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Effects of a rotating periodic lattice on coherent quantum states in a ring topology:
The case of positive nonlinearity
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We study the landscape of solutions of the coherent quantum states in a ring-shaped lattice potential in the
context of ultracold atoms with an effective positive nonlinearity induced by interatomic interactions. The exact
analytical solutions in the absence of lattice are used as a starting point, and the transformation of those solutions
is mapped as the lattice is introduced and strengthened. This approach allows a simple classification of all the
solutions into states with periods commensurate or incommensurate with the lattice period and those with or
without nodes. Their origins are traced to the primary dispersion curve and the swallowtail branches of the lattice-
free spectrum. The commensurate states tend to remain delocalized with increasing lattice depth, whereas the
incommensurate ones may be localized. The symmetry and stability properties of the solutions are examined and
correlated with branch energies. The crucial importance of rotation is highlighted by its utility in continuously
transforming solutions and accessing in a finite ring with a few sites the full spectrum of nonlinear Bloch waves
on an infinite lattice.
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I. INTRODUCTION

A defining feature of Bose-Einstein condensates (BECs)
has been the effective nonlinear behavior induced by inter-
atomic interactions, and a substantial literature exists on the
subject [1]. The interplay of such interactions with a periodic
lattice potential [2] has led to realizing significant phenomena
such as the Mott insulator to superfluid transition [3]. The
ubiquity of harmonic trapping in experiments [4] dictated that
the bulk of the studies of ultracold atoms in periodic lattices
have been in the context of open systems with trivial topology.
In recent years, ultracold atoms have been trapped in ring
configurations proving convenient for the study of superfluid
features, like persistent flow and quantization of angular mo-
mentum [5,6]. However, such efforts have not extended to
include an azimuthal periodic lattice, although the capability
exists [7,8].

The nontrivial topology of a ring combined with the pe-
riodic lattice structure has already been shown to present a
wealth of physical phenomena, whether examined with con-
tinuum [9–17] or discrete [18–28] lattice models. Adding
nonlinearity via atomic interactions substantially increases the
complexity of the system and hence the range of possible
behavior. The system offers the possibility of studying non-
linear dynamics in a lattice system which is closed, finite, and
naturally without boundaries. A necessary prelude to such a
study is mapping out the space of allowed solutions and the
effect of possible rotation. That is the specific goal of this
study.

The nonlinear states of a BEC in a lattice have been
examined in several studies, experimentally [29,30] and theo-
retically [31–39]. However, the primary focus of these studies

have been systems with trivial topology and in the limit of
large lattices. It is only recently that there has been a thorough
study of nonlinear states focused entirely on a continuum
ring lattice configuration with a few periods [40]. The ap-
proach taken there was to assume the presence of a lattice
of fixed strength and examine the effect of introducing the
nonlinearity. We take a different but complementary approach,
where we examine the effects of introducing the lattice into
the nonlinear system. There are multiple motivations for this.
Prime among them is that exact analytical solutions exist for
such nonlinear systems, in the absence of a lattice [41,42].
They provide concrete insights when the lattice is introduced
with increasing strength. Second, in experiments adiabatic
introduction of the lattice leads to some interesting dynamics
in the linear regime as one of us recently showed [11], and
this current work provides the essential basis for a study of
similar dynamics in the nonlinear regime. Finally, and signif-
icantly, this approach leads to a simpler and more transparent
description of the spectrum and states, and their classifications
and interconnections. This will be particularly relevant when
examining the complex dynamics of such a system.

Our approach leads to several useful insights about coher-
ent modes in ring lattices. The relation of the lattice period
with that of the eigenmodes in the absence of the lattice deter-
mines the degree of localization of the modes when the lattice
is present, and the origins are tied to the nature of the nonlinear
spectrum in the absence of lattices. Gap solitons are found
to be not a very distinctive feature for finite ring lattices. We
identify certain symmetries of the lattice-free solutions, which
persist even when the lattice is introduced and strengthened.
Effects of the ring topology are particularly prominent for
small lattice sizes, in the quantized modes. Increasing the
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FIG. 1. The atoms are trapped in a toroidal trap with an az-
imuthal lattice potential of period 2π/q, its variation of depth shown
schematically as a thick sinusoidal line. The torus is taken as a
wrapped cylinder with our choice of coordinates r = (z, r, ϕ) shown,
assuming the major radius to be much larger than the minor radius,
R � r.

number of lattice sites leads to emergence of proportionately
more soliton branches. Rotation is an essential tool with ring
lattices, allowing access to a continuous range of solutions,
for a set lattice period and size.

In Sec. II we set up our physical model, then identify the
key effects of the ring boundary conditions and possible rota-
tion in Sec. III. We set the template for examining the states
with an azimuthal lattice in Sec. IV with a brief derivation
and classification of nonlinear analytical solutions in a ring
without a lattice. Section V provides a comprehensive descrip-
tion of how the spectrum of nonlinear solutions transforms
as the lattice is introduced and strengthened. The persistent
symmetries of the eigenstates are identified in Sec. VI and
used to classify and characterize them, and effects of the
lattice on the eigenstates are explained in Sec. VII, specifically
identifying why certain solutions remain delocalized and oth-
ers tend to localize. Section VIII compares our approach and
results to those obtained by introducing nonlinearity with an
existing lattice of fixed strength. We analyze the stability of
the solutions by considering small fluctuations about the mean
field solutions in Sec. IX, examine the behavior in the limit of
rings with large number of lattice sites in Sec. X, and conclude
in Sec. XI with a brief summary and outlook for continuing
work.

II. PHYSICAL MODEL

We consider a BEC in a toroidal trap similarly to our prior
work [10,11], as shown in Fig. 1. We take the minor radius to
be much smaller than the major radius R so that the system
can be treated as a cylinder r = (z, r, ϕ) with periodic bound-
ary condition on z. We assume the confinement along (r, ϕ),
transverse to the ring circumference to be sufficiently strong to
keep the atoms in the ground state ψ (r, ϕ) for those degrees of
freedom, so that the three-dimensional bosonic field operator
can be written in the effective form �̂(z)ψ (r, ϕ). Integrating
out the transverse degrees of freedom, the dynamics can be
described by an effective one-dimensional (1D) Hamiltonian.

Ĥ (t ) =
∫ 2πR

0
dz�̂†(z, t ) ×

[
− h̄

2m
∂2

z + V (z, t )

+ g3DN

4π l2
�̂†(z, t )�̂(z, t )

]
�̂(z, t ), (1)

where g3D = 4π h̄2a/m is the interaction strength defined by
a the s-wave scattering length, m is the mass of individual

atoms, N is the total number of atoms, and l = √
h̄/mωT is

the harmonic oscillator length for the transverse confinement
along the cross section of the torus. We assume a sinusoidal
lattice potential V (z, t ) = V0 sin2[ q

2 (z/R − �t )] rotating with
angular velocity � with respect to the laboratory frame.

