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Vortex lattice in spin-imbalanced unitary Fermi gas
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We investigate the properties of a spin-imbalanced and rotating unitary Fermi gas. Using a density functional
theory, we provide insight into states that emerge from a competition between Abrikosov lattice formation, spatial
phase separation, and the emergence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. A confrontation
of the experimental data [M. Zwierlein et al., Science 311, 492 (2006)] with theoretical predictions provides
a remarkable qualitative agreement. In the case of gas confined in a harmonic trap, the phase separation into a
superfluid core populated by the Abrikosov lattice and a spin-polarized corona is the dominant process. Changing
confinement to a boxlike trap reverts the spatial location of the component: gas being in the normal state is
surrounded by superfluid threaded by quantum vortices. The vortex lattice no longer exhibits the triangular
symmetry, and the emergence of exotic geometries may be an indirect signature of the FFLO-like state formation
in the system.
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I. INTRODUCTION

The most fundamental technique for probing the super-
fluid properties of a system is via its response to rotation.
This technique was used to demonstrate the superfluid
character of a Bose-Einstein condensate by direct observa-
tion of the Abrikosov vortex lattice [1]. Later on, the same
technique was applied to ultracold fermionic gases, providing
direct evidence for the occurrence of the superfluidity over
the entire BCS-BEC crossover [2]. Immediately, the focus
was shifted toward the spin-imbalanced Fermi gas, where the
principal mechanism responsible for the superfluidity, namely
Cooper pairing, is modified. Theoretically, in spin-imbalanced
systems the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
should emerge [3–8]. The FFLO state corresponds to a ground
state of the spin-imbalanced system, where the pairing be-
tween opposite spin partners with momentum p and −p + q
takes place. It manifests as the order parameter fluctuations
in the form of �(r) ∼ eiq·r (FF) or �(r) ∼ cos(q · r) (LO).
In practical realization, these oscillation patterns are modified
by the geometrical effects. In the case of experiments with
ultracold atomic gases, the primary source of modifications
comes from the trapping potential; see [9–11] for extensive
overviews. In general, the trapping effect limits the FFLO
state to be confined only in a limited volume. Moreover,
it competes with the phase-separation phenomenon [12–16],
i.e., the situation where the system separates spontaneously
into a spin-symmetric superfluid part (the so-called BCS state)
and a fully polarized state. In the case of the most popular
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harmonic traps, the BCS superfluid occupies the trap center
while the spatial fluctuations of the order parameter take place
close to the system’s boundary.

Recently, it has been predicted that the presence of the
quantum vortices may stabilize the FFLO state in a wide
range of control parameters [17]. This is because the vortices
naturally introduce singularity lines � = 0 to the system. The
population imbalance can be accommodated there [3,18,19].
Thus, locally around the line, the system can support condi-
tions needed for the realization of the FFLO state, which in
this case should manifest as the order parameter modulation
as a function of distance from the vortex core. Moreover,
the standard technique of generating vortices is due to the
rotation of the trap. Then, the vortices localize typically close
to the rotation axis, typically located in the trap center. In this
way, the problem of the FFLO state generation close to the
boundary can be suppressed. This simple picture is derived
from studies of a single quantum vortex accompanied by the
FFLO state. Unfortunately, presently available experimental
measurements of the rotating spin-imbalanced Fermi gas [20]
have not provided a clear signature of the FFLO state for-
mation. Also, no indications of vortices with exotic internal
structures were observed.

Superconductors, typically two-dimensional, are another
class of materials where the FFLO state can be realized;
see review paper [21]. In these systems, the FFLO state can
be induced by applying an external magnetic field, which
naturally favors the emergence of Abrikosov vortex states as
well. These vortex states couple with the FFLO and make it
difficult to identify them unambiguously. The difficulties in
the interpretation triggered many studies targeted at a better
understating of the coexistence of vortex lattice states and
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FFLO state. The studies include considerations of setups with
a single vortex line [22–26] as well as the setups with vor-
tex lattices [27–32]. Due to energetic reasons, the vortices
tend to form triangular structures. At the same time, the
nodal lines in the FFLO state prefer other geometries, where
the most natural are square lattices emerging for �(x, y) ∼
cos(qxx) cos(qyy). The appearance of the vortex lattice of an
exotic structure may be regarded as an indirect signature of
the FFLO state emergence. This type of indirect protocol
has also been suggested in the context of ultracold atomic
gases [4].

