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Quantum phases of interacting bosons on biased two-leg ladders with magnetic flux
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The realization and detection of various phase transitions in interacting two-leg bosonic flux ladders are at the
frontier of the present theoretical and experimental research in condensed-matter physics. We develop a biased
two-leg Bose-Hubbard flux ladder model and first achieve the ground states and phase transition conditions
of this system by the mean-field approach and variational analysis. Rich phases are revealed, including two
different kinds of plane-wave phase, i.e., plane wave I (characterized with one single energy minimum of the
energy band) and plane wave II (characterized with two nondegenerate local energy minima of the energy
band), and interestingly the asymmetry vortex phase with the breaking of both Z2 reflection symmetry and
translational symmetry of space, which is characterized by the vortex with imbalanced density distributions on
two legs. Moreover, the corresponding quantum phases can also be distinguished by the order parameters and
the excitation spectra of the plane-wave phase intuitively. Furthermore, we demonstrate that this biased ladder
system also makes it possible to realize a different dynamical asymmetric vortex state, which shows a dynamical
supersolidlike property.

DOI: 10.1103/PhysRevA.104.053323

I. INTRODUCTION

The most hallmark phenomenon of superconductors ex-
posed to the external magnetic field H < Hc1 is the Meissner
effect where the surface screening currents result a perfect
diamagnet [1]. For type-II superconductors, a vortex phase
exists when the field strength H > Hc1, in which magnetic
flux partially penetrates the material [2]. The research of type-
II superconductors looks very promising from the point of
view of both fundamental science and applications. In ultra-
cold atomic systems, the realization of artificial gauge fields
[3–5] and optical lattices [6–8] provides an ideal platform with
remarkable tunability to simulate such electronic phenomena
of the strongly correlated system. Due to one-dimensional
systems not having the orbital effect of the magnetic field,
a two-leg ladder system [9–13] is the minimal setup for ex-
ploring complex phenomena of superconductivity. In addition,
the ladder system also provides a fertile ground for study-
ing common features of condensed-matter physics including
some novel quantum phases [14–18], topological edge states
[19–24], and many-body dynamics [25–29].

In recent years, the two-leg ladder system in the presence
of an artificial gauge field has been successfully demonstrated
in experiment [11,30–34]. In analogy to the type-II super-
conductor, the experiment [11] realized a quantum phase
transition between the Meissner phase and vortex phase by
manipulating the strength of the rung coupling, which also
provided an efficient way to implement spin-orbit coupling
(SOC) [35–37] in one-dimensional quantum gas. Combining
the effects of the artificial gauge field and atomic interaction,
tremendous activity in investigations is revealed using pow-
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erful theoretical and numerical methods in this system. Rich
ground-state phase diagrams are the key task of this area,
including superfluids, Mott insulators [14,38–41], vortex lat-
tices [10,15,42,43], charge-density waves [44,45], and vortex
density waves [46]. Furthermore, the possible existence of
Laughlin-like states has drawn tremendous attention [47–53].
The ground-state properties under the finite-temperature [54]
and the magnetic flux ramps [55] are also discussed in detail,
respectively. Recently, an additional phase characterized by
population imbalance between the two legs, named the biased
ladder phase (BLP), has been predicted to be stable in the
weakly interacting regime [56,57]. The BLP breaks global
Z2 reflection symmetry and enriches the ground state of the
system.

In this paper, we propose a biased ladder system by detun-
ing the Raman lasers to add a controlled energy bias between
the two legs. The energy bias we introduced is analogous to
the Zeeman field in SOC Bose-Einstein condensates (BECs).
Currently, many theoretical and experimental research works
have already confirmed that the Zeeman field plays a crucial
role in SOC BECs, which leads to rich phase transition pro-
cesses [35,36,58,59]. Accordingly, one can expect that this
biased ladder system offers great potential for the appearance
of novel phases and can be easily observed in current exper-
iments. The ground states and the phase transition conditions
of the biased ladder system are obtained analytically by the
mean-field approach and variational analysis in this paper.
We identify rich phases, including two different kinds of
plane-wave phase, i.e., plane wave I (PWI, characterized with
one single energy minimum of the energy band) and plane
wave II (PWII, characterized with two nondegenerate local
energy minima of the energy band), and interestingly a phase
named the asymmetry vortex phase (AVP) characterized by
the asymmetry vortex with imbalanced density distributions
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on two legs. This phase breaks both Z2 reflection symmetry
and translational symmetry of space. The order parameters
of the biased ladder system can be used to identify different
quantum phases. We further study the excitation spectra of the
plane-wave phase; the negative excitation demonstrates the
existence of the AVP. Moreover, a different type of dynam-
ical asymmetric vortex state (DAVS), resembling dynamical
supersolidlike properties, is predicted in this biased ladder
system. Because of these unique dynamical properties, the
DAVS may have some potential applications in quantum
transport and the time crystal. The AVP and DAVS obviously
further enrich the phase transition properties and dynamics of
the ladder system.

