependence of the many-body Floquet states in the MBF ap-
proach. After an even longer evolution time, Figs. 2(c) and 2(i)
show a strong quantum revival for both strong and weak inter-
action, but no revival can be seen for the critical case, Fig. 2(f).
We also note that for gN = −0.02, the quantum revival seems
to be almost perfect, i.e., N2(trevival ) ≈ N , in contrast to the
case for gN = −0.006 where N2(trevival ) < N . Visible differ-
ences between the MBF and HFE show up in the quantum
revival regime. Nevertheless, the HFE still accurately predicts
the revival time trevival and the overall revival profile. As one
can see, the HFE is an excellent approximation. The HFE
will also provide insight into the symmetry breaking and give
an analytical explanation of the time-evolution behavior, as
shown in the next section.

While the quantum revival is interesting and indicates there
is a relatively short transient period of deviation from an al-
most perfect temporal periodicity, the revival regime is much
shorter than the steady-state regime. We discuss the quantum
revivals with more detail in Appendix C and focus on the
steady-state regime here. We emphasize that this relaxation
value of 〈N2〉relax reflects the time-translational symmetry
of the steady state. For example, the quantum correlation
function (QCF) P(z, z#, t ) = Tr[�̂†(z# )�̂(z)|�(t )〉〈�(t )|]
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is given by

P(z, z#, t ) =
2∑

i, j=1

Nji(t )�i(z, t )�∗
j (z

#, t ), (12)

where z and z# refer to two different position coor-
dinates. The position probability density at stroboscopic
times t = kT with k = 1, 2, 3, . . . can be well approx-
imated by F (z, kT ) = P(z, z, kT ) ≈ N1(kT )|�1(z, kT )|2 +
N2(kT )|�2(z, kT )|2, where the cross terms can be neglected
since �1 and �2 are well-separated localized wave packets
at t = kT . We recall that �1(z, kT ) = �2(z, kT + T ). There-
fore, if 〈N2(t )〉 → 〈N2〉relax = N/2 as in Fig. 2(b), F (z, kT ) =
F (z, kT + T ) has the same period as the Hamiltonian, which
represents a symmetry-unbroken state. On the other hand,
if 〈N2(t )〉 → 〈N2〉relax �= N/2 as in Fig. 2(h), F (z, kT ) �=
F (z, kT + T ) and F (z, kT ) = F (z, kT + 2T ), indicating that
the system’s state breaks the discrete time-translational sym-
metry, i.e., a time crystal is present. Figures 2(h) and 2(i)
predict that the time crystal survives for times out to at least
250 000 driving periods.

We can also define a one-body projection operator (OBP)
M̂G onto the Gaussian-like localized wave packet �2(z, 0)
as an observable [50]. In the first quantization, the OBP is
given by M̂G = ∑N

i=1(|χ〉〈χ |)i, where 〈z|χ〉 = �2(z, 0) and i
lists individual particles as i = 1, 2, . . . , N . The expectation
value of the OBP can be related to the QCF ˆ〈�(z# )†�̂(z)〉 via
MG(t ) = ∫∫

dz dz#�2(z#, 0) ˆ〈�(z# )†�̂(z)〉�∗
2(z, 0). At stro-

boscopic times t = kT , the OBP can be simplified as

MG(kT ) =
{

N1(kT ) = N − N2(kT ), k = 1, 3, 5, . . .

N2(kT ), k = 0, 2, 4, . . . .

(13)
The physical picture is clear: MG(kT ) measures how many
atoms occupy the Gaussian-like wave packet �2(z, 0) at stro-
boscopic times. When k is even (odd), this Gaussian-like wave
packet coincides with �2(z, kT ) [�1(z, kT )]. Therefore, via
the investigation of the behavior of N2(kT ), we can obtain
the evolution of the observable MG(kT ), which reveals the
temporal symmetry of the steady state. If 〈N2〉relax = N/2,
then MG(kT ) → N/2 implies a T periodicity. On the contrary,
if 〈N2〉relax �= N/2, MG(kT ) has 2T periodicity, indicating
SDTTSB. One can define a frequency response observable via
the Fourier transformation

mG( f ) = 1

K

k0+K−1∑
k=k0

e−i f kT MG(kT )

N
, (14)

where we usually choose K = 2048 and k0 = 104 so that k0T
is in the steady-state regime. In particular, the subharmonic
response is given by

|mG(ω/2)| → |N − 2〈N2〉relax|
2N

= PG

2
, (15)

where PG = |〈N2〉relax − 〈N1〉relax|/N is the population imbal-
ance. |mG(ω/2)| = 0 (or equivalently PG = 0) indicates the
symmetry-unbroken phase, and hence |mG(ω/2)| can be re-
garded as an order parameter.

IV. SYMMETRY BREAKING

Under the HFE approximation, the effective time-
independent Hamiltonian satisfies the Z2 symmetry de-
termined by the operator P̂12 = iN exp[iπ (â†

1â2 + â†
2â1)/2]

which interchanges the mode indices 1 ↔ 2. We find that
P̂12â1P̂−1

12 = iâ2 and P̂12â2P̂−1
12 = iâ1. The corresponding ef-

fective Hamiltonian operator can be rewritten as

ĥ0 = J (â†
1â2 + H.c.) + guT (â†

1N̂ â2 + H.c.)

+ 1

2
g

[
uI

2∑
i=1

N̂i(N̂i − 1) + 4uN N̂1N̂2

]

+ 1

2
guP(â†

1â†
1â2â2 + H.c.), (16)

where uT = Ū1112, uI = Ū1111, uN = Ū1212, and uP = Ū1122

are the only four distinctive values of Ūi jkl constrained by
the Z2 symmetry (see Appendix A 2). The effective Hamilto-
nian ĥ0 is invariant under the symmetry operator P̂12. Here,
the number operators are given by N̂1 = â†

1â1, N̂2 = â†
2â2,

and N̂ = N̂1 + N̂2. One might notice, under a mean-field
approximation, that this effective Hamiltonian can be ap-
plied to investigate the bosonic self-trapping phenomenon,
for example, in a BEC in a double-well potential [51]. The
connection of DTC formation and self-trapping was rec-
ognized in Ref. [4]. Here, we go beyond the mean-field
approximation, and numerically investigate the whole eigen-
spectrum exactly. In our numerical investigation here, we have
J ≈ 3.580 × 10−4, uI ≈ 0.2237, uN ≈ 0.0519, uT ≈ −1.9 ×
10−4, and uP ≈ −4.3 × 10−6. Since the spectrum of ĥ0 is
bounded from both below and above, the maximum and mini-
mum eigenenergy of the ĥ0 can be obtained via the mean-field
approach in the large-N limit. Neglecting the term associated
with uP (which is much smaller than uT , uI , and uN ), this
approach leads to