In this paper, we provide results of numerical calcula-
tions for the spin-imbalanced Fermi gas being the subject
of rotation by means of a density functional theory (DFT)
[33]. It is a fully microscopic approach, designed for dealing
with strongly interacting systems, with an explicit treatment
of fermionic degrees of freedom. The rotating cloud of the
unitary Fermi gas (UFG) is the subject of our studies. The
interaction is tuned to the resonance akF → ∞, where a is the
scattering length and kF = (3π2n)1/3 is the Fermi wave vector
corresponding to the density n. The choice of the investigated
system is motivated by the availability of the experimental
data [20], which serves here as a reference point for com-
paring with theoretical predictions. The uniform unitary gas,
similarly to the free Fermi gas, is characterized only by a
single scale: average interparticle distance n1/3 ∼ kF . This
property significantly limits the possible forms of an energy
density functional (EDF), and it allows for the successful for-
mulation of the DFT framework for the UFG—the approach
being in principle exact; see for a review [33]. The frame-
work has been already applied for studies of quantum vortices
[34–37], revealing a remarkable agreement with experiment
[38]. Also, it admits the development of the FFLO state at
unitarity [39]. Applying the DFT framework to the system that
combines vortices and spin-polarization effects will serve as
the next step of the validation process of the theory. Note that
the spin-imbalance effects are beyond the reach of simplified
methods that were used so far for studies of vortex lattices,
like the Gross-Pitaevskii equation or the local phase density
approximation to the Bogoliubov–de Gennes equations [40].
In the Bose-Einstein condensate limit it is possible to describe
the system by a set of coupled equations for composite bosons
and excess fermions [41].

These studies are also relevant for neutron stars, particu-
larly for magnetars [42,43]. They are assumed to be superfluid
and filled with a large number of vortices. The observed rapid
change of rotation frequency, called the neutron star glitch, is
regarded as a direct manifestation of the superfluid character
of the star interior [44–47]. Moreover, a strong magnetic field
of the order of or larger than 1016 G is expected to be present
inside the magnetars. It can effectively spin-polarize the neu-
tron matter and induce unconventional superfluid phases,
including FFLO [48–50]. Whether the FFLO state can de-
velop in the rotating star remains an unanswered question. The
only methodology that can provide insight into this problem
is through numerical simulation. Presently, the DFT method
has become one of the standard tools for microscopic studies
of nuclear systems as well [51–53], and in principle, it can
also be applied to rotating and spin-polarized neutron matter.
However, a prior validation of the framework by applying it

to strongly interacting terrestrial systems under similar condi-
tions is desired. The ultracold atomic setup, as discussed here,
suits this purpose very well.

II. FRAMEWORK

In the calculations, we use the density functional theory.
The chosen energy density functional is known as asymmetric
superfluid local density approximation (ASLDA), designed
specifically for the strongly interacting Fermi gas at unitarity
[33]. It has the following form (we use metric system m =
h̄ = kB = 1):

Easlda =
∑

σ={↑,↓}

ασ (p)τσ

2
+ β(p)(n↑ + n↓)

5
3

+ γ (p)
ν†ν

(n↑ + n↓)
1
3

+
∑

σ={↑,↓}
[1 − ασ (p)]

j2
σ

2nσ

. (1)

This functional consists of the kinetic term, normal and pair-
ing interaction terms, and a term responsible for restoring the
Galilean invariance, respectively. These are functions of parti-
cle density nσ , the kinetic density τσ , the anomalous density ν,
and the probability current jσ , where σ = {↑,↓} indicates the
spin components. The densities and currents are parametrized
via an orthonormal set of Bogoliubov quasiparticle wave func-
tions {un,↑(r), un,↓(r), vn,↑(r), vn,↓(r)} as follows:

nσ (r) =
∑

|En|<Ec

|vn,σ (r)|2 fβ (−En), (2)

τσ (r) =
∑

|En|<Ec

|∇vn,σ (r)|2 fβ (−En), (3)

ν(r) =
∑

|En|<Ec

un,↑(r)v∗
n,↓(r)

fβ (−En) − fβ (En)