The paper is organized as follows. In Sec. II, we introduce
the biased two-leg flux ladder model, and show the key aspects
of the single-particle spectrum of the system. In Sec. III, we
investigate the full phase diagrams and the ground-state prop-
erties of different phases by using variational analysis, and
also discuss the excitation spectra of the system. The DAVS is
discussed in Sec. IV. The summary and outlook of our paper
are included in Sec.V.

II. MODEL

As realized in experiment [11], the lattice configuration
creates a one-dimensional array of isolated ladders in the
xy plane of the three-dimensional lattice and the atomic in-
teraction can be easily tuned by using Feshbach resonance
technology [60]. By changing the frequency of a pair of
running-wave beams, a controlled energy bias between the
two legs of the ladder can be introduced. We consider the
biased bosonic two-leg ladder system with a flux φ per pla-
quette created by laser-assisted tunneling [61,62]. Due to the
magnetic flux being translational invariant, the hopping matrix
elements of the Hamiltonian along legs become complex by
means of a unitary transformation. Physical properties are
unchanged in different gauge choices [20,22,44,63,64]. Here
the Hamiltonian as leg gauge is

H = −J
∑

m

(
ei φ

2 â†
m+1,Lâm,L + e−i φ

2 â†
m+1,Râm,R + H.c.

)
− K

∑
m

(â†
m,Râm,L + H.c.)

− 1

2
ω

∑
m

(â†
m,Lâm,L − â†

m,Râm,R)

+ U

2
(â†

m,Lâ†
m,Lâm,Lâm,L + â†

m,Râ†
m,Râm,Râm,R), (1)

where â†
m,σ and âm,σ are the bosonic operators at the mth

lattice site of the left or right leg (corresponding to σ =
L or R), φ is the magnetic flux per plaquette, ω is the
controllable energy bias between the two legs, U is the
strength of the atomic interaction, and K and J are tun-
neling amplitudes between nearest-neighbor sites across the
rung and along the leg, respectively. Observables that can
be readily measured in the experiment are the local cur-
rents on legs jσ (m) = iJ (e±i φ

2 â†
m+1,σ âm,σ − H.c.) and rungs

jrung(m) = iK (â†
m,Râm,L − H.c.) [11,23,43]. Apart from the

configuration of local currents, the average current that

FIG. 1. Band structures of the noninteracting ladder system
(a) ω̃ = 0 and (b) ω̃ = 0.5 for different rung-to-leg coupling
ratios K̃ .

circulates along the edge of the system jc = 1
N

∑
m〈 jL − jR〉,

which is defined as the chiral current, also can be used to dis-
tinguish different phases in the two-leg ladder system. Using
the mean-field approximation, we can neglect any thermal ef-
fect and obtain the mean-field approximation âm,σ � 〈âm,σ 〉 ≡
am,σ . The discrete Gross-Pitaevskii (GP) equations associated
with the Hamiltonian (1) can be written as

i
∂am,L

∂t
= −J

(
ei φ

2 am−1,L + e−i φ

2 am+1,L
) − Kam,R

− 1

2
ωam,L + U |am,L|2am,L,

i
∂am,R

∂t
= −J

(
e−i φ

2 am−1,R + ei φ

2 am+1,R
) − Kam,L

+ 1

2
ωam,R + U |am,R|2am,R, (2)

where the unit is the natural unit h̄ = 1.
For noninteracting particles Ũ = 0, we seek for plane-

wave solutions am,σ = aσ eikm, where k is the dimensionless
quasimomentum, which is rescaled as k → kd/π (d is the
lattice constant). The expression for energy eigenvalues E±
reads