Emax ≈ Eshift + |J̃|N/2 (17)

and

Emin ≈
{

Eshift − |J̃|N/2, |gN | � |gbN |
1
2 gN2uI + J̃2N

gN (uI −2uN ) , |gN | > |gbN | (18)

where gbN ≡ −2J/(uI − 2uN + 2uT ). (We use the conditions
J > 0 and gN < 0 here. We also focus on the case J +
gNuT > 0 since |gN | is small. See Appendix D for details.)
Here, Eshift = gN (uI N/2 − uI + uN N )/2 and its physical
meaning will be clear below.

For a given total number N (since N̂ commutes with ĥ0),
the Hamiltonian can be mapped to the Lipkin-Meshkov-Glick
(LMG) model (see Appendix A 3) as [49,55,56]

ĥ0 ≈ J̃
(
−Ŝx + γ

N
Ŝ2

z

)
+ Eshift, (19)

with Ŝx = (â†
1â2 + â†

2â1)/2 and Ŝz = (â†
2â2 − â†

1â1)/2, which
are bosonic spin operators. The LMG Hamiltonian can be
applied to describe spin systems with infinite-range interac-
tion. However, we emphasize here that our system consists
of bosonic atoms with zero-range contact interactions. When
the two-mode and HFE approximations are applicable, the
time-independent LMG Hamiltonian in Eq. (19) becomes an
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FIG. 3. Symmetry-breaking edge of the two-mode Hamiltonian
with N = 1000 as a function of eigenenergy Eν . (a), (c), (e) show the
minimum of the gap min{�Eν} between adjacent eigenenergies for
gN = −0.02, −0.012, and −0.006, respectively. The symmetry-
breaking edge indicated by the black dashed-dotted vertical line and
the range of eigenenergies are given by Emin and Emax indicated
by the red dashed vertical lines on the left and right. min{�Eν} is
essentially zero for a near-degenerate pair as shown in (a) and (c) for
eigenenergies below the edge. In (e), the edge is about the same as
the minimum of the spectrum Emin and hence no near-degenerate pair
exists. (b), (d), (f) show 〈N2〉ν in Eq. (21) as a function of Eν , where
the onset of bifurcation occurs at the edge indicated by the black ver-
tical dashed-dotted line. We name the eigenstates with no bifurcation
of 〈N2〉ν = N/2 the S branch and 〈N2〉ν > N/2 (〈N2〉ν < N/2) in the
bifurcation regime the U branch (L branch). The purple dashed line
shows the initial energy Eini for the initial state |0, N〉, and the purple
pentagram shows the corresponding relaxation value 〈N2〉relax.

excellent approximation for the Floquet Hamiltonian of the
underlying physical system, and determines the dynamical
properties of the original system. The LMG Hamiltonian is
invariant under the symmetry operator P̂12. The parameters
are given by J̃ = −2[J + guT (N − 1)], γ = gN (uI − 2uN )/J̃ .
In the case of large N and finite γ ∝ gN , a symmetry-broken
edge exists for the LMG Hamiltonian [17,49,55,56]:

Eedge ≈ −|J̃|N/2 + Eshift. (20)

For Eν > Eedge the eigenenergies are nondegenerate while
those for Eν < Eedge are essentially twofold degenerate (see
Fig. 3). From the expression for Emin and Eedge, one can
observe that Emin = Eedge for weak interaction |gN | < |gbN |,
where gbN is defined above and Eq. (D9). For strong inter-
action |gN | > |gbN |, Emin < Eedge < Emax and the eigenpairs
below and above the edge have distinct features. We em-
phasize that, according to group representation theory, since
Z2 is the symmetry group, the eigenstates for ĥ0 would
in general be nondegenerate and either even or odd under
the symmetry operator, i.e., P̂12|ν,±〉 = ±|ν,±〉. However,
for |gN | > |gbN |, eigenstates that satisfy Eν < Eedge form
near-degenerate pairs |ν,+〉 and |ν,−〉 of opposite symme-
try, with an energy gap |E (+)

ν − E (−)
ν | that is exponentially

small in N . This energy gap is negligible for a large

0

0.01

0.02

400

500

600

-0.72 -0.7 -0.68 -0.66 -0.64 -0.62

0
0.02
0.04
0.06
0.08

800

900

1000

-2.25 -2.2 -2.15 -2.1 -2.05

0
0.02
0.04
0.06
0.08

0

100

200

-2.25 -2.2 -2.15 -2.1 -2.05

FIG. 4. Projection pν = |cν |2 of initial state |0, N〉 with N =
1000 as a function of Eν (blue circles) and the corresponding 〈N2〉ν

(red crosses). (a) shows the projection for the case gN = −0.006,
which is only significant around the initial energy Eini indicated
by the purple dashed vertical line. The diagonal ensemble predic-
tion

∑
ν pν〈N2〉ν = N/2 is indicated by the purple pentagram. (b),

(c) show the projection to the U and L branch, respectively, for
gN = −0.02. The projection is only significant for the U branch
around the initial energy Eini. The diagonal ensemble prediction is
indicated by the purple pentagram.

and finite N in practice, and becomes exactly zero in the
infinite-N (thermodynamic) limit. Therefore, we can choose
a pair of symmetry-broken states that satisfy P̂12|ν〉U = |ν〉L

and P̂12|ν〉L = |ν〉U , which are given by |ν〉U = (|ν,+〉 +
|ν,−〉)/

√
2 and |ν〉L = (|ν,+〉 − |ν,−〉)/

√
2. |ν〉U and |ν〉L

have the same expectation energies E (U )
ν = E (L)

ν and serve as a
degenerate pair of symmetry-broken eigenstates. In contrast,
any eigenstates with eigenenergies Eν > Eedge show no near
degeneracy and these states |ν〉S are symmetry unbroken. Fig-
ures 3(a), 3(c), and 3(e) show the symmetry-breaking edge
for gN = −0.02, −0.012, and −0.006, respectively. The ver-
tical axis shows the minimum of adjacent gaps: min{�Eν} =
min(Eν − Eν−1, Eν+1 − Eν ), which is exactly zero if and only
if there is a double degeneracy. One can see that this quantity
indeed becomes essentially zero at Eedge, which is denoted by
the black vertical dashed-dotted lines. The red dashed line
on the right (left) indicates Emin (Emax). For |gN | � |gbN | ≈
0.006, only a symmetry-unbroken phase exists since Eedge ≈
Emin, and no near-degenerate pairs of energy levels occur.