2
, (4)

jσ (r) =
∑

|En|<Ec

Im[vn,σ (r)∇v∗
n,σ (r)] fβ (−En). (5)

These wave functions have the interpretation that |un,σ (r)|2 is
the probability density of the nth state being occupied with a
spin σ hole and |vn,σ (r)|2 with a spin σ particle. The Fermi-
Dirac distribution fβ (E ) = 1/[exp(βE ) + 1] is introduced in
order to model temperature kBT = β−1 effects. To avoid di-
vergences, only states with quasiparticle energies smaller than
the cutoff energy Ec are considered and the regularization
scheme as described in [33,54] is applied. The coupling con-
stants ασ (p), β(p), and γσ (p) are functions of the local spin
polarization of the system p(r) = n↑(r)−n↓(r)

n↑(r)+n↓(r) . They are repre-
sented as polynomials, and fitted to the quantum Monte Carlo
calculations for spin-symmetric as well as spin-imbalanced
systems [33].

Equations of motion are determined by minimization of the
functional

E =
∫

[Easlda(r) + Vext(r)n(r)]dr

− μ↑N↑ − μ↓N↓ − 
zLz, (6)

where Vext is the external potential that couples to the total
density n = n↑ + n↓, μσ are chemical potentials (Lagrange
multipliers) that control particle number Nσ = ∫

nσ (r) dr, and
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z is angular frequency that couples to zth component of the
angular momentum L = ∫

r × ( j↑ + j↓)dr. The last term is
equivalent to the transformation of the problem to a rotating
frame.

The minimization with respect to the quasiparticle or-
bitals provides equations that formally have the structure of
Bogoliubov–de Gennes equations:(

h↑ − μ↑ − 
zlz �

�∗ −(h↓ − μ↓ − 
zlz )∗

)(
un,↑
vn,↓

)

= En

(
un,↑
vn,↓

)
, (7)

with h being the single-particle Hamiltonian

hσ = −1

2
∇ασ∇ + δEaslda

δnσ

+ Vext − i

2

{
δEaslda

δ jσ
,∇

}
(8)

and � = − δEaslda
δν∗ being the pairing field, which plays the role

of the superfluid order parameter. The single-particle angular
momentum operator is lz = −i(x ∂

∂y − y ∂
∂x ). The remaining

components of the quasiparticle wave functions vn,↑ and un,↓
are obtained by using the symmetry relation: un,↑ �→ v∗

n,↑,
vn,↓ �→ u∗

n,↓, and En �→ −En.
The simulations consider the following scenarios: the non-

rotating gas trapped in a harmonic potential and the rotating
gas in a harmonic and in a box trap. In all cases, we as-
sume that the trapping acts only in the x and y directions,
while in the z direction the system is uniform. For example,
the harmonic potential has the form of Vho(r) = 1

2 mω2ρ2,

where ρ =
√

x2 + y2. This simplification allows us to con-
sider systems with a number of vortices ∼50, which is
the same order as observed in the experiment. In the
case of the box potential, we assumed that the system
is kept in a tube of radius Rt . Precisely, the potential
is zero for ρ < Rt , and next within interval �Rt 	 Rt it
smoothly rises to constant value 4εF , where εF = k2

F /2 is
the Fermi energy. In each scenario, we keep the total num-
ber of atoms N = N↑ + N↓ fixed, and we vary the spin
imbalance δ = (N↑ − N↓)/N . The set of considered imbal-
ances is the following: δ = 0, 5, 10, 18, 28, 39, 50, 62, 80,
and 90 percent (the 5% value is for the gas in the box
potential only).

The simulations were executed on a three-dimensional
spatial mesh of size Nx × Ny × Nz, and periodic boundary
conditions are assumed. The lattice spacing was selected
to be dx ≈ ξBCS, where ξBCS = kF /π� is the BCS coher-
ence length, which defines the expected vortex size. Here,
as the Fermi momentum kF = (3π2n)1/3 and the pairing field
� we used values corresponding to the center of the trap. The
system temperature is close to absolute zero and reads kBT =
0.01εF . The angular frequency of the harmonic trap was set
to ω/εF = 33.7 × 10−3, and Rt = 56ξBCS for the box poten-
tial. When considering the rotating systems, we used ω/
z =
110
70 , which matches the ratio used in the experiment [20].