We take the major radius R as the length unit so that
the linear distance along the ring coincides with the angular
distance z/R = θ ∈ [0, 2π ); we take the lowest energy scale
in the ring ER = h̄2

mR2 as the energy unit; we use the associated
frequency ωR = h̄

mR2 as the unit for frequency as well as the
angular velocity; and we use it to set our timescale τ = ω−1

R .
The effective nonlinear constant in one dimension then has the
form g = 2aωT N ; note that we include the particle number
in the constant. Using these units leads to the equation of
motion, which, in the mean field limit 〈�̂〉 = ψ , is a nonlinear
Schrödinger equation:[

1
2 (i∂θ + �)2 + V0 sin2

(
1
2 qθ

) + g|ψ |2]ψ = i∂tψ. (2)

The inclusion of N in g implies the normalization∫ 2π

0 dθ |ψ (θ, t )|2 = 1. The presence of the angular velocity �

in the above equation represents transformation to the frame
rotating with the lattice, which removes explicit dependence
on time in the lattice potential. A centrifugal term ∝ �2 is left
out as being a constant offset for fixed radius R. The station-
ary solutions ϕ(θ ) = ψ (θ, t )eiμt satisfy the time-independent
version of Eq. (2) with i∂t → μ where the eigenvalue μ of the
equation defines the chemical potential. That equation can be
considered the stationary solution of the energy functional

E [ϕ] =
∫ 2π

0
dθ

[
1
2ϕ∗(i∂θ + �)2ϕ

+V0 sin2
(

1
2 qθ

)|ϕ|2 + 1
2 g|ϕ|4] (3)

with the chemical potential as the Lagrange multiplier for the
normalization

∫ 2π

0 dθ |ψ |2 = 1 condition, and related to the

mean field energy as μ = E [ϕ] + 1
2 g

∫ 2π

0 dθ |ϕ|4.

III. BOUNDARY CONDITIONS AND ROTATION

The behavior of the physical observables can be under-
stood best by writing the mean field stationary state in the
polar amplitude-angle form, referred to as the hydrodynamic
picture, ϕ(θ ) = √

ρ(θ )eiφ(θ ), leading to an equation for the
density ρ,

1
8 (∂θρ)2− 1

4ρ∂2
θ ρ+ 1

2α2+V0 sin2
(

1
2 qθ

)
ρ2+gρ3−μρ2 = 0,

(4)

and a phase equation that provides an integral of motion,

ρ∂θφ − �ρ = α,

�φ(θ ) = φ(θ ) − φ(0) = �θ +
∫ θ

0

α

ρ(θ ′)
dθ ′. (5)

This sets the current density J = Nα, the superfluid velocity
v = α/ρ(θ ), and angular momentum per particle L = h̄� +
2π h̄α.

The single-valuedness of the quantum wave function and
the closed topology of the ring impose the following boundary
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FIG. 2. (a) Shape of the cubic function that sets the density vari-
ation, displaying its roots; the dotted parts are forbidden, (b) Loop
in phase space that satisfies the boundary conditions on a ring and
corresponds to the solid sections in panel (a). (c) The mean field
chemical potential μ in the absence of a lattice, V0 = 0, for two
interaction strengths g = 3 and g = 10; the soliton branches indexed
by j lengthen as nonlinearity increases. Quantization of the total
phase around the ring allows only solutions marked by intersections
with vertical dashed lines, which can be continuously shifted by
rotation, by any value of the angular momentum � �= 0 indicated
schematically by the solid lines. (d) The case of g = 10 in periodic
zone scheme as a function of rotation. The lowest panels display
the eigenstates for μ marked by circles in (c). Their densities are
shown in (e) and (g) with plane wave (flat green line) at the right
edge of the branch, solutions with nodes (red line) at the left edge,
and one example of solutions without nodes (dotted blue) that lie
between them. Corresponding bare phase variations δφ are shown
in (f) and (h).

conditions:

ρ(0) = ρ(2π ), ρ ′(0) = ρ ′(2π ), �φ(2π ) = 2πn, (6)

with the integer n being the winding number. The total phase
change contains the effect of rotation. We will use the bare
phase change around the ring neglecting rotation

δφ ≡ δφ(2π ) =
∫ 2π

0

α

ρ(θ ′)
dθ ′ = �φ(2π ) − 2π�. (7)

We can understand the system behavior by tracking the
chemical potential μ as a function of the bare phase change
δφ. Insisting on the density boundary conditions, as we vary
α, yields a continuum of solutions such as illustrated in
Fig. 2(c) for the case when the lattice is absent. However,
the phase boundary condition for a finite-size ring picks out
only discrete points on that spectrum as physically relevant,

marked on the plot by dashed vertical lines. Rotation shifts
those vertical lines by adding a phase ramp, allowing access to
the complete spectrum. Owing to the complementary relation
2π� = −δφ + 2πn, the angular velocity � can replace the
bare phase, in the representation of the spectrum as shown in
a periodic zone scheme in Fig. 2(d). This can be compared to
the limit of no potentials presented in a recent work [43].

IV. EXACT SOLUTIONS WITHOUT LATTICE

In the absence of a lattice V0 = 0, solutions of Eq. (2) can
be found analytically [41,42], which will provide the frame-
work for our description once the lattice is introduced. A first
integration of Eq. (4) yields

∂θρ = ±
√

f (ρ), f (ρ) = 4gρ3 − 8μρ2 + 8βρ − 4α2 (8)

with integral of motion β. The nature of the solutions can be
related to the root structure of the function f (ρ), which has a
general shape shown in Fig. 2(a) for repulsive nonlinearity,
g > 0. It is clearly required that f (ρ) � 0, corresponding
to the colored solid segments in the plot, and the roots of
f (ρ) = 0, labeled r1 � r2 � r3, need to be real to be physi-
cally relevant. Viewing ρ ′ and ρ as parametric functions of θ

in a phase space representation, their joint periodic boundary
conditions in Eq. (6) require that ±√

f plotted as a function of
ρ forms one or more complete circuit around the loop drawn
in Fig. 2(b) as θ is varied from [0, 2π ). With the cubic form
for f this is possible only if we combine +√

f and −√
f to

form the two halves of the loop meeting at the roots r1 and r2.
The roots define the state of the system. To start with the

symmetry of the loop ensures that the state will always have
at least two points of reflection symmetry along the ring,
which will be relevant when the lattice is turned on, as we
will discuss in Sec. VI. The density varies between the roots
r1 and r2 suggesting parametrization as ρ = r1 + (r2 − r1)t2.
Choosing ρ(θ = 0) = r1, Eq. (8) can be integrated as

θ = 1√
g(r3−r1 )

∫
0

√
ρ(θ )−r1
r2−r1 dt√

(1−t2 )(1−mt2 )
(9)

with the relevant parameters also in terms of the roots

m = r2 − r1

r3 − r1
, μ = g

2
(r1 + r2 + r3),

α2 = gr1r2r3, β = g

2
(r1r2 + r1r3 + r2r3). (10)