A particularly useful observable to illustrate the impor-
tance of the symmetry-breaking edge is 〈N2〉ν and 〈N1〉ν =
N − 〈N2〉ν , where 〈O〉ν ≡ 〈ν|Ô|ν〉 and

〈N2〉ν =
{〈N2〉(U )

ν or 〈N2〉(L)
ν , Eν < Eedge

〈N2〉(S)
ν , Eν � Eedge.

(21)

For symmetry-unbroken states, the permutation symme-
try between modes ensures that 〈N1〉(S)

ν = 〈N2〉(S)
ν = N/2.

On the other hand, for symmetry-broken states, we have
〈N1〉(U )

ν = 〈N2〉(L)
ν and 〈N1〉(L)

ν = 〈N2〉(U )
ν , but in general

〈N2〉(U )
ν �= 〈N2〉(L)

ν �= N/2. Without loss of generality, we
denote 〈N2〉(U )

ν > 〈N2〉(L)
ν (hence the U and L branches). Fig-

ures 3(b), 3(d), and 3(f) show 〈N2〉ν as a function of Eν , with
initial state |0, N〉 and N = 1000. The black dashed-dotted
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vertical line indicates the symmetry-broken edge, which il-
lustrates the onset of bifurcation of 〈N2〉ν as a function of
Eν . We also show 〈N2〉relax by the purple pentagram symbol
and the initial energy Eini = 〈�(0)|ĥ0|�(0)〉 by the dashed
vertical line. Numerically, 〈N2〉relax is calculated by aver-
aging 〈N2〉relax = ∑k0+K−1

k=k0
〈N2(kT )〉/K over a time window

of K = 2048 driving periods at k0T = 104T . We can see
that the relaxation value lies on the 〈N2〉ν − Eν curve of the
corresponding branches, which can be understood via de-
phasing. In general, for an initial state |�(0)〉 = ∑

ν cν |ν〉,
the time evolution of an observable is given by 〈O〉(t ) =∑

μν c∗
μcν〈ν|O|μ〉e−i(Eν−Eμ )t . Typically, cν only has noticeable

values around a small energy window close to the initial
energy. If there is no degeneracy, after long enough time,
dephasing leads to 〈O〉relax = ∑

ν pν〈O〉ν = Tr[ρd Ô], where
ρd = ∑

ν pν |ν〉〈ν| is sometimes called the diagonal ensem-
ble, and pν = |cν |2 is the projection probability of the initial
state to the ν’s eigenstate. Essentially, the contributions for
μ �= ν cancel out for large t , as the phase factors in 〈O〉(t )
become more random. The initial energy can also be given
by the diagonal ensemble Eini = ∑

ν pνEν = Tr[ρd ĥ0]. When
the initial energy is well above the broken edge, 〈N2〉ν = N/2
gives 〈N2〉relax = N/2 as shown in Fig. 4(a). When the initial
energy is below the broken edge, as shown in Figs. 4(b) and
4(c), we find that for initial state |0, N〉, only the U branch
has noticeable projections since the degeneracy is lifted in a
single branch, the dephasing formula still works, and gives
〈N2〉relax = ∑

ν pν〈N2〉ν .
To further explore the corresponding relation between the

initial energy and the relaxation value, we investigate the case
with an initial state |�(0)〉 = |{θ, ϕ}〉 defined in Eq. (11) with
all bosons in a mode given by �2 = sin θeiϕ�1 + cos θ�2,

which has initial energy Eini(θ, ϕ) = 〈{θ, ϕ}|ĥ0|{θ, ϕ}〉. Since
this initial state represents all atoms occupying the same
single-particle state, the initial energy reduces to a mean-field
expression

Eini(θ, ϕ)

N
≈ J sin 2θ cos(ϕ) + gN

[
uI

2
+ uT sin 2θ cos(ϕ)

+ (2uN − uI )

4
sin2 2θ

]
. (22)

Figure 5 shows 〈N2〉relax as a function of the initial energy
Eini(θ, ϕ = 0) for different initial states |{θ, ϕ = 0}〉, and
〈N2〉ν as a function of Eν for gN = −0.1. As one can see,
in the deep regime in all branches (L, U, and S), these
two curves overlap, implying the dephasing mechanism leads
to relaxation except very close to the critical point where
finite-size effects become important. The inset shows the cor-
responding relationship between the initial state θ and the
initial energy Eini(θ, ϕ = 0). We also note that the initial states
considered here are initial states with no multimode entangle-
ment, as these are the initial states of interest for spontaneous
symmetry-breaking physics.

In Fig. 6(a), we investigate the subharmonic response
|mG(ω/2)| of the steady state as a function of |gN | for different
initial states |�(0)〉 = |{θ, ϕ = 0}〉, which changes from 0
to a finite value abruptly around a critical |gcN | indicated
by the thin vertical lines. These critical values for different
θ can be obtained by equating Eini(θ, ϕ = 0) and Eedge as
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FIG. 5. 〈N2〉relax (blue diamonds) for different initial states as a
function of the initial energy Eini (θ ) ≡ Eini (θ, ϕ = 0) in Eq. (22) for
gN = −0.1. Except in the vicinity of the symmetry-breaking edge,
the curve of 〈N2〉ν versus Eν (red circles) overlaps with the curve of
〈N2〉relax versus Eini (θ ), which implies dephasing is the underlying
mechanism for the relaxation process as described in Fig. 4. The
inset shows the relationship between the initial state θ and the initial
energy Eini. We choose to present the result for 0 � θ � π/2 out of
the full range between 0 and π .
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FIG. 6. (a) Subharmonic response |mG( f = 0.5ω)| of the steady
state [at t = k0T to (k0 + 2048)T with k0 = 105] as a function of
gN for different initial states |{θ, ϕ = 0}〉 defined in Eq. (11) with
θ = 0, 0.075π , and 0.125π shown by the blue solid, red dashed,
and purple dashed-dotted curves, respectively. The thin vertical lines
indicate the critical interaction |gcN |. The inset shows the frequency
response in the window near 0.5ω for different gN indicated in the
legend. (b) The same as (a) for the transient state at t = 0T to 2048T .
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FIG. 7. (a) Eedge (blue solid curve) as a function of |gN | and
the initial energy Eini (θ ) ≡ Eini(θ, ϕ = 0) as a function of |gN | for
different initial states |�(0)〉 = |{θ, ϕ = 0}〉 with θ = 0, 0.075π ,
and 0.125π (red dashed, purple dashed-dotted, and light blue dot-
ted, respectively). The initial energy curve crosses the edge at the
critical |gcN | shown in Fig. 6. (b) Subharmonic response |mG(ω/2)|
(color bar) as a function of normalized initial energy Eini and gN
for all initial states |{θ, ϕ = 0}〉 [with θ ∈ [0, π ) ], indicating the
symmetry-broken and symmetric phases. This phase diagram also
applies to other possible initial product states |{θ, ϕ}〉, with the
exception of some regions where the condition ϕ �= 0 limits the
range of Eini (θ, ϕ) that can be accessed (see Appendix D for details
regarding ϕ �= 0 cases).