The simulation parameters are summarized in Table I.
Equation (7) was solved self-consistently, and the Broyden al-
gorithm was applied to improve the convergence rate [55,56].
The calculations were executed with the use of W-SLDA
Toolkit [36,38,57].

TABLE I. Parameters used in simulations: number of atoms N ,
harmonic trap angular frequency ω, rotation angular frequency 
z,
lattice size and spacing dx.

N ω/εF 
z/εF Lattice size dx/ξBCS

Nonrotating case in the harmonic potential

16324 33.7 × 10−3 0 962 × 48 1.33
Rotating case in the harmonic potential

8162 33.7 × 10−3 21.7 × 10−3 1282 × 32 1
Rotating case in the box potential

34032 N/A 21.7 × 10−3 1282 × 32 1

III. HARMONIC OSCILLATOR TRAP

A. Ground state properties

Before we start to consider the system in the rotating
frame, we analyze ground states as a functions of the spin
polarization δ revealed by the ASLDA method. The simulated
density profiles are shown in Fig. 1(a). First of all, we ob-
serve the phase separation there. The system spontaneously
splits into the spin-polarized corona and the superfluid core.
Hereafter, we define the polarized region as a volume where
p(r) > pcrit = 50%. We find that this definition reasonably
well selects the region where �(r) ≈ 0. The advantage of
using it is that it is insensitive to the presence of quantum
vortices and other singularity lines, where � = 0 by defi-
nition. In Fig. 1(a) the light gray center means there is a
condensate with a high particle density. The darker space cor-
responds to unpaired particles. In the minority component, it is
clearly seen for which population imbalance the condensation
occurs. For δ = 80% and 90%, the dense part is no longer
visible, so the condensation vanishes there.

Our attention should be drawn to the visible rings with
a higher density (for δ > 0%, most clearly seen for δ =
62%). The positions of the majority component density local
maxima n↑ agree with the local minima positions of the mi-
nority component density n↓ and the other way round—when
n↑ reaches a local minimum, n↓ takes a locally maximal
value. The densities oscillate on the core-corona interface, and
they are directly linked to oscillations of the order parameter
�(r). The number of oscillations ranges from 1 to 5 for the
imbalances from δ = 10% to 62%. We can see this in Fig. 2.
The order parameter vanishes for δ � δcrit ≈ 80%. This is ev-
idence that the fermionic condensate is no longer found there.
The obtained δcrit agrees well with experimentally measured
value, which is located in the range 75%–80% [13,16,58,59].
Contrary to the simulation, the oscillations of the density
have not been detected so far experimentally. It needs to be
emphasized that our geometry corresponds to the case of an
extremely elongated trap in the z direction. It is known that
increasing the elongation of the trap also increases the strength
of the oscillations [11,60]. Thus, we expect that this particular
feature is overestimated in our calculations in comparison to
experimental realization.

The oscillating order parameter is typically regarded as
a signature of the FFLO state. However, proximity effects
in the superconductor-ferromagnet (SF) can also induce the
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FIG. 1. (a) Simulated densities n(x, y, z = 0) for a nonrotating system, trapped in a harmonic potential, separately for the majority | ↑ 〉
and minority | ↓ 〉 components and different population imbalances δ. (b) Comparison between the experimental absorption images (exp) and
the simulated densities n(x, y, z = 0) (sim) for a rotating system trapped in a harmonic potential, separately for the majority | ↑ 〉 and minority
| ↓ 〉 components and different population imbalances δ. Experimental figures taken from Ref. [20] and reprinted with permission from AAAS.
(c) Simulated densities n(x, y, z = 0) for a rotating system, trapped in a box potential, separately for the majority | ↑ 〉 and minority | ↓ 〉
components and different population imbalances δ. The dashed line sets (on the right side of it) the cases with the superfluid phase apart from
the ones (on the left) without it. In panel (b), we can see the discrepancy in the position of this line as the experimental absorption image was
taken for 1

kF a = 0.2 (i.e., slightly on the BEC side).

oscillations. They are typically well described by [61]

�(r) ∝ 1

r − r0
exp

(
− r − r0

ξ1

)
cos

(
r − r0

ξ2

)
. (9)