E± = −2 cos k cos
φ

2
±

√
K̃2 + 1

4

(
ω̃ + 4 sin k sin

φ

2

)2

,

(3)
where the interaction-to-leg coupling ratio is Ũ = U/J , the
rung-to-leg coupling ratio is K̃ = K/J , the bias-to-leg cou-
pling ratio is ω̃ = ω/J , and the energy is normalized by
the unit of J. Figure 1 shows the energy band structure
of the noninteracting ladder system. It is clear that there
exists a critical value K̃c for the bifurcation of the band
structure. With the increase of the K̃ , the structure of
the lower band changes from single-well to double-well
structure. For the case ω̃ = 0 [see Fig. 1(a)], k0− = k0+ =
arccos

√
cos2(φ/2) + K̃/[4 tan2(φ/2)], which means the en-

ergy band is symmetric with respect to k = 0. However, for
the case ω̃ �= 0 [see Fig. 1(b)], due to k0− �= k0+ and k0 �= 0,
the symmetry of the energy band is broken and there is an
energy difference �E = E (−k0−) − E (k0+) between the two
minima of the lower band, which is induced by the existence
of the energy bias.
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III. PHASE DIAGRAM OF the BIASED LADDER SYSTEM

Affected by the atomic interaction together with the en-
ergy bias between the two legs, the low-energy band and the
critical properties of the system will become more complex,
thus some novel quantum phases will occur. To determine
the ground states, we consider the wave function using a
variational procedure based on the ansatz[

am,L

am,R

]
=

[
sin α+

2 cos θeimk+ + cos α−
2 sin θe−imk−

cos α+
2 cos θeimk+ + sin α−

2 sin θe−imk−

]
, (4)

with the angle θ (0 � θ � π/2), the quasimomentum k±, and
the coefficients sin α±

2 as the variational parameters, which sat-
isfy the normalization constraint. Note that, if the energy bias
ω̃ = 0, one can find α+ = α− = α and k+ = k− = k, which is
analogous to the variational approach of Refs. [65,66]. There-
fore, we can expect that the composite effect of the energy
bias and atomic interaction will induce novel quantum phase
transition processes in this ladder system. Inserting the ansatz
Eq. (4) into the Hamiltonian, the total energy can be written
as

E = −2

{
cos2 θ

[
sin2 α+

2
cos

(
k+ − φ

2

)
+ cos2 α+

2
cos

(
k+ + φ

2

)]

+ sin2 θ

[
cos2 α−

2
cos

(
k− + φ

2

)
+ sin2 α−

2
cos

(
k− − φ

2

)]}

− K̃ (sin α+ cos2 θ + sin α− sin2 θ ) + ω̃

2
(cos α+ cos2 θ + cos α− sin2 θ )

+ Ũ

2

[(
sin4 α+

2
+ cos4 α+

2

)
cos4 θ +

(
sin4 α−

2
+ cos4 α−

2

)
sin4 θ

+
(

sin2 α+
2

cos2 α−
2

+ cos2 α+
2

sin2 α−
2

)
sin2 2θ

]
. (5)

By minimizing the total energy, the variational parameters (k±, α±, θ ) can be calculated, thus we can obtain key physical
quantities of the biased ladder system. The density distributions are shown to be

nm,L = sin2 α+
2

cos2 θ + cos2 α−
2

sin2 θ + sin
α+
2

cos
α−
2

sin 2θ cos β,

nm,R = cos2 α+
2

cos2 θ + sin2 α−
2

sin2 θ + sin
α+
2

cos
α−
2

sin 2θ cos β,

(6)

where β = (k+ + k−)m. Meanwhile, the local currents can be calculated as

jm,L = 2 sin2 α+
2

cos2 θ sin

(
k+ − φ

2

)
− 2 cos2 α−

2
sin2 θ sin

(
k− + φ

2

)

+ sin
α+
2

cos
α−
2

sin 2θ

[
sin

(
k+ − φ

2
− β

)
− sin

(
k− + φ

2
− β

)
,

jm,R = 2 cos2 α+
2

cos2 θ sin

(
k+ + φ

2

)
− 2 sin2 α−

2
sin2 θ sin

(
k− − φ

2

)

+ sin
α+
2

cos
α−
2

sin 2θ

[
sin

(
k+ + φ

2
− β

)
− sin

(
k− − φ

2
− β

)
,

jm,rung = K̃ sin 2θ

(
sin

α+
2

sin
α−
2

− cos
α+
2

cos
α−
2

)
sin β. (7)

