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Spin-orbit coupling controlling the topological vortical phase transition
in spin-2 rotating Bose-Einstein condensates

Hao Zhu ,1,2 Chao-Fei Liu,3,* Deng-Shan Wang,4 Shou-Gen Yin,1,† Lin Zhuang,5,‡ and Wu-Ming Liu 2,6,7,§

1Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials
and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China

4Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences,
Beijing Normal University, Beijing 100875, China

5School of Physics, Sun Yat-Sen University, Guangzhou 510257, China
6School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

7Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 7 January 2021; accepted 9 November 2021; published 29 November 2021)

We investigate the combined effects of spin-orbit coupling and rotation on the topological vortical phase
transition in F = 2 Bose-Einstein condensates. We find that the spin-orbit coupling can precisely manipulate the
canonical atom current which is generated in the opposite direction of the gauge atom current and causes both
a continuous and a discontinuous canonical angular momentum. We apply the canonical angular momentum
and magnetization to reveal the emergence of novel topological excitations, such as the Anderson-Toulouse
vortex as well as the vortex–dipole lattice. Especially, strong spin-orbit coupling can induce two perpendicular
vortex chains. We also find that both the first-order and the second-order phase transition can be characterized
by the canonical angular momentum and the magnetization. Differently from the spin singlet-pairing interaction,
the spin-exchange interaction can adjust the canonical angular momentum and control the phase transition well.
The topological vortical phase transition in an F = 2 cold-atom system is compatible with the current experiment
and can be detected by the spin polarization procedure.
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I. INTRODUCTION

Topological excitation in quantum fluid plays an important
role in modern physics, ranging from quantum spin liquids
[1] to superconductors [2] to nonrelativistic scales [3]. Among
the plethora of physical systems, the highly controllable ultra-
cold bosonic gases open a new path to engineering nontrivial
excitation. The topological vortical phase transition has been
widely investigated in Bose-Einstein condensates (BECs) [4]
and various topological excitations have been theoretically
predicted or experimentally observed, i.e., quantum vortices
[5], bright solitons [6], and hopfions [7]. Since the quantized
vortex was realized in scalar BECs [8,9], there has been grow-
ing interest in introducing the phase transition from the trivial
phase in spinor BECs [10,11]. However, precisely regulating
the phase transition remains a question.

Spin-orbit coupling (SOC) has attracted lots of attention
in condensed matter systems, including spintronics [12] and
topological insulators [13]. After Lin et al. realized SOC
in 87Rb atoms [14], Rashba-type or Dresselhaus-type SOC
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has been employed to manipulate the topological vortical
phase transition [15,16]. Exotic SOC was theoretically pre-
dicted to trigger the plane-wave phase or stripe phase by
Wang et al. [17], which enriched the phase diagram of spinor
BECs [18,19]. On the other hand, rotation is one of the most
common strategies to produce topological nontrivial states
in spinor BECs [20,21]. Accompanied by the appearance
of SOC, the rotation frequency � couples to the mechan-
ical angular momentum operator L̂mech = L̂c

z + L̂g
z , with the

canonical angular momentum operator L̂c
z = −ih̄(x̂∂̂y − ŷ∂̂x )

and gauge angular momentum operator L̂g
z = mλ(x̂σ̂x + ŷσ̂y),

where σ̂x,y are Pauli matrices [22,23]. The combined effect
of SOC and rotation facilitates the ground states to exhibit
various topological structures in spin-1/2 or spin-1 BECs
[24,25]. However, the more complicated spin-2 BECs offer
an opportunity to trigger even more novel topological excita-
tions, which has not been thoroughly investigated so far.

In this paper, we apply Rashba-type SOC to maneuver the
topological vortical phase transition in spin-2 rotating BECs.
Remarkably, an SOC-induced gauge atom current will excite
the canonical atom current in the opposite direction. In the
ground states of ferromagnetic BECs, the canonical angu-
lar momentum 〈Lc

z 〉 is precisely regulated by SOC without
rotation. Moreover, when considering the combined effect
of SOC and rotation, the step-form changing magnetization
M and 〈Lc

z 〉 indicate new topological phases, including the
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Anderson-Toulouse (AT) vortex, the vortex-dipole lattice, and
phase separation. Interestingly, extremely strong SOC can
trigger two perpendicular vortex chains, which has not been
reported in trapped spin-2 BECs before. We also discover that
the spin-exchange interaction plays a more important role than
the spin singlet-pairing interaction in the phase transition.