Inversion of Eq. (9) yields a Jacobi elliptic function [44],
and using it in Eq. (7) determines the phase in terms of an
incomplete elliptic integral of the third kind [45],

ρ(θ ) = r1 + (r2 − r1)sn2(
√

g(r3 − r1) θ, m),

δφ(θ ) = α

r1
√

g(r3 − r1)
�

(
1 − r2

r1
, ϕ, m

)
, (11)

where ϕ = sin−1[sn(
√

g(r3 − r1) θ, m)]. Taking the smallest
value of θ � 0 such ρ(θ ) = r2, Eq. (9) yields θ = K (m)/√

g(r3 − r1), which therefore sets the period of any density
modulation. This, however, corresponds to only half of the
loop in phase space. To satisfy the density boundary condition,
the complete phase space loop in Fig. 2(b) has to be traversed
by an integer number of turns we denote by j, leading to the
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condition for a complete circuit of the ring,

jK (m) = π
√

g(r3 − r1). (12)

The bare phase change around the ring is given by complete
elliptic integrals of the first and the third kinds, K (m) and
�(m),

δφ = δφ(2π ) = 2πα

K (m)r1
�

(
1 − r2

r1
, m

)
. (13)

The normalization of the density provides an additional
constraint involving the complete elliptic integral of the first
and second kinds K (m) and E (m),∫ 2π

0
ρ dθ = 2πr1 + 2π (r3 − r1)[1 − E (m)/K (m)] = 1. (14)

The definition of m in Eq. (10) along with Eqs. (12) and (14)
can be used to express the roots in terms of the complete
elliptic integrals of the first and second kinds:

r1 = 1

2π
+ (E − K )

j2K

π2g
,

r2 = 1

2π
+ (E − K + mK )

j2K

π2g
,

r3 = 1

2π
+ j2EK

π2g
. (15)

When j and g are specified, these are completely determined
by the value of m, which can be determined by imposing the
phase boundary condition, yielding the complete solution.

The resulting spectrum is illustrated in Fig. 2(c) comprising
a parabolic dispersion curve and a sequence of branches given
the fanciful name of swallowtails due to their appearance in
the periodic zone scheme [Fig. 2(d)]. The spectrum represents
three different behaviors as discussed below. Examples for
j = 1 and j = 2 are shown in Figs. 2(e)–2(h).

Plane waves: Spectral values on the parabolic dispersion
curve correspond to plane wave solutions as would be the case
in the linear regime. The solutions arise when two or more of
the roots of f (ρ) are real and degenerate, and both f (ρ) =
0 and f ′(ρ) = 0 in the phase space plot. The density being
uniform, these are without nodes

ψ (θ ) =
√

1

2π
einθ , α = n

2π
, μ = n2

2
+ g

2π
(16)

with n = 0,±1,±2, . . . . These appear with uniform density
and a phase ramp in Figs. 2(e)–2(h).

Solutions with nodes: In the extended zone scheme, the
swallowtail branches terminate at multiples of the Brillouin
zone (multiples of ±π in our units). These termination points
correspond to solutions with nodes, and the stationary states
can be taken to be real valued everywhere, which implies as
we approach these nodes, α → 0 and the bare phase δφ →
± jπ so that at each node there is a phase slip of ±π [46]. The
states and the corresponding chemical potentials are limiting
cases of the general solution above when r1 → 0:

ψ (θ ) =
√

m

2π (1 − E/K )
sn

(
jKθ

π
|m

)
, μ = (1 + m) j2K2

2π2
.

(17)

The index j enumerates the nodes of the wave function. Since
the phase can jump at the nodes, in the absence of rota-
tion, the periodic boundary condition requires even integers
j = 2, 4, 6, . . ., but odd values can be accessed by rotation.
Equations (12) and (14) lead to the condition

πg

2 j2
= K (m)2 − K (m)E (m). (18)

Examples of such solutions are shown in Figs. 2(e)–2(h), in
solid curves with density vanishing at j points, with phase
jumps of π occurring at those points. The nodes occur at
the tips of the swallowtails, which correspond to extrema
of the chemical potential with respect to both � and δφ,
due to the relation between them, and evident as symmetry
points in the periodic zone view [Fig. 2(d)]. Assuming the
conditions for nodes ρ = ρ ′ = 0, it can be easily seen that
∂E/∂� = 0 at those points, so the energy has extrema, as well
as μ = ∂E/∂N . These continue to be true with the lattice on.

Nodeless density modulations: The remaining stretch of
each swallowtail branch is described by the general solution
defined above and corresponds to nodeless complex-valued
states with density modulation with j dips. These are inter-
mediate between the nodeless plane waves at one end of the
branch and the solutions with nodes at the other end. The bare
phase change is a monotonically decreasing function of the
elliptic parameter m, and for each specific branch labeled by j,
the phase lies in the range [ jπ,

√
j2π2 + 2πg] corresponding

to m ∈ [0, mc]. The upper limit of the elliptic parameter mc set
by Eq. (18) marks the solutions with nodes, and the lower limit
m = 0 corresponds to plane waves. In Figs. 2(e)–2(h) we see
examples plotted in dotted lines; the density is periodically
modulated, but it never vanishes, and the bare phase has a
more complicated position dependence.

V. SPECTRUM WITH LATTICE

We now examine how the nonlinear spectrum in the ring,
as discussed in the last section, is impacted by the introduc-
tion of the lattice potential. In general, this needs numerical
determination of the stationary solutions of Eq. (2). We do a
Fourier expansion of the wave function in a plane wave basis
ψ = ∑∞

n=−∞ cneinθ , which leads to a set of coupled nonlinear
equations in the momentum space amplitudes [11]

1

2
[(n − �)2 + V0 − 2μ]cn − 1

4
V0cn−q − 1

4
V0cn+q

+ g
∑
k,l

c∗
k clcn+k−l = 0. (19)

They are solved iteratively by Newton’s method, until con-
vergence criteria are met. In practice, only a finite number of
modes are needed, typically between 20 and 40, with larger
values of g and V0 requiring more.

As the lattice potential is turned on, Fig. 3 shows that the
chemical potential splits, and at higher values of the lattice
potential, V0 new degeneracies can also appear as some of the
split branches come together again. This occurs for any value
of lattice period, as seen for the three values of q = 1, 2, 3.
Notably due to the ring configuration, even one lattice site q =
1 constitutes a periodic lattice. However, more insight can be
gained by plotting the chemical potential as a function of the
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FIG. 3. The chemical potential μ plotted as a function of the lattice depth V0 for the number of lattice periods q = 1, 2, and 3 in panels
(a)–(c). The nonlinear strength is fixed at g = 10. The specific bare phase values accumulated around the ring δφ are indicated in each panel
and correspond to the vertical dotted lines in Fig. 4. The vertical dashed lines that appear here in turn indicate the values of V0 that correspond
to the plots of μ vs δφ that appear in Fig. 4. The labels for the different branches follow the convention defined in Eq. (20) also in the context of
Fig. 4. The dashed lines correspond to the intraband soliton branches in Fig. 4, with blue and red marking upper and lower ones, respectively,
of the split branches.

bare phase at different strengths of the lattice potential, shown
in Fig. 4 for specific values of V0 that are marked by vertical
dashed lines in Fig. 3.