The energy minimization with respect to k± yields the general relationship k± = −arctan[cos α± tan(φ/2)]. By using this
relationship and minimizing the total energy with respect to θ and α±, i.e., ∂E/∂θ = 0 and ∂E/∂α± = 0, we can obtain

sin 2θ [(A+ + A−) + 2Ũ cos 2θ (sin2 α+ − 4 cos α+ cos α− + sin2 α−)] = 0, (8)

ω̃ sin α+ + cos α+

[
2K̃ + sin α+

(
Ũ cos2 θ − 4 sin φ

2 tan φ

2√
1 + cos2 α+ tan2 φ

2

)]
− 2Ũ sin2 θ sin α+ cos α− = 0, (9)

ω̃ sin α− − cos α−

[
2K̃ + sin α−

(
Ũ sin2 θ − 4 sin φ

2 tan φ

2√
1 + cos2 α+ tan2 φ

2

)]
+ 2Ũ cos2 θ sin α− cos α+ = 0, (10)
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where A± = ±16 cos φ

2

√
1 + cos2 α± tan2 φ

2 − 4ω̃ cos α± ∓
Ũ cos 2α± ± 8K̃ sin α±. From Eqs. (8)– (10), the variational
parameters can be calculated, and one can obtain the
ground-state features of the biased ladder system.

A. Plane-wave phase

For θ = 0 (or π/2), the ground state of the system is the
plane-wave phase, which takes place in a single plane-wave
state with a nonzero quasimomentum. According to different
features of the variational energy landscape, this phase can be
distinguished as PWI and PWII. There exists a critical value
K̃ I-II

c , which can be calculated from the energy minimization
with respect to α±. In this case, Eqs. (9) and (10) can be
simplified as

ω̃ sin α± ± cos α±

[
2K̃

+ sin α±

(
Ũ − 4 sin φ

2 tan φ

2√
1 + cos2 α± tan2 φ

2

)]
= 0,

(11)

where the sign of α is defined on the energy bias to leg
coupling ratio ω̃ > 0 (θ = 0) or ω̃ < 0 (θ = π/2).

When K̃ > K̃ I-II
c , the solution α± for Eq. (11) only has one

single value at the corresponding k± �= 0, which means that
the energy band only has one single minimum and the ground
state of the biased ladder system is in the PWI. The broken
Z2 reflection symmetry brings a density imbalance �n =∑

m(nm,R − nm,L )/N between the two legs, which serves as
the order parameter for this phase [44]. From Eqs. (6) and
(7), we can obtain that the particles are more populated on
the right (left) leg for ω̃ > 0 (ω̃ < 0) and the density on
either leg is uniform. Meanwhile, local currents have the
same strength but opposite direction on two legs and the
currents vanish on the rungs [see Fig. 2(a)]. In the limit ω̃ = 0,
the single minimum k± = 0 and the ground state enters the
Meissner phase, where the density is evenly distributed on
the ladder and currents on legs reach a maximum value [see
Fig. 2(b)].

When K̃ I-II
c > K̃ > K̃ II-III

c , the system will turn to the PWII.
The solution α± for Eq. (11) will correspond to two energy
minima at k+ and −k−, respectively. As shown in Fig. 1(b),
there exists an energy bias between the two momentum states,
so the ground state of the ladder system will choose the one
with lower energy. The distributions of the density and local
currents are similar to the PWI, but the density imbalance
between two legs is larger and the strength of the currents is
smaller [see Fig. 2(c)]. For the case ω̃ = 0, two momentum
states have twofold degeneracy and the ground state obeys the
BLP [56], which has similar density and current structures
with the plane-wave phase, but the density imbalance is the
result of spontaneous breaking of Z2 reflection symmetry [see
Fig. 2(d)]. At this point, the critical condition between the
Meissner phase and BLP can be analytically given as K̃ I-II

c =
− Ũ

2 + 2 sin φ

2 tan φ

2 .

FIG. 2. Individual particle densities and currents for different
phases. For the biased ladder ω̃ = 0.2, there are two kinds of plane-
wave phase (a) PWI with K̃ = 1.5, (c) PWII with K̃ = 0.75, and a
superposition state (e) AVP with K̃ = 0.65. For the unbiased ladder
ω̃ = 0, we show the (b) Meissner phase with K̃ = 1.5, (d) BLP with
K̃ = 1, and (f) vortex phase with K̃ = 0.65. The colorbar represents
the particle density, blue arrows denote local currents, and the length
of the arrow indicates the current strength, which is normalized to
the local current of the Meissner phase. The other parameters are
Ũ = 0.4 and φ = π/2.