II. MODEL

We investigate the ground states of spin-2 BECs with
SOC and rotation. In the mean-field approximation, the total
Hamiltonian is defined as H = H0 + Hint [26,27], in which the
single-particle Hamiltonian H0 becomes

H0 =
∫

drψ(r)†

[
p̂2

2m
+ λ( p̂ · σ̂μ) − �L̂c

z + V (r)

]
ψ(r), (1)

where ψ= (ψ2, ψ1, ψ0, ψ−1, ψ−2)T characterizes the five-
component order parameters. The total particle number is
defined as N = ∫

dρ = ∫ ∑
j=±2,±1,0 ψ j

†(r)ψ j (r), m is the

atomic mass, and r ≡ (x, y). The momentum p̂ = −ih̄∇̂,
where h̄ is the Planck constant. The projection of the angular
momentum operator onto the z axis reads L̂c

z , σ̂μ (μ = x, y)
are 5 × 5 spin-2 matrices, λ denotes the strength of the SOC,
and � stands for the rotation frequency. The two-dimensional
(2D) trapping potential is given by V (r) = 1

2 mω2
⊥(x2 + y2),

with ω⊥ denoting the oscillator frequencies along the x and y
directions. It is convenient to make all quantities dimension-
less by introducing a length scale ξ0 = √

h̄/(mω⊥).
The interaction Hamiltonian Hint is defined as

Hint = 1

2

∫
dr

[
c0ψi(r)†ψ j (r)†ψ j (r)ψi(r)

+ c1ψi(r)†ψk (r)†Fij · Fklψl (r)ψ j (r)

+ c2(−1)i+ jψi(r)†ψ−i(r)ψ j (r)†ψ− j (r)
]
, (2)

where (Fμ)i j (μ = x, y, z) are the (i, j) components of spin-2
matrices Fμ. c0,1,2 represent the density-density interaction,
spin-exchange interaction, and spin singlet-pairing interac-
tion, respectively. With the aid of the imaginary-time method
[28], the wave functions of ground states are obtained from
the dimensionless coupled Gross-Pitaevskii equations [29,30],
which are reported in the Appendix.

III. MANY-BODY GROUND STATES

A. Canonical atom current and gauge atom current

The condensate wave function ψ minimizes the Gross-
Pitaevskii energy H = H0 + Hint. Depending on hydrody-
namic theory, the mechanical movement contributes to the
Hamiltonian as Hmech = ∫

m
2ρ

(Jc + Jg)2dr, where Jc repre-
sents the rotation-induced canonical atom current, and Jg

represents the SOC-induced gauge atom current [31,32]. The
canonical atomic current can generate the canonical angu-
lar momentum 〈Lc

z 〉 = ∑
j

∫
ψ

†
j [−i(x∇y − y∇x )]ψ jdr, where

j = ±2,±1, 0. With reference to Fig. 1(a), when SOC is
absent, the canonical angular momentum does not respond
to rotation until � = 0.2ω⊥ (the clockwise Jc is indicated by
the dark-red arrows in the inset). In the case � < 0.6ω⊥, the
〈Lc

z 〉-� curve increases linearly, but it increases exponentially

FIG. 1. (a) Evolution of the canonical angular momentum 〈Lc
z 〉

with the rotation frequency � when SOC is absent. Inset: Dark-
red arrows indicate the direction of the canonical atom current Jc.
(b) Evolution of 〈Lc

z 〉 with the SOC strength λ with � = 0 and
0.25ω⊥, respectively. Inset: Light-blue arrows indicate the gauge
atom current Jg, which is in the opposite direction to the canonical
atom current (dark red). (c)–(h) Phase field of the ψ−2 components
for different λ and �, where � = 0.2ω⊥, λ = 0 in (c), � = 0.5ω⊥,
λ = 0 in (d), � = 0, λ = 0.3ω⊥ξ0 in (e), � = 0, λ = 1.5ω⊥ξ0 in (f),
� = 0.25ω⊥, λ = 0.3ω⊥ξ0 in (g), and � = 0.25ω⊥, λ = 1.5ω⊥ξ0

in (h). Spin-exchange interaction c1/c0 = −0.008, and spin singlet-
pairing interaction c2/c0 = 0.08.

when � > 0.6ω⊥. Characteristic density profiles of the ψ−2

component are depicted in Figs. 1(c) and 1(d), where the SOC
strength λ = 0. When � is increased from 0 to 0.25ω⊥, a
typical axisymmetric vortex lattice replaces the vortex-free
state, as depicted in Fig. 1(c). However, the symmetry of
the vortex distribution is broken when � reaches 0.7ω⊥ in
Fig. 1(d). Obviously, pure rotation could induce vortex lattice
in ferromagnetic spin-2 BECs. However, the irregular distri-
bution of vortices makes it difficult to precisely manipulate
the topological vortical phase transition.