As for a linear system, turning on the lattice has the usual
effect of opening up gaps in the spectrum. But, in addition,
when the lattice is still weak, the swallowtail branches split
as well, as seen in Figs. 4(a), 4(d), and 4(g). Two distinct
behavior emerge: At the band edge, such splitting and the
band gaps create hooklike structures that terminate at the band
edge. The intraband swallowtails, shown as colored dashed
lines in Fig. 4, each simply splits into two with the ends still
terminating at the main dispersion curve, shown as solid black
lines, which mark the plane wave solutions in the absence of
the lattice, and transform to nonlinear Bloch wave solutions
with the lattice on. The special case of q = 1 obviously has
no intraband swallowtails.

As the lattice depth increases, several things happen. The
band gaps for the main branches widen as can be expected
even in the linear case, but additionally the hooks shorten
and can eventually vanish, as the lattice depth overwhelms the
effect of the nonlinearity [47]. The splitting of the intraband
swallowtails widens as well as can be seen in Figs. 4(d)–4(f)
and 4(g)–4(i). Some of them eventually separate from the
main branch and inherit existing hook structures in the main
band [Figs. 4(e) and 4(h)], and they then follow the same
shrinking trend with increasing lattice depth. As the band
gaps widen, in Figs. 4(e), 4(f), 4(h), and 4(i), we see that
some of the detached intraband swallowtails end up in the
band gap. They can be thought to correspond to what are
called gap solitons [29,31,48] in the case of large open
lattices.

The structure of the analytical solutions without lattice
allows us to classify the solutions with the lattice on. We use
a three-part label

[ j-index] [subbranch] [location], j = 0, 1, 2, . . .

subbranch = {m, u/u′, d/d ′}, location = {l, r} (20)

with j being the swallowtail branch index based on the analyt-
ical solutions, with 0 representing the ground band section of

the main dispersion curve once gaps open; the subbranch la-
bels are m for the main branch, u, d for up and down marking
upper and lower branches of the split swallowtails and u′, d ′
for the hook section of detached intraband swallowtails, and
the location labels l, r for the left or right end of each branch
terminating at some multiple of π . Note that when a hook
disappears, the location label can switch, such as 2dl → 2dr
in Figs. 4(e)→4(f) and 3dl → 3dr in Figs. 4(h)→ 4(i).

Our representation provides a different and more unified
perspective on the various solutions and how they are related.
Exclusive focus on the spectrum and states in the absence
of rotation is limited to a zero measure subset of the full
range of solutions and hides the relations between various
solutions. For example, in Fig. 4(h), in the absence of rotation,
the lowest energy eigenstates would include the Bloch wave
state 0ml at δφ/(2π ) = 0 along with states that are on the
vertical slice at δφ/(2π ) = 1, which, in our notation, includes
the soliton solutions with nodes, 1u′l, 2dl, 2ul and solutions
without nodes lying on the 1d, 1u branches, along with a
nonlinear Bloch wave solution on the main branch. Of course,
by symmetry the counterparts at δφ/(2π ) = −1 would be
included. But, in our representation, we can also see that all
the soliton solutions 1dl, 1ul, 1u′l originate from the splitting
of the j = 1 swallowtail branch and 2dl, 2ul from the splitting
of j = 2 branch in the absence of the lattice, and that 1ul, 1u′l
have a continuous range of nodeless states connecting them,
all accessible by rotation.

The full spectrum as displayed here also provides an al-
ternate perspective on gap solitons as arising from intraband
swallowtail branches j �= nq (for integer n) as the lattice
opens gaps among states on the main band. The intraband
swallowtails can detach from the main branch and end up
in the gap, for example, 1u′l in Fig. 4(e) and 1ur, 2dl, 2ul
in Fig. 4(i). We can also see clearly the sensitivity of their
appearance on the lattice depth. As the lattice depth increases,
new gap solitons can appear with different properties; for
example, progressing from Figs. 4(e) to 4(f), a new nodeless
solution on the branch 1ul − 1ur satisfies the boundary condi-
tion in the first gap. The widening gap also can accommodate
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FIG. 4. The chemical potential μ plotted as a function of the phase δφ for three different lattice periods q = 1, 2, and 3, one in each row.
The nonlinear strength is fixed at g = 10. The three panels in each row are for different values of the lattice depth V0 corresponding to the
vertical dotted lines in Fig. 3. The vertical dotted lines here indicate the phase values δφ that correspond to the plots in Fig. 3. The inset in panel
(b) shows that the rounded hook structures appear as swallowtails when total energy rather than chemical potential is plotted, here illustrated
for the gray highlighted region. The labels for the different branches follow the convention defined in Eq. (20). The intraband soliton branches
are shown in dashed lines, and when they split, the upper branches are shown in blue and the lower ones in red.

more solitons; for example, Fig. 4(i) has 1ul, 1ur that were
not in the gap in Fig. 4(h).

The above statements need to be taken with the caveat
that gap solitions are less well defined in a small ring lat-
tice of few sites, inasmuch as, for any fixed angular velocity
(including � = 0), the bands themselves are not a contin-
uum and comprise q discrete states allowing for positive and
negative quasimomenta, so the distinction between states in
the “bands” and states in the “band gaps” is not as well
demarcated. Here we designate as gap solitons any state with
its energy lying in the gaps of the main dispersion curve
(solid black lines in Fig. 4) for specific nonlinearity and lattice
depth.

Rotation can clearly affect the set of allowed solutions
dramatically in a ring lattice: Imagine sliding a set of ver-
tical lines at δφ/(2π ) = 1, 2, 3, . . . on any of the plots in
Fig. 4 and sliding them together continuously, and wherever

they intersect the spectrum are allowed solutions. Thus gap
solitons can emerge and disappear, and states with nodes (at
the tips of the branches) morph into nodeless solutions and
eventually into a solution with different number of nodes,
for instance, in Fig. 4(i), transitioning a solution with two
nodes at 1ur for � = 0 to a solution with one node at
1ul for � = π with a continuum of nodeless solutions in
between.