B. Asymmetric vortex phase

When the strength of the atomic interaction increases fur-
ther, the superposition state cos θ |k+〉 + sin θ | − k−〉 of the
ladder system will be the lowest-energy state, where K̃ <

K̃ II-III
c . From Eq. (8), we can obtain

θ = 1

2
arccos

[
A+ + A−

2Ũ (sin2 α+ − 4 cos α+ cos α− + sin2 α−)

]
,

(12)

which means this new ground state of the biased ladder system
is the superposition state with different superposition coef-
ficients. Meanwhile, the energy minimization with respect
to α± also gives Eqs. (9) and (10). By solving this set of
equations, we can obtain the ground-state wave function. Par-
ticularly, the energy bias ω̃ induces an asymmetric density
modulation of the ladder system, which brings a different
phase named the AVP. As shown in Fig. 2(e), the particle
density distribution presents a spatial modulation on each leg
and local currents exhibit a vortex structure in the ground
state. The breaking of Z2 symmetry leads to a density im-
balance between two legs, and the current strength on two
legs becomes different. When ω̃ > 0 (ω̃ < 0), the density
and current strength on the right (left) leg are large. For the
unbiased system, k+ = k− and the angle θ = π/4. Hence,
the vortex structure at this point becomes symmetric, which
accords with the ordinary vortex phase [see Fig. 2(f)]. This is
a particular case of AVP without energy bias. In addition to
the continuous U (1) symmetry in the Meissner phase, these
two kinds of vortex phase have a second spontaneous broken
translational symmetry of space. Similar to the long-range
spatial periodicity of solids, this density modulation combined
with superfluid properties results in the supersolidity of the
vortex phase [35,67].

By means of the variational approach, the full phase dia-
gram in the presence of energy bias is summarized in Fig. 3.
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FIG. 3. Phase diagrams in the K̃-φ plane with different atomic
interactions (a) Ũ = 0.2, (b) Ũ = 0.5, and (c) Ũ = 0.8; phase dia-
grams in the K̃-Ũ plane with different energy biases (d) ω̃ = ±0.1,
(e) ω̃ = ±0.4, and (f) ω̃ = ±0.6; and phase diagrams in the ω̃-K̃
plane with different atomic interactions (g) Ũ = 0.2, (h) Ũ = 0.6,
and (i) Ũ = 1. The region I(±) and region II(±) correspond to two
kinds of plane-wave phase PWI and PWII, respectively. The region
III(±) corresponds to the AVP.

As shown in Fig. 3(a), when the atomic interaction is small,
the ground state of the ladder system is the plane-wave phase.
According to features of the variational energy landscape,
the biased ladder system will transform from PWI (yellow
region I) to PWII (blue region II) with the increase of the
intensity of the magnetic field. As the strength of the atomic
interaction exceeds a critical value, the AVP (pink region
III) appears at the area with the small coupling ratio K̃ and
strong magnetic field φ [see Figs. 3(b) and 3(c)]. As shown
in Figs. 3(d)–3(f), when the atomic interaction is small, the
phase transition is from the AVP to PWII. With the increase
of the atomic interaction, the direct phase transition from the
AVP to PWI emerges in the biased ladder system. Comparing
Figs. 3(d)–3(f), we can obtain that the increase of the energy
bias between two legs of the ladder system will significantly
suppress the appearance of the AVP. The full phase diagrams
in the K̃-ω̃ plane are shown in Figs. 3(g)–3(i) with different
atomic interactions. When we choose a small energy bias, the
phase transition from the plane-wave phase to the AVP occurs
with decreasing coupling ratio K̃ . The light green, orange, and
purple areas are the negative range of these phases with the
opposite quasimomentum. Moreover, with the increase of the
atomic interaction, the area of the AVP increases, but the area
of PWII decreases greatly and even disappears.