Besides the canonical atom current, the gauge atom cur-
rent, which is defined as Jg = − 1

m ψ†Aψ , with A defining
the gauge potential, can also result in nontrivial vortex struc-
tures. For Rashba-type SOC, the gauge potential reads A =
−λm(σx, σy), leading to Jg = λρ(Fx, Fy). In the presence of
Jg, Jc is generated in the opposite direction [31] [as depicted
by the inset in Fig. 1(b)], which means that SOC can also
influence the canonical angular momentum 〈Lc

z 〉. The evolu-
tion of 〈Lc

z 〉 with the SOC strength λ is depicted in Fig. 1(b).
Noticeably, the gradient of the 〈Lc

z 〉-λ curve is approximately
0 when rotation is absent. This phenomenon can be explained
by Figs. 1(e) and 1(f), where the SOC-induced vortices are
distributed at the edge of the condensate, and the ground states
are the plane-wave phase [17]. The angular momentum of
these phase defects can be approximated as ∼(1 − r2/R2)
[33], where R is the size of the condensate and r is the
distance from the vortex to the center, bearing in mind that the
aforementioned vortices lie on the outskirts of the condensate
(r ∼ R) whose contribution to the angular momentum is negli-
gible, equivalent to ghost vortices [34,35]. On the other hand,
with the collaboration of SOC and rotation, the axisymmetric
vortices contribute a nonnegligible angular momentum, as
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FIG. 2. Evolution of the canonical angular momentum 〈Lc
z 〉 (red

line with circles) and the magnetization M (blue line with rect-
angles), with the SOC strength λ ranging from 0 to 0.9ω⊥ξ0 and
the rotation frequency fixed at � = 0.25ω⊥. The density contours
|ψ−2(r)|2 for λ = 0.05ω⊥ξ0, 0.2ω⊥ξ0, 0.27ω⊥ξ0, 0.4ω⊥ξ0, 0.5ω⊥ξ0,
0.7ω⊥ξ0, 0.76ω⊥ξ0, and 0.85ω⊥ξ0 are labeled I–VIII, which indicate
various topological excitations.

shown in Figs. 1(g) and 1(h). Consequently, the gradient of
the 〈Lc

z 〉-λ curve can be approximated as arctan(�/ω⊥) when
� = 0.25ω⊥.

B. First-order and second-order phase transitions

To determine the nature of the topological vortical phase
transition, we first focus on the weakly spin-orbit-coupled
BECs (λ � 0.9ω⊥ξ0) when the rotation frequency remains
stationary at � = 0.25ω⊥. The canonical angular momentum
〈Lc

z 〉 and magnetization M = ∫
Fzdr vary as a function of

the SOC strength λ, as exhibited in Fig. 2. We divide the
SOC strength into eight regions, I–VIII, and different topo-
logical excitations in each region indicate that the ground
state experiences phase transitions (for simplicity, we only
exhibit the contour of |ψ−2|2). The density profile in region
I exhibits a noncentrosymmetric distribution with no obvi-
ous vortex core, the density profile in region II exhibits an
annulus distribution with a giant central hole, and an addi-
tional one to six small vortex cores around the central giant
vortex core can be identified in regions III–VIII. Remarkably,
〈Lc

z 〉 increases with λ while M decreases with λ within each
region. With the variation from region I → region II, 〈Lc

z 〉
and M change continuously, suggesting a second-order phase
transition [36]. However, 〈Lc

z 〉 and M change discontinuously
during the transitions from region II → region III → · · · →
region VIII, suggesting first-order phase transitions [36].