Our representation also highlights certain interesting fea-
tures that were not sufficiently stressed in earlier studies. An
intraband hook structure can actually split into two separate
branches, creating two distinct solutions, as seen with 1ur in
Fig. 4(e) splitting into 1u′r and 1ur in Fig. 4(f). Also, it is
evident from their swallowtail origins that soliton branches
can have the tips at any integer and half-integer multiples
of δφ/(2π ) and not just at the edge of Brillouin zone as
sometimes implied.
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FIG. 5. (a) The lattice period (dashed red line) does not typically match the period of the density modulation of the eigenstates (solid blue
line) before the lattice is introduced. (b) When the lattice is barely introduced, the allowed eigenstates adapt to match the lattice period so
that a subset of their separate maxima and minima line up at certain symmetry points in the ways shown. (c) There are three distinct ways
how maximum or minimum of the lattice and of the eigenstates without the lattice line up at adjacent symmetry points, as the lattice is barely
introduced. Each case has two subcases with Type A always containing a minimum of the density lining up with a maximum of the lattice.

VI. SYMMETRY OF EIGENSTATES

It is obvious that the lattice as well as the modulated
eigenstates in the absence of the lattice, such as plotted in
Fig. 2 have reflection symmetry about their respective maxima
and minima. The index j enumerates the density nodes in
the allowed eigenstates in the absence of the lattice, and in
the rest of the branch these nodes transform into uniformly
spaced density dips that get shallower and eventually vanish
on merging into the main branch that corresponds to plane
waves. The modulated solutions without a lattice are a man-
ifestation of spontaneously broken symmetry [49]. When the
lattice is turned on, the translational invariance is broken up
to a lattice period, and the eigenstates adapt to have their
points of reflection symmetry line up with those of the lattice,
which we will call symmetry points. Notably, even a weak
lattice is sufficient to cause this physical realignment; we have
observed this for lattice strength as low as V0 = 0.01 in our
units, relative to kinetic energy ∼1 and nonlinearity g = 10.

This indicates four possible pairings of lattice max and min
with the density max and min. We find there is a symmetry
of the density modulation that remains invariant when the
lattice is turned on and even in the presence of rotation, as we
now describe. Consider the smallest pair of mutually prime
integers, ns and nl that enumerate the half periods of an eigen-
state and of the lattice, respectively, that separate adjacent
symmetry points, so that

π

j
ns = π

q
nl . (21)

Even values for either integer would indicate repetition of
maximum or minimum at every symmetry point, and odd
values indicate alternating of maximum and minimum. The
case of both being even is clearly left out. That leaves us with
three possibilities for when the adjacent symmetry points are
different: (I) nl is even and nl is odd, (II) ns is even and nl is
odd, and (III) ns is odd and nl is odd. Each of these has two
subcases: A, when a lattice maximum and a state minimum
coincide at one of the symmetry points, and B, when a lattice
maximum and state maximum never coincide at any of the
symmetry points. All of these cases are illustrated in Fig. 5.

As the lattice is turned on, and even if there is rotation to
access all points on a branch, the number of dips and crests in
the density can change, and even local minima and maxima
can switch. However, the key point is that the location of
the symmetry points remains unchanged, meaning that those
points continue to have reflection symmetry, even in the pres-
ence of the lattice and rotation.

FIG. 6. The nonlinear eigenstates for lattice periodicity q = 2 in
the presence of the lattice (long dashed lines). The lattice depth is
V0 = 5, and state labels correspond to those in Fig. 4(f) except for
panel (d) associated with Fig. 4(e). Eigenstates in the absence of the
lattice are shown in filled gray. (a, b) Nonlinear Bloch waves, where
state and lattice periodicities match. The remaining panels are soliton
solutions of various types, with the symmetry type labeled. Panels
(e) and (f) represent states at a higher lattice depth V0 = 5 on spectral
branches that arise from a single branch at a lower lattice depth V0 =
0.75, the states for which are shown in (d).
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FIG. 7. The nonlinear eigenstates similar to Fig. 6 but for lattice
periodicity q = 3. The state labels correspond to Fig. 4(i) with lattice
depth V0 = 6. (a), (b) Nonlinear Bloch waves, where state and lattice
periodicities match. For the remaining panels, the left ones belong to
symmetry Type A, and the right ones belong to symmetry Type B.

We illustrate this in Figs. 6 and 7 with eigenstates for lattice
with q = 2 and q = 3 sites corresponding to spectra shown in
Fig. 4. It is clear that where the branch index is a multiple of
the lattice period j = n × q, band gaps open up and the mutual
commensurateness leads to nonlinear Bloch waves, as seen for
panels (a) and (b) in both figures. The remaining panels show
instances of the different symmetry cases mentioned above
and are labeled as such. The states without lattice are shown
as filled gray shapes and the lattice itself in long dashed lines,
and the symmetry points lie at the center and the edges of each
panel. When each soliton branch splits with the introduction
of the lattice, we observe that the lower branch (labeled with
second index “d”) belong to Type A, where at least one of
the density minimum coincides with a lattice maximum; this
is seen in the Figs. 6(c) and 6(g) and Figs. 7(c), 7(e), 7(g),
and 7(i). Likewise, we observe the upper branch (labeled by
second index “u”) follows Type B as seen in the right panels
of both figures.

It is consistent energetically that the lower energy branches
correspond to Type A, where a density minimum is at the
lattice maximum. Notably this is the case for the Bloch wave
states as well: At the band gaps which also appear as splitting
of swallowtail branches with j = n × q, each lower branch,
corresponding to the top of the lower band, is of Type A, with
density minima matching lattice maximum; and each upper
branch corresponding to the bottom of the upper band is of
Type B, which in the case of Bloch waves also ensure that
density maxima match lattice maxima. This can be seen with

states 2dr and 2ul in Figs. 6(a) and 6(b) and states 3dr and
3ul in Figs. 7(a) and 7(b).

In Fig. 6 we also illustrate the evolution of the states with
increasing lattice depth, first at V0 = 0.75 in Fig. 6(d) and
then at V0 = 5 in Figs. 6(e) and 6(f). The symmetry points
remain fixed, even though the shape of the states changes
substantially and even as new states with nodes 1ur and 1u′r
emerge as the hook structure of upper branch breaks at the
right edge, as noted at the end of the previous section.

We conclude this section with comments on a couple of
special cases. Clearly, cases with ns = j, nl = q are always a
solution for Eq. (21). If j, q are also coprime, it means there
will be only two symmetric axes, at two opposing ends of
the ring. If j and q are not coprime and share a nontrivial
common factor k, then ns = j/k, nl = q/k is a solution, and
the symmetry points are spaced by π/k. These states are in
the quasi-Bloch form whose period is 2π/k instead of 2π/q,
a q/k multiple of the lattice period [37,39]. For example,
q = 6, j = 3 would result in a state with its density modulated
with period 2π/3, although we do not include a plot here. The
above symmetry categories still apply to these cases.

VII. EFFECT OF LATTICE ON EIGENSTATES

We display several states in Figs. 6 and 7, corresponding
the spectra shown in Fig. 4. However, we should reiterate
that many of these states are accessible only by introducing
rotation. For example, due to the phase boundary condition
δφ/(2π ) = n, states 2dl and 2ul are allowed stationary states
without rotation for Fig. 6, whereas the corresponding states
in Fig. 7 are not.