shown in Fig. 7(a). The inset of Fig. 6(a) shows the frequency
response |mG( f )| for f close to ω/2 and the initial state
|�(0)〉 = |{θ = 0, ϕ = 0}〉 = |0, N〉. We can see that a single
sharp peak appears abruptly when |gN | � |gcN |. However, in
realistic experiments, one might not be able to access such
very long evolution times. In Fig. 6(b), we show that the
transient behavior at relatively short times can be regarded
as a precursor. One can see that, while not as smooth and
clean as Fig. 6(a), |mG(ω/2)| still shows an abrupt change to a
much larger value near |gcN |. In the inset, one can see that the
frequency response of the transient states for θ = 0 at short
times shows a double-peak structure for |gN | < |gcN | and
which changes to a single-peak structure for |gN | � |gcN |, the
same as the observation in [50]. In the steady-state regime,
we now have the intriguing situation where, as the magni-
tude of the interaction is increased from that just below the
critical interaction |gcN | to just above |gcN |, the period of
the bouncing atom cloud changes from period T to period
2T , to form a DTC. Although the numerical results presented
here are calculated for a finite N = 1000, we believe the con-
clusions remain valid in the thermodynamic limit (N → ∞
and finite gN). An analysis of the finite-size effect is given in
Appendix E.
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0.006

0.01
0.012
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FIG. 8. |gcN | for different initial product states |{θ, ϕ}〉.
The minimum possible |gcN | ≈ 0.006 corresponds to {θ, ϕ} =
{0.75π, 0} (or {0.25π, π} which corresponds to the same physical
state). The condition θ = 0 (θ = π/2) corresponds to the initial state
being |0, N2 = N〉 (|N1 = N, 0〉), where ϕ is irrelevant and |gcN | ≈
0.012.

The whole phase diagram for different initial energy and
interaction strength is summarized in Fig. 7. The solid line
in Fig. 7(a) shows the normalized Eedge, which agrees with
the phase boundary indicated by the subharmonic response
mG( f = ω/2) in Fig. 7(b). The dashed, dashed-dotted, and
dotted curves in Fig. 7(a) show the initial energy Eini(θ, ϕ =
0) as a function of |gN | for different initial states |�(0)〉 =
|{θ, ϕ = 0}〉 defined in Eq. (11) with θ = 0, 0.075π , and
0.125π , respectively. The initial energy curve crosses the edge
at the critical |gcN | shown in Fig. 6. For a general initial
product state |{θ, ϕ}〉, the critical |gcN | as a function of θ for a
given ϕ is shown in Fig. 8. (See Appendix D for details.) This
shows that the onset of DTC formation depends on the choice
of initial state (θ, ϕ) through the initial energy Eini(θ, ϕ), as
well as on the system parameters J , N . Here, the critical |gcN |
for the onset of DTC formation is determined by equating the
initial energy Eini(θ, ϕ) with the Eedge.

These phase diagrams indicate that the symmetry of
the steady state characterized by the subharmonic response
|mG(ω/2)| is determined by whether the initial energy is
above or below the symmetry-breaking edge of the eigenen-
ergy spectrum for a given interaction strength gN . The
symmetry-breaking edge thus gives the abrupt phase transi-
tion boundary. This phase transition boundary is valid for any
general initial product states |{θ, ϕ}〉 (see Appendix D for
details).

This Z2 symmetry breaking is associated with the time-
translational symmetry breaking in the time crystal. Denoting
the elements of the eigenstate vector �fν as f (ν)

n , the eigenstates
can be written as |ν; t〉 = ∑

n f (ν)
n |n, N − n; t〉. The permu-

tation operator P̂12|n, N − n; t〉 = |N − n, n; t〉 transforms the
eigenstates as

P̂12|ν; t〉 =
∑

n

f (ν)
n |N − n, n; t〉

=
∑

n

f (ν)
n |n, N − n; t + T 〉 = |ν; t + T 〉. (23)
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For Z2 symmetry-unbroken eigenstates, we also have
P̂12|ν; t〉S = ±|ν; t〉S , which leads to |ν; t + T 〉S = ±|ν; t〉S .
Therefore, these eigenstates are T periodic, and satisfy the
same discrete time-translational symmetry as the Hamilto-
nian. In contrast, for a pair of Z2 symmetry-broken ap-
proximate eigenstates, we have P̂12|ν; t〉U = |ν; t〉L = |ν; t +
T 〉U �= |ν; t〉U . These eigenstates therefore have a period of
2T instead of T , which breaks the discrete time-translational
symmetry of the Hamiltonian. The eigenstates of ĥ0 can be
regarded as an approximation of the many-body Floquet states
in Eq. (9) with period 2T . Therefore, the near-degeneracy of
|ν〉L and |ν〉U in the symmetry-breaking regime plays the same
role as the nearly π pairing of T -Floquet states in MBL and
many-body quantum scar DTCs [27].