The aforementioned second-order phase transition (region
I → region II) is further explained clearly in Fig. 3, where the
rotation frequency is fixed at � = 0.25ω⊥. Consistent with
the one-dimensional (1D) density profile of the ψ−2 com-
ponent, the condensate breaks the rotation symmetry when
the SOC strength λ is increased from 0 to 0.025ω⊥ξ0. The

FIG. 3. The 1D density profile of the ψ−2(r) component with
diverse SOC strengths λ, when the rotation frequency is fixed at
� = 0.25ω⊥. The corresponding phase field arg(ψ−2) indicates that
the vortex core (represented by the black rectangle) is ultimately
drawn back to the center of the cloud (represented by the dashed
black line) when λ is tuned from 0 → 0.1ω⊥ξ0.

position of the phase impurity (enclosed by the black rect-
angle) in the phase field arg(ψ−2) reveals that the vortex
enters the condensate from the edge. With further increasing
SOC strength λ, from 0.025ω⊥ξ0 → 0.05ω⊥ξ0 → 0.1ω⊥ξ0,
the vortex gradually moves along the x direction and, finally,
forms the central positioned vortex in region II. Considering
the continuously changing canonical angular momentum 〈Lc

z 〉
and magnetization M during the transition from region I to
region II in Fig. 2, the condensate experiences a second-order
phase transition.

C. Various topological excitations

We can gain further insight into the aforementioned topo-
logical excitations from the density distribution, phase field,
spin vector, and velocity field. Two kinds of typical topo-
logical excitations in region II and region VI are illustrated
in Fig. 4. When the rotation frequency � = 0.25ω⊥ and the
SOC strength λ = 0.2ω⊥ξ0, the 2D and 1D density distri-
butions of different components are exhibited in Figs. 4(a)
and 4(b), respectively. The ψ2 component is located at the
center, which resembles a bright soliton with no density hole
[37]. Additionally, the ψ1,0,−1,−2 components exhibit a ring-
shaped distribution with an expanded vortex core. The 1D
density distribution of the topological excitation in region II
is displayed in Fig. 4(b). The rotation symmetry of the total
density is protected, the ψ2 component dominates the central
region, the ψ−2 component is located in the outside region,
and the ψ1,0,−1 components are sandwiched between the ψ±2

components.
The corresponding phase field arg(ψ j ) in Fig. 4(c) implies

that the phase winding of the ψ2 component is ω2 = 0, and the
phase windings of the ψ1,0,−1,−2 components are ω1 = −1,
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FIG. 4. The (a) 2D and (b) 1D density distributions of the ground state with the rotation frequency � = 0.25ω⊥ and SOC strength
λ = 0.2ω⊥ξ0. (c) The corresponding phase fields for different components, where the phase windings for every component count
(ω2, ω1, ω0, ω−1, ω−2) = (0, −1, −2, −3, −4). The (d) 2D and (e) 1D density distributions of the ground state with � = 0.25ω⊥ and
λ = 0.6ω⊥ξ0. (f) The corresponding phase fields for different components, where the phase windings for every component count
(ω2, ω1, ω0, ω−1, ω−2) = (−4, −5, −6, −7, −8).

ω0 = −2, ω−1 = −3, and ω−2 = −4, respectively. Appar-
ently, the phase windings of the adjacent components differ
by exactly 1. At rotation frequency � = 0.25ω⊥ and SOC
strength λ = 0.6ω⊥ξ0, the 2D and 1D density distributions
of different components are exhibited in Figs. 4(d) and 4(e),
respectively. Compared to the Fig. 4(a) case, there are four
additional density holes distributed around the trap center in
Fig. 4(e), corresponding to four vortex cores. As shown in the
1D density distribution in Fig. 4(f), the ψ2 component is still
located in the central region where the ψ1,0,−1,−2 components
are at their minimum densities. The corresponding phase field
arg(ψ j ) in Fig. 4(f) implies that the phase winding of the
ψ2 component is ω2 = −4, and the phase windings of the
ψ1,0,−1,−2 components are ω1 = −5, ω0 = −6, ω−1 = −7,
and ω−2 = −8, respectively. Obviously, the phase winding of
every component in the external four vortices equals 1, which
differs from the centrally positioned vortex.