The phase transition of the biased ladder system also can
be identified by the order parameters, which can be observed
directly in experiments. As shown in Fig. 4(a), indicators of
the AVP to plane-wave phase transition can be detected with
a marked jump of the chiral current jc, average rung current
avg| jrung|, and particle density imbalance �n, which indicate
a first-order phase transition. When the atomic interaction
increases, the direct phase transition from the AVP to PWI
emerges [see Fig. 4(b)]. Moreover, these order parameters

FIG. 4. Chiral current jc (red solid circle line), average rung
current avg| jrung| (black solid square line), and density imbalance
�n (blue solid triangle line) for different quantum phases; cut
through the phase diagram of the K̃-Ũ plane (φ = π/2) at ω̃ = 0.1
with (a) Ũ = 0.3 and (b) Ũ = 0.6 [see Fig. 3(d)], respectively; cut
through the phase diagram of the K̃-φ plane (Ũ = 0.8) at K̃ = 1.5
with (c) ω̃ = 0.1 and (d) ω̃ = 0.2 [see Fig. 3(c)], respectively; and
slopes of the chiral current ∂ jc/∂φ (red line) and density imbal-
ance ∂�n/∂φ (blue line) vs φ with (e) ω̃ = 0.1 and (f) ω̃ = 0.2,
respectively.

also can be used to distinguish PWI and PWII, which have
different features in the energy diagram. With the increasing
coupling ratio K̃ , the order parameters are continuous across
the PWII to PWI boundary, which can be identified by the
spinodal of jc and �n. Figures 4(c) and 4(d) focus on a
horizontal cut through the phase diagram of the K̃-φ plane
at K̃ = 1.5. The order parameters are also continuous at the
boundary between PWI and PWII and discontinuous at the
boundary between the plane-wave phase and AVP. Note that
the jumps decrease when the energy bias ω̃ is increasing.
In order to show the spinodal between PWI and PWII more
clearly, we plot slopes of the chiral current ∂ jc/∂φ and density
imbalance ∂�n/∂φ in Figs. 4(e) and 4(f). The first extreme
value points in its slopes indicate the location of the spin-
odal between PWI and PWII. Meanwhile, the phase transition
points between the plane-wave phase and AVP can also be
marked by the second extreme value points in these slopes.
As shown in Figs. 4(e) and 4(f), these results are according
with Figs. 4(c) and 4(d).

To demonstrate the existence of the AVP, we study the
stability of Eq. (4) as θ = π/2(0); the perturbed ground state
can be written as[

am,L(t )
am,R(t )

]
=

[
cos α−

2 + δam,L (t )
sin α−

2 + δam,R(t )

]
ei(km−εt ). (13)

The perturbation terms are given by

δam,σ (t ) = Wq,σ ei(qm−δωt ) + V ∗
q,σ e−i(qm−δωt ), (14)
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where W and V are the perturbation amplitudes, and q is
the quasimomentum of the quasiparticle excitation, which is
rescaled as q → qd/π . The frequencies of the perturbation
δω and time t are normalized by the unit of J . Inserting this

perturbed ground state into the GP equation (2) and retain-
ing only terms linear in the perturbations, we can obtain the
Bogoliubov–de Gennes (BdG) equations H� = δω�, where
� = (WL,WR,VL,VR)T , with the BdG Hamiltonian

H =

⎛
⎜⎜⎝

HL(k, q) −K̃ Ũ cos2 α−
2 0

−K̃ HR(k, q) 0 Ũ sin2 α−
2−Ũ cos2 α−

2 0 −HL(k,−q) K̃
0 −Ũ sin2 α−

2 K̃ −HR(k,−q)

⎞
⎟⎟⎠, (15)

where

HL(k, q) = − ε − 2 cos

(
k + q − φ

2

)
− ω̃

2
+ 2Ũ cos2 α−

2
,

HR(k, q) = − ε − 2 cos

(
k + q + φ

2

)
+ ω̃

2
+ 2Ũ sin2 α−

2
.

(16)
By diagonalizing the BdG equation, we obtain the spectrum
of elementary excitations, which has been experimentally ob-
served via the Bragg spectroscopy measurement in SOC Bose
gases [68–70]. As shown in Figs. 5(a) and 5(c), the spectrum
of the plane-wave phase shows a phonon-maxon-roton-like
feature. When the rung-to-leg coupling ratio K̃ and the en-
ergy bias ω̃ decrease, the excitation energy of the rotonlike
minimum decreases. However, the further decrease of K̃ and
ω̃ leads to a negative energy, which indicates that the plane
waves suffer an energetic instability. Similar to the spin- 1

2 and
spin-1 SOC systems, the instability implies the tendency to
develop crystalline order in the system [68,69,71]. In this case,
the superposition state is energetically preferred, thus we can
obtain the phase boundary between the plane-wave phase and
the AVP by the excitation spectrum as illustrated in Figs. 5(b)
and 5(d). When the excitation spectrum has a negative energy,
the ground phase transitions into the AVP, where the cross
node corresponds to phase transition points in Figs. 5(a) and

FIG. 5. Rotonlike minimum softening and energetic instability
for decreasing (a) rung-to-leg coupling ratio K̃ and (c) energy bias
ω̃, and phase boundary of the AVP with different (b) energy biases ω̃

and (d) atomic interactions Ũ . The other parameter is φ = π/2.