V. SUMMARY

We have derived a two-mode model from standard quan-
tum field theory to study discrete time-translational symmetry
breaking and the formation of DTCs in a Bose-Einstein con-
densate bouncing resonantly on an oscillating mirror. The
validity of this simple many-body model has been investi-
gated by comparing with previous multimode phase-space
many-body calculations based on the TWA approach [50].
The greatly reduced computational times using this simple
many-body model allow us to study the long-time dynami-
cal evolution of the many-body system. Using two Wannier
modes constructed from two single-particle Floquet states,
the dynamical evolution has been studied both via a fully
time-dependent Floquet Hamiltonian (MBF) and by using
a time-independent Hamiltonian based on a high-frequency
expansion (HFE). In the HFE approach, the Hamiltonian is
equivalent to the Lipkin-Meshkov-Glick model [49,55,56].
The main initial state chosen has all bosons in the Wannier
mode that closely resembles the condensate mode for a BEC
in a harmonic trap treated in our TWA approach. However, a
wide variety of initial states based on the two Wannier modes
has also been studied. A new criterion for demonstrating the
periodicity at stroboscopic times has been developed which
involves the mean number of bosons in each Wannier mode.

We find that the evolution investigated in previous stud-
ies in the time window out to about 2000 driving periods
actually involves “short-time” transient phenomena though
DTC formation is still shown if the interboson interaction is
strong enough. The two-mode approach compares well with
the TWA approach in regard to the critical |gcN | for DTC
formation. However the TWA treatment is needed to verify
that quantum depletion to other modes is negligible. After
much longer evolution times, initial states with no long-range
correlations relax to a steady state and eventually show short-
lived quantum revivals. In the steady state the mean boson
number in each Wannier mode demonstrates that stroboscopic
DTC behavior occurs for the same interaction regime found in
the previous TWA calculations, the critical value for DTC for-
mation with 2T periodicity being about gcN = −0.012 for the
parameters considered and the initial state |{θ = 0, ϕ = 0}〉,
which is the easiest to prepare in an experiment. However,
the two-mode theory now more clearly shows that in the
steady-state regime, for the initial state |{θ = 0, ϕ = 0}〉 and
for smaller |gN |, only T periodicity occurs.

For a general initial product state condition {θ, ϕ}, the mag-
nitude of the critical value |gcN | can be as low as −0.006 (see
Fig. 8 and Appendix D). The long-time behavior can be under-
stood via the many-body Floquet quasieigenenergy spectrum
of the two-mode model. For sufficiently strong interaction,
a symmetry-breaking edge appears in the spectrum, where
all quasieigenstates below the edge are symmetry breaking
while those above the edge are symmetric. The position of
the edge is found to depend on the boson number and the
intermode tunneling rate, and gives gcN as a function of Eini

without explicit dependence on initial details {θ, ϕ}. Finally,
a phase diagram showing regions of symmetry-broken and
symmetric phases for differing initial energies and interac-
tion strengths summarizes the subharmonic response results.
Here, we now allow for initial states where all bosons occupy
a mode which is a linear combination of the two Wannier
modes parametrized by {θ, ϕ}. Our results predict that in the
steady-state regime, after about 50 000 driving periods (for the
parameters considered), as the magnitude of the interaction is
increased from just below to just above the critical interac-
tion strength the period of the bouncing atom cloud changes
abruptly from the driving period T to period 2T , to form a
discrete time crystal. The present two-mode theory approach
predicts that the discrete time crystal survives for times out
to 250 000 driving periods. However, after astronomically
long time, the escape of atoms to other modes beyond our
two-mode model might eventually occur, leading to a finite
lifetime of our long-lived DTC.
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APPENDIX A: DERIVATIONS

In this Appendix we derive some of the key equations used
in the main body of the paper.

1. Derivation of Eqs. (8) and (9)

Substituting the two-mode expansion (5) of the field oper-
ators into the Hamiltonian in Eq. (1) gives

Ĥ2m =
∑

i, j=1,2

Ei, j â
†
i â j + g

2

∑
i, j,k,l=1,2

Ui, j,k,l â
†
i â†

j âk âl , (A1)

where

Ei, j =
∫

dz �i(z, t )∗Hsp� j (z, t ), (A2)

Ui, j,k,l =
∫

dz �i(z, t )∗� j (z, t )∗�k (z, t )�l (z, t ). (A3)

Using Eq. (4) for the Wannier modes and Eq. (3) for the
Floquet modes we then find that

E1,1 = (ε1 + ε2 − h̄ω/2)/2 − h̄D1,1 = ε1,1 − h̄D1,1,

E1,2 = (ε1 − ε2 + h̄ω/2)/2 − h̄D1,2 = ε1,2 − h̄D1,2,
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E2,1 = (ε1 − ε2 + h̄ω/2)/2 − h̄D2,1 = ε2,1 − h̄D2,1,

E2,2 = (ε1 + ε2 − h̄ω/2)/2 − h̄D2,2 = ε2,2 − h̄D2,2, (A4)

where

Dj,i = −i
∫

dz � j (z, t )∗
∂

∂t
�i(z, t ) = D∗

i, j, (A5)

ε1,1 = ε2,2 = (ε1 + ε2 − h̄ω/2)/2 = ε, (A6)

ε1,2 = ε2,1 = (ε1 − ε2 + h̄ω/2)/2 = J. (A7)

Hence, the Hamiltonian is given by

Ĥ2m =
∑

i, j=1,2

(εi, j − h̄Di, j )â
†
i â j + g

2

∑
i, j,k,l=1,2

Ui, j,k,l â
†
i â†

j âk âl .

(A8)
We now expand the quantum state as

|�(t )〉 =
∑

n

Bn(t )|n, N − n〉, (A9)

where |n1, n2〉 are Fock states given by Eq. (6), with n1, n2

bosonic atoms in modes �1, �2, respectively. Note that these
basis states are time dependent, as are the amplitudes Bn(t ).

Substituting into the time-dependent Schrödinger equation
then gives∑

m

Bm(t )Ĥ2m|m, N − m〉 = ih̄
∑

n

(
∂

∂t
Bn(t )

)
|n, N − n〉

+ ih̄
∑

m

Bm(t )

(
∂

∂t
|m, N − m〉

)
,

(A10)

so taking the scalar product with 〈n, N − n| on each side gives

ih̄

(
∂

∂t
Bn(t )

)
=

∑
m

Bm(t )〈n, N − n|Ĥ2m|m, N − m〉

− ih̄
∑

m

Bm(t )〈n, N − n|
(

∂

∂t
|m, N − m〉

)
.