Nontrivial spin topological excitations, i.e., vortex and
half-vortex, are particlelike topological structures in a contin-
uous field that play a vital role in condensed matter physics.
Spin topological excitations usually relate to various vortex
structures [38]. Actually, the nontrivial topological excitation
in region II suggests an Anderson-Toulouse vortex [39–41],
as shown in the spin picture in Fig. 5(a). The detection of an
AT vortex in spin-1/2 BECs has been realized by JILA [42]
and in spin-1 or spin-2 BECs by MIT [43]. The spin densities
are defined by Fμ = ∑

m,n=0,±1,±2 ψ†
m(σ̂μ)m,nψn/|ψ|2, where

μ = x, y, z and σ̂μ are spin-2 matrices [40,44]. Within the
AT vortex, the positions of the phase windings in different
components (except the ψ2 component) are totally overlapped
in the central region, with the spin vector pointing upward,
which agrees well with the definition of the axisymmetric spin
density Fz. Meanwhile, the spin aligns with a hyperbolic dis-
tribution that (Fx, Fy) ∝ (+y,−x), which is in good agreement
with the AT vortex [45].

On the other hand, the spin texture of the nontrivial topo-
logical excitation in region VI is illustrated in Fig. 5(b). An
AT vortex is still located in the center, while the periph-
eral four vortices exhibit different distributions in the spin
image. Compared with the AT vortex, the positions of the
phase windings in every component are separated. The phase
windings of the ψ1,2 components are located on one side of
the ψ0 component while the phase windings of the ψ−1,−2

components are located on the other side, creating a vortex
dipole [46]. Owing to the discrete distribution of different
components, the spin densities Fx, Fy, and Fz of the vortex
dipole (enclosed by the black square) are characterized by
(Fx, Fy, Fz ) ∝ (−x + y,−x + y, x + y), which differs from the
AT vortex. When the rotation frequency is fixed, stronger
SOC can further induce a vortex lattice with coaxially ar-
ranged annular arrays. In order to characterize the evolution
of the vortex-dipole lattice, we define the layer numbers as
a Mermin-Ho (MH) vortex as layer 1, an MH vortex and
single-layer vortex dipole as layer 2, an MH vortex and
two-layer vortex dipole as layer 3, and so on. As shown in
Fig. 6(a) with the rotation frequency fixed at � = 0.1ω⊥,
0.25ω⊥, and 0.5ω⊥, the layer number of vortex-dipole lattices
increases with the SOC strength, which is different from the
Abrikosov triangular lattice in superconductors [47] or hexag-
onal lattice in spinor BECs [48]. A three-layer vortex-dipole
lattice is illustrated in Fig. 6(b), in which λ = 1.4ω⊥ξ0 and
� = 0.25ω⊥. The particle current field is depicted as Jc =∑

j[
h̄

2im (ψ†
j ∇ψ j − ψ j∇ψ

†
j )], where j = ±2,±1, 0 [31,32].

All the vortices share the same direction of circulation, which
is different from the vortex-antivortex honeycomb lattices in
spin-2 BECs [49]. Another key observation is that, in the case
of strong SOC, λ = 4ω⊥ξ0, we observed two perpendicular
vortex chains, as depicted in Fig. 6(c). We can identify four
plane waves in different quadrants from the canonical parti-
cle current field, and the directions of each plane wave are
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FIG. 5. (a) Spin vector and spin density (Fx, Fy, Fz) of the
Mermin-Ho vortex when the rotation frequency � = 0.25ω⊥ and
the SOC strength λ = 0.2ω⊥ξ0. The positions of phase winding in
(ψ1, ψ0, ψ−1, ψ−2) are represented by (blue triangle, green square,
blue cross, red circle). (b) Spin vector and spin density (Fx, Fy, Fz) of
the vortex dipole when � = 0.25ω⊥ and λ = 0.6ω⊥ξ0. The positions
of phase winding in (ψ2, ψ1, ψ0, ψ−1, ψ−2) are represented by (red
dot, blue triangle, green square, blue cross, red circle).

perpendicular to each other. By projecting the propagating
vector of one plane wave k onto the x and y directions, we note
that the axial vortex chains are formed by two plane waves
with opposite momenta, which is consistent with Ref. [24].

The ground-state diagram for spin-2 BECs has been re-
ported with the single-condensate approximation [50] or
within the cyclic phase [51]. The above-mentioned patterns
can be classified into the λ-� phase diagram, as shown in
Fig. 6(d). In the PS region, the ground states are formed by
one plane wave propagating in a single direction. In the ATV
region, the AT vortex dominates the trap center. In the MDVL
region, a multilayer vortex-dipole lattice is introduced into the
system. In the PVC region, two perpendicular vortex chains
emerge.