The states on the main band have the Bloch structure where
the periodicity of the density is commensurate with that of the
lattice. On each band the states vary in shape continuously as
we progress along the spectral curve, with a different number
of nodes at the two ends, spanned by nodeless solutions in be-
tween. This can be seen in Figs. 6(a) and 6(b) as we progress
from solution 0ml with no nodes to 2dr with two nodes, and
from 2ul with two nodes to 4dl with four nodes, and likewise
Figs. 7(a) and 7(b) from 0ml with no nodes to 3dr with three
nodes and from 3ul with three nodes to 6dl with six nodes.
The progressive morphing of the solutions in between can be
seen with solutions 2mr and 3mr in the respective figures.

As the lattice splits the swallowtails into two branches, at
those branches with an index commensurate with the lattice
period, the split corresponds to a band gap, and the lower
branch initiates from lattice-free solution with a density min-
imum aligned with a lattice maximum, and the upper branch
with density maximum aligned with lattice maximum. This
can be see with 2dl and 2ul in Figs. 6(a) and 6(b) and 3dl
and 3ul in Figs. 7(a) and 7(b). The gray filled shapes outline
states in the absence of a lattice; however, in Fig. 7(a) in both
figures, we show the nodeless solution that morphs to 0ml in
the presence of the lattice, but the 2dl and 3dl solutions can
be understood to emerge from the lattice-free solution shown
in Fig. 7(b) in both figures but shifted by half a period to have
the density minima line up with the lattice maxima.

It is interesting to note that this pattern is maintained as we
go from the state with nodes at the lower edge of the band
to that at the upper edge. The number of nodes increase by q
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FIG. 8. Localization with increasing lattice depth V0 is show for
lattice minima q = 3 incommensurate with state index j = 2. With
increasing V0, (a) more Fourier components have contributing ampli-
tudes cn, (b) the mode gets more localized in position space, (c) the
position space inverse participation ratio (IPR) gets larger, and (d) the
momentum space IPR gets smaller. In panel (b) the lattice is shown
in the dashed line.

by creating new minima. We observe these in transitions from
2ul to 4dl in Fig. 6(b) and 3ul and 6dl in Fig. 7(b).

In the case of intraband solitons, we still find that the lower
branch originates in a state with at least one density minimum
aligned with a lattice maximum corresponding to Type A in
our symmetry classification, whereas the upper branch origi-
nates with the same lattice free state shifted and falls in with
Type B. This can be seen both Figs. 6 and 7. The primary
difference with the nonlinear Bloch bands is that, for them,
the pattern repeats commensurate with the lattice period. With
deepening lattice, the incommensurate solitons originating
with intraband swallowtails can get markedly more localized
as seen in Figs. 6(d)–6(g) and Figs. 7(d)–7(f) and 7(j).

The localization of the soliton state with incommensurate
lattice can be understood by considering its Fourier modes.
The Fourier expansion of soliton with nodes arising from
the branch j in the absence of a lattice in Eq. (17) has the
form [45],

ψ j (θ ) =
√

2π

K2 − EK

∞∑
n=0

qn+ 1
2

1 − q2n+1
sin

[
j

(
n + 1

2

)
θ

]
,

(22)

where the modes included are commensurate with the branch
index j. Introduction of the lattice couples each Fourier mode
n in a ladder stepped by multiples of the lattice period n ± mq.
If j is a multiple of q, the coupling will fill the modes with step
q, resulting in a Bloch form solution. If j is not a multiple of q
but shares common factor k with q, the modes will be coupled
in steps of k, resulting in a quasi-Bloch state with period 2π/k.
If j and q are coprime, the lattice coupling can spread the
modes over all integers. As it spreads out in the Fourier space,
there will be progressive localization in position space.

We illustrate these considerations in Fig. 8, where we
present an incommensurate case with j = 2 mode in a ring
lattice with q = 3 minima. The Fourier expansion coefficients
cn are as defined in Eq. (19). As the lattice depth is increased,
more Fourier modes are found to be involved in Fig. 8(a),
even though with lesser weights. This results in more local-
ization in position space as shown in Fig. 8(b). The degree
of localization can be quantified by the inverse participation
ratio (IPR),

∫
dθ |ψ j |4 for normalized states. It is seen to

climb up with deepening lattice in Fig. 8(c) indicating more
localization, while its momentum space counterpart

∑
n |cn|4

in Fig. 8(d) gets progressively smaller as can be expected from
the Heisenberg uncertainty principle.

Specifically, we can see that in Fig. 8(a), for the displayed
mode j = 2, in the absence of a lattice V0 = 0, only the
modes j(n + 1

2 ) = ±1,±3, . . . are present. As the lattice is
turned on with q = 3, it couples each of these modes in ladder
steps of ±q as indicated in Eq. (19), for example, ±1 →
±1 ± 3 = ±2,±4 all of which acquire visible occupation in
that plot as the lattice depth increases to V0 = 7.25 and then to
V0 = 14.75.

This also underscores that for small lattice sizes on a ring
and weak lattice strengths, differentiation between localized
and delocalized states may not be very obvious, as can be
gathered from the states shown in Figs. 6 and 7. That may
become prominent only as the lattice depth is increased.
However, our criterion above provides a concrete way to dis-
tinguish the states that can become localized vs those that will
not.

VIII. VARYING NONLINEARITY AT FIXED LATTICE

The nonlinearity and the lattice introduce complementary
effects, and it is interesting to compare the results of our
approach where we start from the nonlinear solutions with
no lattice with those of Ref. [40] where the starting point
was linear Bloch waves. We have confirmed that the approach
taken here is completely consistent with all of the results in
that study, and here we summarize a brief comparison.

The spectrum of the noninteracting system with lattice
comprises smooth monotonic curves with gaps at the band
edges as shown in Figs. 9(a) and 9(c) for g = 0. Increasing
the lattice depth would widen the gap and flatten the bands.
The eigenstates are Bloch waves, ψn,k = eikθ

∑
l

cn,l eilqθ , with

band index n and quasimomentum k. For fixed lattice depth,
once interaction is introduced, as shown in Figs. 9(a) and 9(c),
doublets of soliton branches emerge from the main branch
terminating �φ

2π
= j/2 for j = 1, 2, 3, . . . except initially at

j = nq that are a multiple of the lattice sites, where band gaps
open up.