The two characteristic length scales are the correlation decay
length ξ1 and oscillating length ξ2; r0 is the location of the
superfluid-ferromagnet transition. Empirically, we find that

the simulated data can be well fitted to the function (9); see
Fig. 2. For a spin-balanced system we set ξ2 → ∞. Then it is
an analog of a superconductor-normal junction. It is expected
to be the case, since at the edges of the cloud T/εF 
 1, and
effectively the gas is in the normal state there. In the case
of the FFLO state, the oscillation length is expected to be
related to mismatch of Fermi wave vectors related to each
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FIG. 2. Real part of the order parameter � as a function of the
distance from the system center for different population imbalances
[dashed (red) line]. Fit to Eq. (9) is shown by solid (blue) line.

spin component ξ−1
2 ∼ kF,↑ − kF,↓, and should decrease as

we increase δ. Unfortunately, the obtained value from the fit
is fairly constant kF ξ2 ≈ 2.77. For this reason, we conclude
that for a nonrotating setup, phase separation is a dominant
process.

B. System with rotation

We start an analysis of results for the systems with rota-
tion by comparing density sections nσ (x, y, z = 0) with the
absorption images taken experimentally [20]. This is done in
Fig. 1(b). It needs to be emphasized that the experimental
measurements are done after ramping the magnetic field to
the Bose-Einstein condensate (BEC) regime and releasing the
gas from the trap. The target value of the magnetic field, rate
of the ramping, as well as expansion time after the release may
impact the configuration in the final state [62,63]. Moreover,
the noninteracting gas in the corona expands differently from
the interacting core [64]. Here we do not account for all
these effects related to the experimental measurement—we
directly compare numerical density profiles at unitarity with
the experimental signal measured after sweeping to the molec-
ular regime. We find that, in general, the ASLDA simulation
results are qualitatively consistent with the experiment. It is
quite remarkable since we do not make any attempts to match
the experimental results (there are no free parameters in the
theory that we fit to the experiment). Most likely, the rigidity
of the order parameter with respect to the fast sweeps of the
magnetic field is responsible for overall consistency between
the experiment and the simulation [65].

The ASLDA correctly reproduces the gross properties of
the emerging vortex lattices (see also Fig. 7). For the popula-
tion imbalances, where we see the superfluid fraction (δ from
0 to 62%), the vortices appear. This is in agreement with the
experiment where critical population imbalance for rotating
case was reported as δc ≈ 70%. Some unpaired particles do
not leave the superfluid part and tend to occupy the vortices
inside. This is visible when comparing the majority and mi-

nority component densities. We see that vortices (especially
those outside the superfluid core) are filled with the spin-up
particles, while the opposite spin component exhibits sup-
pression in the core. This is due to the specific occupation of
Andreev states localized in the vortex cores [3,18,19]. Experi-
mental images do not reveal such structure of the vortex cores.
Instead, both spin components are suppressed in the core,
irrespective of the population imbalance. To date, there are no
theoretical studies that investigate the impact of the magnetic
field sweep to the BEC side of the resonance on the vortex
structure. Technically, this procedure is needed to visualize
vortices, which otherwise are not detected directly at unitarity.
The imaging operation (sweep and expansion) takes about
�timg ∼ 103h̄/εF . On the other hand, the time needed by an
atom at the Fermi surface to travel distance of the order of
vortex core size is �tξ ∼ 1h̄/εF . Clearly, till imagining there
is sufficient time for vortices to change their internal structure.
Similar argumentation also applies to particles trapped in the
vicinity of nodal lines associated with the FFLO state. In
the case of slow ramps from the resonance to the molecular
limit, it can be assumed that the process is adiabatic and then
the results of static calculations as presented in [66] may be
applicable. In such a case information about the initial vortex
structure will be also lost.

The detailed analysis of the vortex lattices in terms of
the densities, polarization, and the superfluid core radii, for
two selected population imbalances, is shown in Fig. 3. We
can distinguish two types of regions that accumulate the spin
polarization: vortex cores and, as for the case without rotation,
the edge of the cloud. This can be understood based on ener-
getic considerations: unpaired particles tend to accumulate in
regions where � ≈ 0 and do not break Cooper pairs in the
surrounding superfluid. The superfluid radii (volume region
where � > 0) are larger here than in the nonrotating case.
On average, the radius increases by 16.5% with the standard
deviation of 4.8%. This enlargement is caused by centrifugal
force. For the population imbalances δ = 80% and 90%, the
superfluidity disappears.