D. Atomic-interaction-induced phase transition

To connect with experiments, atomic interactions concern-
ing magnetic order should also be considered to trigger the
topological vortical phase transition [17,52]. We hereby ex-

FIG. 6. (a) The layer number increases with the SOC when
the rotation frequency � = 0.1ω⊥, � = 0.25ω⊥, and � = 0.5ω⊥,
respectively. (b), (c) Total density snapshots of a three-layer vortex-
dipole lattice and perpendicular vortex chains with λ = 1.4ω⊥ξ0 and
4ω⊥ξ0. Black arrows indicate the canonical current field. (d) Phase
diagram of the ground states, including the phase separation (PS),
the Anderson-Toulouse vortex (ATV), the multilayer vortex-dipole
lattice (MDVL), and the perpendicular vortex chains (PVC).

amine the influence of the spin-exchange interaction c1/c0

and spin singlet-pairing interaction c2/c0 on the phase tran-
sition in ferromagnetic spin-2 BECs [53,54]. Because the
phase transition coexists with the canonical angular momen-
tum evolution, we showcase the fitting curve of 〈Lc

z 〉–c1/c0

in Fig. 7(a). Remarkably, 〈Lc
z 〉 decreases when c1/c0 varies

from −0.008 to −0.2 and the two-layer vortex-dipole lattice

FIG. 7. (a), (b) Topological vortical phase transition spanned by
the spin-exchange interaction c1/c0, where the rotation frequency
� = 0.25ω⊥, and the SOC strength λ = 0.85ω⊥ξ0 in (a) and � =
0.25ω⊥, λ = 4ω⊥ξ0 in (b). (c), (d) Topological vortical phase tran-
sition spanned by the spin singlet-pairing interaction c2/c0, where
� = 0.25ω⊥, λ = 0.85ω⊥ξ0 in (c) and � = 0.25ω⊥, λ = 4ω⊥ξ0 in
(d).
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gradually transforms into an AT vortex. However, as shown
in Fig. 7(b), the perpendicular vortex chain structure is not
influenced by the fluctuation (variation) of the spin-exchange
interaction c1/c0, which indicates that strong SOC can protect
topological excitation. On the other hand, when c2/c0 varies
from 0.08 to 0.2, the 〈Lc

z 〉–c2/c0 curve is flat in Figs. 7(c)
and 7(d), which implies that the spin singlet-pairing inter-
action has little influence on the topological vortical phase
transition.

E. Experimental implementation

We now report an experimental protocol to observe the
aforementioned topological vortical phase transition. First,
4 × 105 23Na atoms are captured by laser-cooling in a
pancake-shaped trap. The atomic scattering length is tuned
by Feshbach resonance [55,56]. The choice of a4 =43aB,
a2 =45.8aB, and a0 =52.35aB will lead to c0 = 201.36, c1 =
−1.81, and c2 = 24.15, where aB is the Bohr radius [57].
Using an off-resonant laser beam to provide a rotating gradi-
ent [42], BECs are stirred and possess an angular momentum
with a certain frequency [58]. The system can be coupled
by the laser beam when � = (0.25, 0.5, 1) × ω⊥ = 2π ×
(75, 150, 300) Hz are chosen. The pulsed magnetic fields are
utilized to produce 2D Rashba SOC [59]. The phase tran-
sition versus the SOC strength is detected by plotting the
〈σ̂z〉-λ curve, where the spin polarization 〈σ̂z〉 = ∫

ψ†σ̂zψ. At
the phase boundary, 〈σ̂z〉 experiences a discontinuous jump,
which indicates a first-order phase transition [60].

IV. CONCLUSION

In conclusion, we have studied the topological vortical
phase transition of spin-2 BECs under the combination of
Rashba-type SOC and rotation. The phase transition among
a vortex-dipole lattice, perpendicular vortex chains, and an
AT vortex can be well controlled via manipulation of SOC.
We fully illuminate the first-order and the second-order phase
transitions according to the continuous and discontinuous
behaviors of the canonical angular momentum or magne-
tization. Furthermore, when facing SOC and rotation, the
spin-exchange interaction can also trigger the phase transition
while the spin singlet-pairing interaction has little effect on
it. Our results will guide further experimental and theoretical
work on the intriguing property of the topological vortical
phase transition in quantum many-body systems.
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APPENDIX: GROSS-PITAEVSKII EQUATIONS
FOR SPIN-2 BECs