5(c), respectively. Comparing to phase diagrams in Fig. 3,
we can confirm that our analytical results agree well with the
results of the phase boundary of the AVP determined by the
energetic instability [see Figs. 5(b) and 5(d)].

IV. DYNAMICAL ASYMMETRIC VORTEX STATE

When considering the time evolution effect caused by the
energy difference between two states of the superposition
state, a different type of DAVS will occur. For the BEC in
an asymmetric double-well potential, a time dependent in-
terference pattern has been observed in the experiment [72].
Recently, the scheme for realizing spin-tensor momentum
coupling of spin-1 atoms predicted a possible way to discover
such different types of dynamical stripe states [73,74]. Due to
the energy difference between middle and bottom bands, the
corresponding stripe state shows a dynamical phase, which
induces a moving stripe pattern [73]. A similar moving stripe
pattern caused by the moving lattice potential has been ob-
served in a recent experiment, which realized the stripe phase
with supersolid properties in SOC BECs [35]. From similar
arguments, one can expect that the superposition of two states
with energy difference will induce such dynamical phases.

As previously discussed in Fig. 1(b), the controlled energy
bias of the ladder system will induce an energy difference be-
tween two states of the superposition state. When we consider
the atomic interaction, the structure of the energy band will
become more complex, which means the strength of this en-
ergy difference will be modified by the atomic interaction. In
the case of the AVP discussed in Sec. III, the energy difference
between two states is sufficiently weak, and the energy differ-
ence induced dynamic effects can be ignored. However, when
the energy difference is strong enough, the energy difference
induced dynamic effect should be considered and DAVS will
occur. In this case, we should consider a new superposition
state[

am,L

am,R

]
=

[
aL+ cos θei(mk+−ε+t ) + aL− sin θe−i(mk−+ε−t )

aR+ cos θei(mk+−ε+t ) + aR− sin θe−i(mk−+ε−t )

]
,

(17)

where angle θ is given by the variational analysis (4), which
determines the superposition coefficients of two different
states. The quasimomentum corresponding to the energy min-
imum point has two different values k±, which also can be
obtained by the variational analysis (4); the corresponding
energy values of two states are ε±, respectively. From the
superposition state (17), density distributions of the ladder
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FIG. 6. Time evolution of the sum density obtained by the Runge-Kutta numerical simulation of the GP equation (2) with different energy
bias (a) ω̃ = 0.1 and (c) ω̃ = 0.4. (b, d) Corresponding density distributions and local current configurations for variational results at different
times t = 200, 150, 100, 50, and 0. The colorbar represents the particle density. The other parameters are Ũ = 0.8, K̃ = 0.6, and φ = π/2.
(e, f) The velocity of the vortex for different rung-to-leg coupling ratios K̃ vs (e) the atomic interaction and (f) the energy bias. Solid lines
correspond to the variational results of Eq. (19), and symbols correspond to numerical simulation results of the GP equation (2).

system are shown to be

nm,L = a2
L+ cos2 θ + a2

L− sin2 θ

+ aL+aL− sin 2θ cos[�εt − (k+ + k−)m],

nm,R = a2
R+ cos2 θ + a2

R− sin2 θ

+ aR+aR− sin 2θ cos[�εt − (k+ + k−)m]. (18)

It is clear that the first two terms mainly determine the asym-
metry density distribution of two legs and the last terms result
in the periodical density modulations. The energy difference
between two states of the superposition state �ε = ε+ − ε−,
which induces the global motion of the vortex structure, i.e.,
the dynamical phase. The producing mechanism of this dy-
namical phase is similar to the time dependent interference

pattern of two interfered BECs [72]. The motion law of
this vortex can be controlled by a velocity v = dm

dt = �ε
k++k−

.
This DAVS breaks both translational and Z2 symmetry of
the system, showing dynamical supersolidlike properties. In
Figs. 6(a) and 6(c), the time evolutions of the sum density
nm = nm,L + nm,R are plotted by using the Runge-Kutta nu-
merical simulation of the GP equation (2). One immediately
sees that the vortex maintains a constant speed through two
legs, i.e., a DAVS occurs. Approximately, we assume the
energy difference between two states of the superposition state
will not change with time. In order to obtain this energy value,
we substitute the superposition state (17) into the GP equation
(2). For a sufficiently short time dt , the vortex moves only the
dm site; the corresponding stationary state Schrödinger equa-
tion can be obtained by using the definition of the velocity