For low population imbalances, vortices tend to orga-
nize into the triangular lattice in the superfluid core, while
perturbations in the ordering emerge mainly close to the
boundaries. For δ = 39%, 50%, and 62%, there are density
oscillations also resulting in the oscillating polarization. They
are correlated with the order parameter fluctuations, as in the
case of the superfluid-ferromagnet proximity effect. Precisely,
the oscillations are accompanied with additional jumps of
phase by π ; see case δ = 50% in Fig. 3. This indicates that the
FFLO-type phase may coexist with the vortex lattice for high
population imbalances and, certainly, smaller than the critical
population imbalance δc.

We have not identified any signatures of quantum vor-
tices hosting inside the FFLO state, as suggested in [17].
Instead, we find emergence of vortices with reversed circu-
lation, predicted in [19]. To demonstrate this, we consider the
current profile jσ (r). In general the current is dominated by
overall rotation of the system with velocity v(
)(r) = � × r,
where � = [0, 0,
z] (see also Fig. 6). Thus, to extract cur-
rent within the rotating frame we apply transformation j′σ =
jσ − nσ v(
). The current j′σ acquires significant values only
in the vicinity of quantum vortices. In Fig. 4 we show this for
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FIG. 3. (a) Polarization p(x, y, z = 0) (top left part of each subplot), densities nσ (x, y, z = 0) of the majority (top right part of each subplot),
and the minority components (bottom right part of each subplot), as well as the indication of the superfluid region (bottom left part of each
subplot). (b) Pairing gap absolute value |�(x, y, z = 0)| (left column) and its phase arg �(x, y, z = 0) (right column). The rows correspond to
δ = 10% (top) and 50% (bottom).

representative vortices for a few selected population imbal-
ances. In the systems with a small population imbalance such
as δ = 0 or 18%, the total current in the rotating frame is
moving counterclockwise around the vortex. This situation
changes, when we increase the imbalance. In the case of δ =
50% we may notice there is a small region inside the vortex,
where the current is rotating clockwise. For the total current in
the system with δ = 62% this effect is considerably more vis-
ible. Clearly, in the vortex lattices with high population imbal-
ance we can find spin-polarized vortices with reversed flow.

FIG. 4. Probability current (total j ′ = j ′↑ + j ′↓ for
δ = 0%, 18%, 62%, minority component j ′↓ for δ = 50%) in a
rotating frame. Only the surroundings of selected vortices are
presented. The reversed flow is visible for δ = 50% and 62%.

IV. IMPACT OF THE TRAPPING POTENTIAL GEOMETRY

The new generation of experiments with 3D ultracold gases
utilize typically boxlike traps [67–71]. In this section we
provide predictions of the ASLDA method in the case of such
a trap. The gas in the nonrotating box trap is uniform (except
regions in close vicinity of boundaries). However, once we
introduce rotation, we observe a fundamental change in the
system. Neither the density maximum is placed in the system
center, nor vortices create a triangular lattice, except the case
δ = 0%, where vortices tend to organize in the Abrikosov
lattice. The lack of a perfect simulated Abrikosov lattice for
the spin-symmetric system can be due to boundary effects;
however, we cannot exclude that the algorithm is stuck in a
metastable stable state (although we did a few tries with differ-
ent starting points). Due to the centrifugal force, the particles
are expelled toward tube walls, and a structure resembling a
meniscus is formed. This can be seen in Fig. 1(c). In such case,
one can expect that the spin-imbalanced system separates into
a spin-polarized core and a superfluid ring. Indeed, the un-
paired particles occupy the less populated area and the vortex
cores; see Fig. 5. One can also notice complex structures in the
gas cloud formed by nodal lines. These are lines along which
phase of the order parameter changes abruptly by π , and in
Fig. 5 they are seen especially well in polarization p(r) plots.
While their presence may be a signature of the emergence of
the FFLO-type phase, their complexity precludes stating that
the resulting phase pattern can be approximated as a superpo-
sition of the vortex lattice phase and modulation of the sign
along the radial direction. For example, in the cases δ = 5%
and 10% objects that emerge close to the tube center resem-
ble recently predicted spin-polarized droplets [72] or soliton
sacks [73] that are filled by vortices. In Fig. 5 their bound-
aries can be tracked by lines where the local polarization
is nonzero. As we increase the imbalance above a threshold
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FIG. 5. Polarization p(x, y, z = 0) (top left part of each
subplot), densities nσ (x, y, z = 0) of the majority (top right part of
each subplot), and the minority components (bottom right part of
each subplot), as well as the indication of the superfluid part (bottom
left part of each subplot).