As the nonlinear strength is increased the soliton branches
lengthen, and since they still terminate at the same points,
their points of contact with the main branch slides up. More
significantly at the band gaps, once the interaction strength g
exceeds some critical value for each gap [32,47], the primary
dispersion curve extends beyond the band edge and forms the
familiar hooklike structure as we can see in Figs. 9(b) and
9(d) for g = 10. This perspective has been analyzed in prior
studies [32,36,39,50]. But, as we have shown in this paper, the
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FIG. 9. The chemical potential as a function of the phase is plot-
ted for different interaction strengths for lattice periodicities q = 3
and q = 4, for fixed lattice strength V0 = 2.25. In the left panels (a),
(c) the soliton branches appear and lengthen with increasing g. At
larger nonlinearity, in the right panels (b), (d), the hooklike structures
appear that extend between the band edges. Panel (e) is a periodic
zone representation of panel (d).

introduction of the lattice into the nonlinear solutions offers
a different and more unified perspective: The lattice splits
all the swallowtail branches into two, but when j = nq, the
split coincides with that band gap. The hook structures seen
at the band edge have the same origins as with the intraband
swallowtails in the lattice-free limit.

In Fig. 9(e) we also show a periodic zone version of the
spectrum that appears in Fig. 9(d). This clearly shows the
band separation. The intraband swallowtail structures appear
within the span of each band with the characteristic shape that
gives them their names. The hooklike structures in Fig. 9(d)
associated with the band edge and the soliton branches in
the band gaps form loops in the extended zone schemes. If
total energy was plotted instead of chemical potential, these
rounded loops would have pointed edges instead, as illustrated
in the inset in Fig. 4(b) and would have the characteristic
swallowtail shape.

In the weak nonlinearity limit, the solitonic solutions can
be viewed as superpositions of degenerate linear solutions.
Under small interaction strength, such solitonic solutions
will merge into nonlinear Bloch waves if �φ is increased.
Once the interaction strength becomes larger, these solitonic
branches will extend further, until it reaches the edge of the

FIG. 10. Comparison is made for the plots of the chemical po-
tential as a function of the phase (a), (c) at fixed interaction strength,
with plots as a function of the interaction strength (b), (d) at a fixed
phase. The vertical dotted lines mark the values in each set that are
used in the other set; for example, lines A and B in (a) mark the phase
δφ values used in (b) and (d), respectively; lines A and B in (b) and
(d) mark the value of g used in (a). The lattice depth for (a)–(d) is
set at V0 = 4. The dashed lines mark intraband soliton branches as in
Fig. 3. Plots (e) and (f) are similar comparisons but specifically show
the emergence of a saddlepoint bifurcation which does not originate
in any of the soliton branches of the lattice-free system.

“Brilluoin zone,” where they are stopped by lattice scattering
and their velocity becomes zero, and these solutions become
real solutions with nodes. For an even number of lattice sites,
the solitonic solutions reaching the Brilluoin zone edge will
emerge as new physical solutions. These solutions are the
analogs of gap solitons in literature since they emerge inside
the band gaps. For odd number of lattice sites, the solutions
from the solitonic branch δφ/(2π ) = q/2 − 0.5 are physical,
and they exist with arbitrary small interaction strength. If the
interaction strength is further increased, the nonlinear Bloch
waves and the solitonic branches will extend beyond the edge
of the Brilluoin zone, reach a phase maximum, then turn back
and stop at the Brilluoin zone, forming the hook structure. The
solution at the lower parts of these hooks at the Brilluoin zone
edge then emerges as new physical solutions with nonzero
velocity.

Figure 10 compares our representation of the chemical po-
tential as a function of the bare phase change around the ring
in the left panels with the variation of the chemical potential
with increasing nonlinearity in the right panels. Note that the
spectrum splits as the nonlinearity increases in a qualitatively
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similar manner to when the lattice depth is increased in Fig. 3.
The vertical lines labeled in bold uppercase letters mark coun-
terparts to be matched in the two representations. In the μ vs
δφ representation, we observe the hook structures, at lines C
and D in Figs. 10(c) and 10(d), respectively; this manifests
itself as splitting of the branch inthe μ vs g representation in
Figs. 10(b) and 10(d), respectively.

The comparison shows that the splittings observed as non-
linearity increases in Figs. 3(b), 3(d), and 3(f), are of three
different types. The split branches marked by solid lines
mark the emergence of the equivalent of intraband swallowtail
branches. The splits marked by dashed and dotted lines corre-
spond to the upper and lower sections of the hook structures.
Curiously, the natural continuation of each such branch that
splits as g increases actually corresponds to the upper end of
the hook in our representation, even though in the left panels it
is the lower section that is the immediate continuation of the
main branch. The most unusual feature appears in Fig. 3(e)
and 3(f) where a pair of branches appear disconnected from
any of the main branches in both representations. This is a
so-called saddle node bifuration that appears when a pair of
fixed points emerge seemingly out of the “blue sky” as such
bifurcations are also sometimes referred to [40].

IX. STABILITY OF STATES

As noted in Sec. VII, the lattice breaks the translational
symmetry up to its period and the splitting of the spectral
branches is associated with the different relative position with
respect to the lattice. Here we show that they are associated
with different dynamical stability properties. We consider a
small perturbation around the mean field stationary states:

ψ (θ, t ) = ψ0(θ ) + δue−iμt e−iωt + δv∗e−iμt eiω∗t . (23)

and we solve the Bogoliubov equations [4] for the normal
modes of the fluctuations.

(H0 + 2g|ψ0|2 − μ)δu + gψ2
0 δv = wδu,

−(H0 + 2g|ψ0|2 − μ)δv − g(ψ∗
0 )2δu = wδv. (24)

If the angular frequencies ω of the normal modes have imag-
inary components and if Im(ω) > 0, then the fluctuations
would grow exponentially indicating dynamical instability.

It was noted that in the absence of a lattice with repul-
sive interaction, both plane waves and soliton train solutions
are dynamically stable [49]. Here we studied the dynamical
stabilities of the lowest soliton branches in the presence of a
lattice for different number lattice sites on the ring, q = 1, 2,
and 3. For each swallowtail branch j, the two split branches
that emerge with the introduction of the lattice differ not only
in symmetry properties, but also in the stability properties. In
Fig. 11 we plot the imaginary components for each branch
as a function of increasing lattice depth. Rather surprisingly,
for the parameter range we have tested, for each split pair, the
branch with the lower chemical potential labeled as 1dl, 2dl is
seen to be dynamically unstable as soon as the lattice is turned
on, indicated by the presence of imaginary components of ω

even as V0 → 0. In contrast, such instability is manifest only
at larger lattice depth for the branch with the higher chemical
potential. We found that the pattern appears to hold for higher

FIG. 11. Examples of Bogoliubov analysis of the splitting soliton
solutions. Left panels show the imaginary part of the Bogoliubov
excitations as the lattice is turned on. Middle panels show the density
profile of the split solutions for fixed V0 = 1; dashed lines indicate
the lattice potential. Right panels show the corresponding evolution
of the chemical potential as the lattice is turned on.

lattice sites and branches as well, but the difference is not as
stark and not conclusive. Simple energy considerations makes
this behavior rather nonintuitive, but we do not yet have a
satisfactory explanation for this behavior.