(A11)

We can eliminate the Di, j terms by using the expansion for
the time-independent field creation operator to first derive an
equation for the time derivative of the Wannier mode creation
operators

0 =
∑

i

�i(z, t )∗
∂

∂t
â†

i +
∑

j

∂

∂t
� j (z, t )∗â†

j ,

∂

∂t
â†

i = −
∑

j

∫
dz

(
�i(z, t )

∂

∂t
� j (z, t )∗

)
â†

j = i
∑

j

D j,iâ
†
j .

(A12)

Hence, the time derivative of the basis states is

∂

∂t
|n1, n2〉 =

{(
∂

∂t
(â†

1)n1

)
(â†

2)n2 + (â†
1)n1

(
∂

∂t
(â†

2)n2

)}
|0, 0〉/(

√
n1!

√
n2!)

=
{

n1(â†
1)n1−1

(
∂

∂t
(â†

1)

)
(â†

2)n2 + (â†
1)n1 n2(â†

2)n2−1

(
∂

∂t
(â†

2)

)}
|0, 0〉/(

√
n1!

√
n2!)

=
{

n1(â†
1)n1−1i

∑
j

D j,1â†
j (â

†
2)n2 + (â†

1)n1 n2(â†
2)n2−1i

∑
j

D j,2â†
j

}
|0, 0〉/(

√
n1!

√
n2!)

= i
{
n1(â†

1)n1 D1,1(â†
2)n2 + (â†

1)n1+1n2(â†
2)n2−1D1,2

}|0, 0〉/(
√

n1!
√

n2!)

+ i{n1D2,1(â†
1)n1−1(â†

2)n2+1 + n2D2,2(â†
1)n1 (â†

2)n2}|0, 0〉/(
√

n1!
√

n2!)

= i{n1D1,1|n1, n2〉 +
√

n1 + 1
√

n2D1,2|n1 + 1, n2 − 1〉}
+ i{√n1

√
n2 + 1D2,1|n1 − 1, n2 + 1〉 + n2D2,2|n1, n2〉}

= i{D1,1â†
1â1 + D1,2â†

1â2 + D2,1â†
2â1 + D2,2â†

2â2}|n1, n2〉

=
(∑

i, j

Di, j â
†
i â j

)
|n1, n2〉, (A13)

where we have used the result that the ∂t â
†
i commute with any â†

j .

Hence on substituting for ( ∂
∂t |m, N − m〉) in Eq. (A11) we see that the Di, j terms cancel out leaving

ıh̄

(
∂

∂t
Bn(t )

)
=

∑
m

Bm(t )〈n, N − n|
( ∑

i, j=1,2

εi, j â
†
i â j + g

2

∑
i, j,k,l=1.2

Ui, j,k,l â
†
i â†

j âk âl

)
|m, N − m〉. (A14)
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If we write Bn(t ) = bn(t ) exp(−iεNt/h̄) we then find that the
terms involving ε cancel out leaving

ih̄

(
∂

∂t
bn(t )

)
=

∑
m

bm(t )〈n, N − n|
[

J (â†
1â2 + â†

2â1)

+ g

2

∑
i, j,k,l=1,2

Ui, j,k,l â
†
i â†

j âk âl

]
|m, N − m〉,

(A15)

so we now have∑
m

〈n, N − n|(Ĥ)|m, N − m〉bm(t ) − ih̄

(
∂

∂t
bn(t )

)
= 0,

(A16)(
H − ih̄

∂

∂t

)
�b = 0, (A17)

where

Ĥ = J (â†
1â2 + â†

2â1) + g

2

∑
i, j,k,l=1,2

Ui, j,k,l â
†
i â†

j âk âl (A18)

and the quantum state is now given by

|�(t )〉 = exp(−iεNt/h̄)
∑

n

bn(t )|n, N − n〉. (A19)

The phase factor exp(−iεNt/h̄) is not physically important.
Thus, Eqs. (A17) and (A18) are equivalent to Eqs. (7) and
(8) in the main part of the paper after introducing the matrix
H for Ĥ and a column vector �b for the amplitudes bn(t ) via
Hnm = 〈n, N − n|Ĥ|m, N − m〉 and �bn = bn(t ).

2. Derivation of Eq. (18)

At this stage the HFE approximation has been made, so
that Ĥ is replaced by ĥ0 given by

ĥ0 = J (â†
1â2 + â†

2â1) + g

2

∑
i, j,k,l=1,2

Ūi, j,k,l â
†
i â†

j âk âl , (A20)

Ūi, j,k,l = 1

2T

∫
dtUi, j,k,l , (A21)

which now means that all the coefficients in ĥ0 are time
independent.

Many of the 16 coefficients Ūi, j,k,l are inter-related. First,
from the definition of Ui, j,k,l we see that

Ūi, j,k,l = Ūj,i,k,l = Ūi, j,l,k, (A22)

which leads to

Ū11,12 = Ū11,21 Ū22,12 = Ū22,21,

Ū12,11 = Ū21,11 Ū12,22 = Ū21,22,

Ū12,12 = Ū12,21 = Ū21,12 = Ū21,21. (A23)

In addition to these 12 coefficients, there are 4 more, namely,
Ū11,22, Ū22,11, Ū11,11, and Ū22,22.

We can show more inter-relationships by expressing
the Wannier states by introducing the notation η(t ) =
exp(−iπt/T ) and si = 1 for Wannier mode �1 and si =
−1 for Wannier mode �2. Thus, �i(z, t ) = a(φ1(z, t ) +

siη(t )φ2(z, t )), where a = 1/
√

2. We can then divide the
time interval 0 to 2T in the definition for Ūi, j,k,l into time
intervals 0 to T and T to 2T , and then make use of
the properties φi(z, t + T ) = φi(z, t ) and η(t + T ) = −η(t )
to convert the integral from T to 2T back into an inte-
gral from 0 to T . This gives the following expression for
Ūi, j,k,l :

Ūi, j,k,l = a4

2T

∫ T

0
dt

∫
dz

(
(φ∗

1 + siη
∗φ∗

2 )(φ∗
1 + s jη

∗φ∗
2 )

×(φ1 + skηφ2)(φ1 + slηφ2)

)
+ a4

2T

∫ T

0
dt

∫
dz

(
(φ∗

1 − siη
∗φ∗

2 )(φ∗
1 − s jη

∗φ∗
2 )

×(φ1 − skηφ2)(φ1 − slηφ2)

)
,

(A24)

where the z, t dependence of the functions is left under-
stood. This enables us to establish more inter-relationships,
as the second term for one Ūi, j,k,l is often the first
term for another Ūi, j,k,l , and vice versa. Hence, we find
that