Here we discuss in detail how the full three-dimensional
(3D) Gross-Pitaevskii equations transform into the two-
dimensional (2D) form mentioned in the text. The coupled 3D
Gross-Pitaevskii equations can be cast into a dimensionless
form by scaling the spatial coordinates as x̃ = x/ξ0, ỹ = y/ξ0,
and z̃ = z/ξ0, the time as t̃ = tω⊥, and the wave function
as ψ̃ j (x̃, ỹ, z̃, t̃ ) =

√
ξ 2

0 /Nj ψ j (x, y, z, t ). Here, the index j =
±2,±1, 0 refers to each of the species of the five-component
BEC, while ξ0 = √

h̄/mω⊥ is the harmonic oscillator length.
For simplicity, it is convenient to drop the tilde and require
that the trapping frequency in the transverse x-y plane satisfies
ω2 = ω1 = ω0 = ω−1 = ω−2 = ω⊥. The quasi-2D harmonic
trap is achieved via maneuvering much stronger trapping in
the axial z direction compared to that along the x-y plane, i.e.,
ωz � ω⊥. Along this line, ωz/ω⊥ � 1, the wave function of
each species can be characterized as

ψ j (x, y, z, t ) = ψ j (x, y, t )φ j (z), (A1)

where φ j (z) is the normalized ground-state wave function
in the z direction. Subsequently, the dimensionless forms of
the coupled Gross-Pitaevskii equations after integrating over
φ j (z) lead to the 2D forms [26,27,29,30],

i
∂ψ±2(x, y, t )

∂t
= hψ±2(x, y, t ) + c0ρψ±2(x, y, t )

+ c1(F∓ψ±1(x, y, t ) ± 2Fzψ±2(x, y, t ))

+ c2√
5
�ψ∓2(x, y, t )†

+ λ(−i∂x ∓ ∂y)ψ±1(x, y, t )

+ i�(x∂y − y∂x)ψ±2(x, y, t ), (A2)

i
∂ψ±1(x, y, t )

∂t
= hψ±1(x, y, t ) + c0ρψ±1(x, y, t )

+ c1

(√
6

2
F∓ψ0(x, y, t ) + F±ψ±2(x, y, t )

± Fzψ±1(x, y, t )

)
− c2√

5
�ψ∓1(x, y, t )†

+ λ(−i∂x ± ∂y)ψ±2(x, y, t )

+ λ

(
− i

√
6

2
∂x ∓

√
6

2
∂y

)
ψ0(x, y, t )

+ i�(x∂y − y∂x)ψ±1(x, y, t ), (A3)

i
∂ψ0(x, y, t )

∂t
= hψ0(x, y, t ) + c0ρψ0(x, y, t )

+
√

6

2
c1(F−ψ−1(x, y, t ) + F+ψ1(x, y, t ))

+ c2√
5
�ψ0(x, y, t )†

+ λ

(
− i

√
6

2
∂x +

√
6

2
∂y

)
ψ1(x, y, t )
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+ λ

(
− i

√
6

2
∂x −

√
6

2
∂y

)
ψ−1(x, y, t )

+ i�(x∂y − y∂x)ψ0(x, y, t ), (A4)

where h = − 1
2 (∂2

x + ∂2
y ) + 1

2 (x2 + y2). Moreover,

F+ = F−†

= 2(ψ−1(x, y, t )†ψ−2(x, y, t ) + ψ2(x, y, t )†ψ1(x, y, t ))

+
√

6(ψ1(x, y, t )†ψ0(x, y, t ) + ψ0(x, y, t )†ψ1(x, y, t )),

Fz = 2|ψ2(x, y)|2+|ψ1(x, y)|2−|ψ−1(x, y)|2−2|ψ−2(x, y)|2,

and

� = [2ψ2(x, y, t )ψ−2(x, y, t ) − 2ψ1(x, y, t )ψ−1(x, y, t )

+ ψ0(x, y, t )2]/
√

5.

We can define the dimensionless strength of SOC as
λ/

√
h̄ω⊥

m = λ/(ω⊥ξ0) and the dimensionless rotation fre-
quency as �/ω⊥. In our numerical simulations, the size of
the computational grid is 300 × 300, corresponding to a field
of view of 30 × 30 (ξ0

2). We choose general Gaussian wave
functions for the five components as the initial states. A suffi-
ciently large number of time steps to guarantee that we obtain
the ground states is chosen. The imaginary-time propagation
starts with a Gaussian initial state in each component: ψ j ∼
exp(−(x2 + y2)/α j ), where α j is the width.
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