X. LARGE LATTICE LIMIT

The ring topology is particularly significant when the size
is small and the number of lattice sites is few in number. As
the number of sites is increased without changing the lattice
period and the number of particles per site, the ring gets larger
and we can consider the infinite lattice limit. This, however,
requires a different scaling than we have used in the rest of
the paper, where we have scaled length by R and energy by
h̄2/(mR2), so that keeping V and g constant has the effect of
diminishing the potential and the nonlinear term relative to
the kinetic energy by a factor ∝ R2. This did not impact our
observations where comparisons were made for fixed lattice
sites. Now, to compare the variation with changing the number
of lattice sites, while keeping the lattice period, depth, and
the particle density constant, we scale the potential and the
nonlinear strength by the square of the number of the lattice
sites q2 in Eq. (2) and then divide the resulting chemical
potential by q2.

Some of our simulations are shown in Fig. 12, where we
plot the chemical potential vs the bare phase around the ring
δφ as before, but now scaled by a multiple of the recoil energy
8Er = 4π2 h̄2/(md2) and qπ , respectively, where d = 2πR/q
is the lattice constant. The phase scaling is similar to scaling
the linear wave vectors by the recoil momentum kr = π/d .
We plot two cases, one set in Figs. 12(a)–12(c) for q = 3, 6, 9
for V0 = q2/9 and g = q2/9 in the units of lattice constant and
recoil energy mentioned above, and another set in Figs. 12(d)–
12(f) for q = 2, 4, 6 for V0 = 3q2/4 and g = q2/16. Scaled
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FIG. 12. The effect of increasing the number q of lattice sites is
shown for two different values of the lattice strength V0 and nonlinear
constant g in (a)–(c) and (d)–(f). Allowed solutions in the absence of
rotation are marked by vertical dotted lines. For consistent compar-
ison across different lattice sites, the V0 and g are scaled by q2, and
the chemical potential μ and the bare phase δφ are also in recoil units
fixed by the lattice constant. Overlaying the ones from (a)–(c) in (g)
and those from (d)–(f) in (h) shows that the primary dispersion curve
corresponding to nonlinear Bloch waves is identical for any number
of lattice sites, while soliton branches at specific multiples overlap as
new ones emerge with increasing sites.

this way, we find that the shape of the primary dispersion
curve is identical for any number of lattice sites as long as
the lattice depth V0 and nonlinearity including particle density
remain the same. This can be seen clearly when we overlay the
plots from Figs. 12(a)–12(c) in Fig. 12(g) and the plots from
Figs. 12(d)–12(f) in Fig. 12(h): the main bands are identical
and lie on top of each other. This behavior is identical to
the case without nonlinearity, and specifically we note from
Figs. 12(d)–12(f) and Fig. 12(g) that even the distinctive non-
linear feature, the hook structure, is identical for a different
number of lattice sites.

On the other hand, new soliton branches emerge with
increasing lattice sites. For weak lattices, the gaps open at
multiples of the lattice site number j = nq and with q − 1
pairs of intraband swallowtails for each band. When q values
have a common factor, they share common soliton branches,
and the shape of those branches is also identical for the q val-
ues. This can be seen in Figs. 12(a)–12(c), for example, with
the two pairs of intraband soliton branches for q = 3, which
also appear identically for q = 6 and q = 9, and likewise in
Figs. 12(d)–12(f), the single pair of intraband soliton branches
for q = 2 also appear identically for q = 4 and q = 6. This
similarity is also reflected in the quantum states, with the basic
shape of the wave function for the fundamental period q = 3,
simply repeating twice for q = 6 over the lattice and thrice for
q = 9.

We can expect that as the number of sites in the ring gets
larger, keeping the lattice depth and nonlinear strength and
particle density fixed, the main dispersion curve correspond-
ing to the nonlinear Bloch states will remain unchanged, but
more and more soliton branches will appear. However, with
increasing number of such branches, the soliton branches that
slide into the gap as seen in Figs. 12(c) and 12(g) become
more exceptional leading up to the well-studied properties of
gap solitons.

XI. CONCLUSIONS AND OUTLOOK

In a finite ring-shaped lattice, we find that the nonlinear
solutions without the lattice define the landscape of solutions
with the lattice. Many of the standard labels and classifica-
tions, such as referring to the solutions as solitons, are a relic
of studies in the context of open lattices in the infinite and
tight-binding limit, and are not a particularly useful way of
understanding finite closed lattices that can be possibly weak.
In a ring without a lattice, there are three types of solutions:
plane waves, solutions with nodes, and modulated solutions
without nodes. The presence of a lattice modifies these to the
following set of independent classifications of solutions: (1)
solutions with period commensurate or incommensurate with
the lattice period and (2) solutions with or without nodes. The
first classification can be subgrouped into nonlinear Bloch
waves that exactly match the periodicity of the lattice, and
their superperiodic counterparts that have periods that are
multiples of the lattice period.

The commensurate solutions emerge from the plane wave
solutions and the swallowtails at multiples of the lattice
period. The incommensurate ones originate from intraband
swallowtails. With increasing lattice strength, the commen-
surate ones will remain delocalized, whereas with increasing
lattice depth, the incommensurate ones will tend to localize.

As already noted in Ref. [40], the concept of gap solitons is
not very distinctive in a finite ring lattice. There are solutions
that exist in the band gap that originate with the migration of
the intraband swallowtails with increasing lattice depth, but
their behavior falls into the general classification above.

The most significant aspect of the solutions of a ring lattice
is the ability to access a full range of solutions of the infinite
lattice by using rotation. This makes the ring lattice an in-
valuable and unique tool for the study of nonlinear dynamics.
The continuous transition between solutions possible with
rotation can be utilized to probe and modify the dynamics of
the system, to access vastly different kinds of behavior within
the same system. We have already observed that even in the
linear case [11], and in our continuing work we anticipate
even richer dynamics in the nonlinear regime. An exploration
of the negative nonlinearity constitutes a natural continuation
of this work. Finally, there is much potential for exploring
the quantum dynamics in ring lattices beyond the mean field
regime, which also forms part of our ongoing research.
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[10] M. Kolář, T. Opatrný, and K. K. Das, Phys. Rev. A 92, 043630
(2015).

[11] C. Brooks, A. Brattley, and K. K. Das, Phys. Rev. A 103,
013322 (2021).

[12] D. Aghamalyan, L. Amico, and L. C. Kwek, Phys. Rev. A 88,
063627 (2013).

[13] I. I. Satija, C. L. Pando L., and E. Tiesinga, Phys. Rev. A 87,
033608 (2013).

[14] D. M. Jezek and H. M. Cataldo, Phys. Rev. A 83, 013629
(2011).

[15] M. Nigro, P. Capuzzi, and D. M. Jezek, Phys. Rev. A 98, 063622
(2018).
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