Ū11,11 = Ū22,22, Ū11,22 = Ū22,11,

Ū22,21 = Ū11,12, Ū12,11 = Ū21,22. (A25)

Also, we see from Eq. (A24) that there is a further relation-
ship

Ū ∗
i, j,k,l = Ūk,l,i, j, (A26)

which leads to

Ū12,11 = Ū ∗
11,12 = Ū11,12 (A27)

since we can show that

Ū11,12 = a4

T

∫ T

0
dt

∫
dz|φ1 + ηφ2|2(|φ1|2 − |φ2|2) (A28)

is real.
Also, we have

Ū12,12 = a4

T

∫ T

0
dt

∫
dz(|φ1 + ηφ2|2 | φ1 − ηφ2|2)

Ū11,22 = a4

T

∫ T

0
dt

∫
dz

(
(|φ1|2 − |φ2|2)2

+(ηφ∗
1φ2 − η∗φ∗

2φ1)2

)
,

Ū11,11 = a4

2T

∫ T

0
dt

∫
dz(|φ1 + ηφ2|4 + |φ1 − ηφ2|4),

(A29)

which are all real.
Hence, overall we have only four independent coefficients

which can be listed as

uT = Ū11,12 = Ū11,21 = Ū22,12 = Ū22,21

= Ū12,11 = Ū21,11 = Ū12,22 = Ū21,22,

uN = Ū12,12 = Ū12,21 = Ū21,12 = Ū21,21,

uP = Ū11,22 = Ū22,11,

uI = Ū11,11 = Ū22,22. (A30)
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This obviously enables the expression for ĥ0 to be simpli-
fied. Hence, we have

ĥ0 = J (â†
1â2 + â†

2â1) + g

2
uT

⎛⎜⎜⎝
â†

1â†
1â1â2 + â†

1â†
1â2â1

+â†
2â†

2â1â2 + â†
2â†

2â2â1

+â†
1â†

2â1â1 + â†
2â†

1â1â1

+â†
1â†

2â2â2 + â†
2â†

1â2â2

⎞⎟⎟⎠
+ g

2
uN

(
â†

1â†
2â1â2 + â†

1â†
2â2â1

+â†
2â†

1â1â2 + â†
2â†

1â2â1

)
+ g

2
uP(â†

1â†
1â2â2 + â†

2â†
2â1â1)

+ g

2
uI (â†

1â†
1â1â1 + â†

2â†
2â2â2)

= J (â†
1â2 + â†

2â1) + guT (â†
1N̂ â2 + â†

2N̂ â1)

+ g

2
uN (4N̂1N̂2) + g

2
uP(â†

1â†
1â2â2 + â†

2â†
2â1â1)

+ g

2
uI [N̂1(N̂1 − 1) + N̂2(N̂2 − 1)], (A31)

which is the same as Eq. (18).

3. Derivation of Lipkin-Meshkov-Glick Hamiltonian (21)

Here, we recast ĥ0 in terms of bosonic spin operators de-
fined as

Ŝx = (â†
2â1 + â†

1â2)/2,

Ŝy = (â†
2â1 − â†

1â2)/2i, (A32)

Ŝz = (â†
2â2 − â†

1â1)/2,

which along with N̂ = N̂1 + N̂2 and the standard bosonic
commutation rules for the mode annihilation and creation
operators enable the following substitutions to be made
within ĥ0:

â†
1â2 + â†

2â1 = 2Ŝx,

N̂1 = 1
2 N̂ − Ŝz,

N̂2 = 1
2 N̂ + Ŝz,

â†
1â2 = Ŝx − iŜy,

â†
2â1 = Ŝx + iŜy,

â†
1N̂ â2 = â†

1â2(N̂ − 1)

= (Ŝx − iŜy)(N̂ − 1),

â†
2N̂ â1 = (Ŝx + iŜy)(N̂ − 1). (A33)

From Eq. (A31) we have

ĥ0 = J2Ŝx

+ guT [(Ŝx − iŜy)(N̂ − 1) + (Ŝx + iŜy)(N̂ − 1)]

+ g

2
uN

[
4

(
1

2
N̂ − Ŝz

)(
1

2
N̂ + Ŝz

)]
+ g

2
uP[(Ŝx − iŜy)2 + (Ŝx + iŜy)2]

+ g

2
uI

[ (
1
2 N̂ − Ŝz

)(
1
2 N̂ − Ŝz − 1

)
+(

1
2 N̂ + Ŝz

)(
1
2 N̂ + Ŝz − 1

)]

= J2Ŝx

+ guT 2Ŝx(N̂ − 1)

+ g

2
uN

[
4

(
1

4
N̂2 − Ŝ2

z

)]
+ g

2
uP2

(
Ŝ2

x − Ŝ2
y

)
+ g

2
uI 2

[(
1

2
N̂

)(
1

2
N̂ − 1

)
+ Ŝ2

z

]
, (A34)

so as we are only dealing with states which are eigenstates for
the total boson number, we can replace N̂ by N .

After combining similar terms we get

ĥ0 = 2[J + guT (N − 1)]Ŝx

+ g(−2uN + uI )Ŝ2
z

+ guP
(
Ŝ2

x − Ŝ2
y

)
+ gN

2

[
uN N + uI

(
1

2
N − 1

)]
, (A35)

which can be written as

ĥ0 = J̃
(
−Ŝx + γ

N
Ŝ2

z

)
+ Eshift + β

(
Ŝ2

x − Ŝ2
y

)
, (A36)

where

J̃ = −2[J + guT (N − 1)],

γ = gN (−2uN + uI )/J̃,

Eshift = gN

2

[
uN N + uI

(
1

2
N − 1

)]
,

β = guP. (A37)

This is the same as Eq (21) in the main body of the paper, if
the small term involving Ŝ2

x − Ŝ2
y is discarded.

APPENDIX B: MANY-BODY FLOQUET MODE SOLUTION

We can define many-body Floquet states �Fν and Floquet
energies Eν as the solutions of the matrix equations [Eq. (10)]

(
H − ih̄

∂

∂t

)
�Fν = Eν �Fν . (B1)

It can then be confirmed that a solution for the amplitudes
bn(t ) can be found in the form

�b =
∑

Cν exp (−iEνt/h̄) �Fν, (B2)

where the Cν are time independent.
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FIG. 9. The revival time as a function of particle number N .
The blue crosses (red circles) show the revival time for gN = −0.02
(−0.006), respectively. The initial state is given by |0, N〉.