value, in the studied case above δ � 18%, we start to destroy
the superfluidity in the center. The system becomes phase
separated, and we have a spin-polarized core in its center. The
order parameter has a close to zero value there and nonzero
in the superfluid ring with an oscillatory behavior on the
interface. The superfluidity vanishes entirely when δ = 62%.
The velocity profiles of the flow provide further indication that
the phase separation process is dominant for relatively large
population imbalances. We expect the spin-polarized (normal)
part to rotate like a solid body with v(r) = 
zr. The superfluid
part can only support rotation via quantum vortices, and the
velocity profile should be different, though. This is shown in
Fig. 6. In the gas trapped within the harmonic potential, the
core is superfluid, so the velocity in this region differs from
the one corresponding to the solid-body rotation. As soon as
we get to the corona, which is polarized, the profiles converge
to expected 
zr. On the other hand, the system in the box
trap has a spin-polarized core and a superfluid outer part. The

FIG. 6. Velocity profiles of the majority | ↑ 〉 (solid blue line)
and minority | ↓ 〉 (dashed-dotted red line) components as functions
of the distance from the system center r. Spin imbalance δ = 39%.
Trapping potential: (a) the harmonic oscillator and (b) the tube. The
dashed black line corresponds to the solid-body rotation.

FIG. 7. Normalized number of vortices Ñv/Nv,max as a function
of population imbalance δ. Comparison between the experimental
results (exp) for the Fermi gas on the BEC side ( 1

kF a = 0.2), the

BCS side ( 1
kF a = −0.15) near the unitary regime, and the simulation

results (sim). Experimental points are taken from [20].

velocity profile near the core is linear, and it changes in the
superfluid ring.

Finally, let us compare the global properties of the vortex
lattice. In Fig. 7 we present the normalized vortex numbers
defined as Ñv (δ) = Nv (δ)

Nv,max
for different systems, including also

experimental results for the harmonic trap. On a qualitative
level, experimental and simulated numbers of vortices as a
function of the population imbalance agree well. The fact that
the data series from simulation is slightly above the experi-
mental data does not necessarily mean that the DFT model is
incorrect at the quantitative level. While in the simulation we
can count the number of vortices accurately, in the experiment
vortices close to the cloud boundary are gradually lost during
the expansion [63]. That would lead to an underestimation
of the number of vortices, especially for higher population
imbalances, where they are not easily distinguishable due to
the presence of unpaired particles in the vortex cores.

The change of the external potential vastly affects the
vortex number as a function of the population imbalance;
see the result for the box trap. There is a sharp decrease in
Ñv between the values δ = 18% and 39%. Up to δ = 18%
almost the whole box is in a superfluid state, and above the
spin-polarized region starts to develop in the center. At δ =
39%, the remaining superfluid region close to the boundary
becomes too small to accommodate any vortices.

V. CONCLUSIONS

The results presented in this paper demonstrate that the
properties of rotating and spin-imbalance ultracold fermionic
gas strongly depend on the control parameters: confining po-
tential and population imbalance. The spatial separation of
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the system into superfluid and normal components appears as
the leading process. The precise location of these components
is determined by the shape of the confining potential. The
normal component is composed mainly of the atoms being in
the same spin state, and at the interference of the two phases
proximity effects, typical for the superconductor-ferromagnet
junction, emerge. They include sign oscillations of the order
parameter, an effect regarded as a signature of the FFLO
state. Rotation induces additional singularity points, around
which the phase rotates by 2π , and the final pattern acquires a
complex form. The presence of complex and nontriangular
vortex patterns can be used as an indirect signature of the
emergence of exotic superfluidity; however, this signal does
not point directly to the FFLO phase. In the context of search-
ing for the FFLO state, it is desired to minimize the number of
inhomogeneity sources and search for well-developed modu-
lations of the order parameter over large scales, compared to
coherence length.
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