ε+aL+ = −2 cos

(
φ

2
− k+

)
aL+ − K̃aR+ − ω̃

2
aL+ + Ũ

(
a2

L+ cos2 θ + 2a2
L− sin2 θ + 1

2
aL+aL− sin 2θ

)
aL+,

ε−aR− = −2 cos

(
φ

2
− k−

)
aR− − K̃aL− + ω̃

2
aR− + Ũ

(
a2

R− sin2 θ + 2a2
R+ cos2 θ + 1

2
aR−aR+ sin 2θ

)
aR−,

ε+aR+ = −2 cos

(
φ

2
− k+

)
aR+ − K̃aL+ + ω̃

2
aR+ + Ũ

(
a2

R+ cos2 θ + 2a2
R− sin2 θ + 1

2
aR+aR− sin 2θ

)
aR+,

ε−aL− = −2 cos

(
φ

2
− k−

)
aL− − K̃aR− − ω̃

2
aL− + Ũ

(
a2

L− sin2 θ + 2a2
L+ cos2 θ + 1

2
aL−aL+ sin 2θ

)
aL−. (19)
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By solving these sets of equation, we can obtain the value of
the energy difference between two states of the superposition
state �ε. Substituting �ε into density distributions (18), we
plot the corresponding density distributions and local current
configurations at different times t = 200, 150, 100, 50, and 0
in Figs. 6(b) and 6(d) for ω̃ = 0.1 and 0.4, respectively, which
clearly show the DAVS. As shown by the pink thick lines in
Figs. 6(a)–6(d), the vortex moves only one site approximately
for ω̃ = 0.1 during t = 0–200; with the increase of the energy
bias the velocity of the vortex increases, which moves two
sites approximately for ω̃ = 0.4. Generally, the velocity of the
vortex depends on the atomic interaction, energy bias, rung-
to-leg coupling ratio, and magnetic field, which is described in
Figs. 6(e) and 6(f). With increasing of the atomic interaction
Ũ , energy bias ω̃, and rung-to-leg coupling ratio K̃ , the veloc-
ity increases, which means that a significant DAVS will appear
at the boundary of the phase transition. Different symbols
correspond to the numerical simulation results of GP equation
(2) with different rung-to-leg coupling ratios, which agree
well with the variational results of Eq. (19) (solid lines). It is
worth mentioning that the velocity of the vortex is very small
in most situations, thus the phase diagrams we have discussed
in Sec. III are effective. Moreover, Sec. III demonstrates that
the AVP indeed is the ground state with the lowest energy.
Therefore, this DAVS also has the low-energy property, which
makes the dynamic process of the system more stable and will
have more advantages in quantum transport. Meanwhile, due
to the breaking of the additional Z2 symmetry, the imbalance
density distribution on two legs of the DAVS provides an ad-
ditional freedom degree, which means that this state will have
greater information carrying ability. Recently, the possibility
of realizing a time crystal, the lowest-energy states of which
are periodic in time much like ordinary crystals are periodical
in space [75,76], has generated extensive attention and heated
discussion. Due to the unique periodical vortex structures and

low-energy dynamic property of the DAVS, the biased ladder
system may be a potential way to study the time crystal by
more rigorous design.

V. SUMMARY

In conclusion, by adding the controllable energy bias, we
predict full ground-state phase diagrams and depict features
of two kinds of plane-wave phase (PWI and PWII) and the
AVP in the biased two-leg ladder system. Interestingly, the
transition processes can be highly modulated and controlled
by the energy bias, atomic interaction, magnetic field, and
rung-to-leg coupling ratio. We further studied the excitation
spectrum of the plane-wave phase, which provides a different
way to distinguish the AVP. Moreover, a different type of
DAVS is discussed in detail in this biased ladder system,
which may have potential applications for quantum transport
and the time crystal. Our paper has instructive significance for
exploring novel phases in condensed-matter systems and also
opens an intuitive path to investigate relevant phenomena of
interacting systems.
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