Substituting for �b from Eq. (B2) into Eq. (A16) gives(
H − ih̄

∂

∂t

)
�b =

∑
ν

Cν exp (−iEνt/h̄)

(
H − ih̄

∂

∂t

)
�Fν

−
∑

ν

Cν

(
ih̄

∂

∂t
exp (−iEνt/h̄)

)
�Fν

=
∑

ν

Cν exp (−iEνt/h̄)Eν �Fν

−
∑

ν

Cν exp (−iEνt/h̄)Eν �Fν

= 0 (B3)

as required. The initial condition gives Cν = �F†
ν · �b(0).

APPENDIX C: QUANTUM REVIVAL

The quantum revival time can be obtained from the spec-
trum [52,57]

Trevival = 2π h̄

|(d2Eν/dν2)(ν0)| , (C1)

where Eν are understood to be taken from the same branch
(so that there is no near degeneracy), and ν is the index for
ascending eigenenergies. ν0 indicates the closest Eν0 to the
initial energy Eini, and the second derivative can be approx-
imated by d2Eν/dν2 ≈ Eν−1 + Eν+1 − 2Eν . Interestingly, we
numerically find that the revival time linearly depends on the
particle number N , as shown in Fig. 9. In other words, in the
infinite-N limit, the revival would not be accessible.

APPENDIX D: INITIAL PRODUCT STATES

For initial states |�(0)〉 = |{θ, ϕ}〉 with θ ∈ [0, π ) and
ϕ ∈ [0, π ) given by Eq. (11), all atoms occupy the same
mode �2 = sin θeiϕ�1 + cos θ�2, and hence the energy can
be given by a mean-field approach in the large-N limit, i.e.,

by replacing the creation and annihilation operators in the
Hamiltonian (18) via

â1, â†
1 →

√
N sin θe±iϕ, â2, â†

2 →
√

N cos θ. (D1)

Neglecting the small terms associated with uP, the energy
functional is given by

Eini(θ, ϕ) − Eshift

N
= − J̃

2
sin 2θ cos ϕ + γ̃

4
cos2 2θ, (D2)

where γ̃ = gN (uI − 2uN ). Inserting the definitions of J̃ and
Eshift given in the main text

J̃ = −2[J + guT (N − 1)] ≈ −2[J + gNuT ] (D3)

and

Eshift

N
= 1

2
gN

(uI

2
− uI

N
+ uN

)
≈ 1

2
gN

(uI

2
+ uN

)
(D4)

leads to

Eini(θ, ϕ)

N
≈ J sin 2θ cos(ϕ) + gN

[uI

2
+ uT sin 2θ cos(ϕ)

+ (2uN − uI )

4
sin2 2θ

]
, (D5)

which agrees with Eq. (22) in the main text. Equating
Eini(θ, ϕ) [given in Eq. (22) or (D5)] with the broken-
symmetry edge [given in Eq. (20)] leads to the critical
interaction strength as a function of θ for a given ϕ:

gc(θ ; ϕ)N

= − J (1 + sin 2θ cos ϕ)

(uI/4 − uN/2) cos2 2θ + uT (1 + sin 2θ cos ϕ)
,

(D6)

which is shown in Fig. 8. It is also important to note that the
phase diagram does not depend explicitly on {θ, ϕ}, where the
subharmonic response |mG(ω/2)| is essentially zero (nonzero)
for Eini(θ, ϕ) > Eedge [Eini(θ, ϕ) � Eedge] for a given |gN |.
Figures 7(b), 10(a), and 10(b) show |mG(ω/2)| for differ-
ent initial states |{θ, ϕ = 0}〉, |{θ, ϕ = 0.25π}〉 and |{θ, ϕ =
0.5π}〉, respectively, which agree with each other. However,
the condition ϕ �= 0 would limit the range of Eini(θ, ϕ) that
can be accessed, which is indicated by the white areas (no
data) in Figs. 10(a) and 10(b).

In the large-N limit, since the spectrum is bounded
from both below and above, the minimum and maximum
energy state should also be well approximated by the mean-
field expression, i.e., Emax = max[Eini(θ, ϕ)] and Emin =
min[Eini(θ, ϕ)]. These expressions are explicitly given by

Emax ≈ Eshift + |J̃|N
2

, (D7)

and for the negative gN considered in this work

Emin ≈
{

Eshift − |J̃|N
2 , |J̃| � −γ̃

Eshift + N
(

γ̃

4 + |J̃|2
4γ̃

)
, |J̃| < −γ̃

(D8)

whose expression in the second line can also be explic-
itly written as gN2uI/2 + J̃2N/gN (uI − 2uN ). In this work,
we focus on the case J + gNuT > 0, therefore, the critical
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FIG. 10. Subharmonic response |mG(ω/2)| (color bar) as a
function of normalized Eini and gN . The black curve shows the
normalized Eedge as a function of |gN |, which coincides with the
phase boundary for both initial product states |{θ, ϕ = 0.25π}〉 in
(a) and |{θ, ϕ = 0.5π}〉 in (b).

condition gives

gbN = −2J/(uI − 2uN + 2uT ). (D9)

One can notice that the initial state corresponding to Emin

actually corresponds to the “Wannier initial condition” in our
previous study [50]. We also find here that the minimum value
of |gcN | for DTC formation based on Wannier initial condi-
tions is given by |gcN | = |gbN | ≈ 0.006. This corresponds to
Eedge = Emin in Fig. 7(b).
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FIG. 11. Steady states’ subharmonic response signal as a func-
tion of |gN | for initial state |0, N〉 for different N denoted in the
figure. The black dashed vertical line indicates the critical interaction
strength |gN | = 0.012.

APPENDIX E: FINITE-SIZE EFFECT

In Ref. [40], it is noticed that the amplitude of the sub-
harmonic response of a DTC in a many-body quantum scar
system is exponentially suppressed with system size, and in
principle would disappear in the thermodynamic limit. In
contrast, the subharmonic response of a DTC in a MBL sys-
tem does not decay with respect to system size. It is thus
interesting to study the finite-size effect of our system, whose
eigenspectra are different from both many-body quantum scar
and MBL systems. Figure 11 shows the subharmonic response
as a function of |gN | for different N . We observe that the
subharmonic response in the symmetry-broken phase does not
decay with respect to N , similar to the DTC in MBL systems.
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