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Rotation-driven transition into coexistent Josephson modes in an atomtronic dc superconducting
quantum interference device
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By means of a two-mode model, we show that transitions to different arrays of coexistent regimes in the
phase space can be attained by rotating a double-well system, which consists of a toroidal condensate with
two diametrically placed barriers. Such a configuration corresponds to the atomtronic counterpart of the well-
known direct-current superconducting quantum interference device. Due to the phase gradient experimented
by the on-site localized functions when the system is subject to rotation, a phase difference appears on each
junction in order to satisfy the quantization of the velocity field around the torus. We demonstrate that such
a phase can produce a significant change on the relative values of different types of hopping parameters. In
particular, we show that within a determined rotation frequency interval a hopping parameter, usually disregarded
in nonrotating systems, turns out to rule the dynamics. At the limits of such a frequency interval, bifurcations
of the stationary points occur, which substantially change the phase-space portrait that describes the orbits of
the macroscopic canonical conjugate variables. We analyze the emerging dynamics that combines the zero and
π Josephson modes, and evaluate the small-oscillation time periods of such orbits at the frequency range where
each mode survives. All the findings predicted by the model are confirmed by Gross-Pitaevskii simulations.
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I. INTRODUCTION

Much interest has been devoted in recent years to Bose-
Einstein condensates confined by toroidal traps radially
crossed by a number of rotating barriers, as such configura-
tions present the clear potential of becoming central building
blocks for future atomtronic devices [1]. In case of a single
rotating barrier, which yields the cold atom analog of the
celebrated rf superconducting quantum interference device
(SQUID)—a superconducting ring interrupted by a Josephson
junction [2]—well-defined phase slips between quantized per-
sistent currents have been observed [3], along with a quantized
hysteresis behavior [4]. The case of two diametrically dis-
posed barriers corresponds to the cold atom version of the dc
SQUID [2], perhaps the most sensitive detector for magnetic
flux available today. We may denote such atomtronic counter-
parts of SQUIDs as atomtronic quantum interference devices
(AQUIDs) [1]. In a SQUID, a current flow is established by
changing the magnetic flux through the loop, whereas the
same effect in an AQUID is obtained as a consequence of
the barrier rotation, or, equivalently, by imparting a geomet-
ric phase directly to the atoms via suitably designed laser
fields [5]. This makes rotation sensing possible, as already
demonstrated for neutral atoms of superfluid helium [6] and
very recently for ultracold atoms [7], where the quantum
interference of currents in a dc AQUID was observed. Such
efforts, along with other recent proposals to achieve rotation
sensing by atomic persistent currents [8–10], may be consid-
ered as part of the rapidly growing branch of research known
as “quantum sensing” [11].

Previously, Josephson effects [12] and resistive flows [13]
had also been observed in dc AQUIDs. On the other hand, a

variant of rf AQUIDs constructed upon a ring-shaped optical
lattice interrupted by a weak link has been proved to yield
an effective two-level quantum dynamics able to reproduce
a qubit [14]. Later, it was shown that the same lattice con-
finement, but interrupted by three weak links, also reproduces
an effective qubit dynamics, but in a considerably enlarged
parameter space [15]. Such efforts are opening the way to-
wards an experimental realization of a cold atom analog of
the superconducting flux qubit [16].

From the theoretical point of view, the modelization of
AQUIDs has mostly been addressed by one-dimensional
(1D), i.e., tight-waveguide, descriptions for which the Lieb-
Liniger model generalized to host barrier potentials can be
applied [17,18]. Different methods depending on the inter-
action strength have been utilized to study these systems.
In the limit of weak interactions, the relevant physics of
the system can be captured within the mean-field approx-
imation by the Gross-Pitaevskii (GP) equation [14,18,19],
whereas in the hard-core limit of infinite repulsion the
Tonks-Girardeau Bose-Fermi mapping often provides ana-
lytic solutions [14,17,18]. For interaction strengths outside
the above limits, one may resort to various computa-
tional techniques, such as several kinds of Monte Carlo
approaches [17] and, in case of ring lattices, exact diago-
nalization schemes for small systems and the density-matrix
renormalization group for larger system sizes [14,17]. An-
other useful approach comes from the quantum phase model,
which assumes a system dynamics characterized by the phase
differences across each junction, neglecting the site number
fluctuations [14,20].

In the case of nonrotating double-well systems, a two-
mode (TM) model was developed in Refs. [21,22] and latterly
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improved by considering terms that gave rise to novel pa-
rameters [23]. We will focus in this paper particularly on
one of such parameters, which has shown to provide almost
vanishing effects in the nonrotating context. Given that a dis-
crepancy still persisted between the model results and the GP
simulations, an effective TM model was developed in recent
years [24]. Such a model arises from introducing in the deriva-
tion of the equations of motion the on-site interaction energy
dependence on the population imbalance. When doing so,
one obtains the same type of equations, but with an effective
interaction energy parameter instead of the standard on-site
interaction one. In the Thomas-Fermi approximation, it has
been shown that the effective interaction energy parameter
becomes reduced with respect to the standard one by a factor
of 7/10, 3/4, or 5/6, depending on the dimensionality of the
system. Such an effective TM model has been shown to ac-
curately describe the exact dynamics in double-well [24,25],
asymmetric two-well [26,27], and, in the multimode version,
multiple-well [28,29] condensates.

A multimode model, which includes all the types of correc-
tions introduced in the TM model, was recently proposed for
describing the dynamics of cold atoms confined by a rotating
ring-shaped optical lattice forming a weakly linked array of
condensates [30]. The on-site localized functions were ob-
tained by means of a change of basis from that formed by the
stationary order parameters with different winding numbers.
Due to the rotation, the localized functions acquire a phase
gradient along the bulk, which causes the formation of a
phase difference across the junctions of neighboring localized
functions. It has been shown that such a phase difference
turns out to determine the argument of the complex hopping
parameters.

In this paper, we will apply the above multimode model
restricted to a double-well system in the form of a rotating
TM version. Even though all the model parameters will be
shown to be real numbers in this case, we will see that the
phase gradient imprinted on the on-site localized functions,
similarly to the multiwell case, plays a crucial role in deter-
mining the behavior of the hopping amplitudes as functions
of the frequency. In particular, we will see that there exist
frequencies where the standard hopping amplitudes vanish,
and a usually disregarded parameter for nonrotating systems
turns out to define the dynamics. Such a parameter, which in
the nonrotating case is defined as proportional to the integral
of the product of the densities of both localized functions,
splits for the rotating condensate into two different model
parameters, one of which is of a hoppinglike nature, playing
an essential role, while the other is of interactionlike character,
yielding negligible corrections.

One goal of this paper consists in showing that in cor-
respondence with the increment of the role played by such
a hopping parameter, the system exhibits the coexistence of
two Josephson oscillation modes. In particular, we show that
at the extremes of the frequency interval where both modes
coexist, bifurcations of the stationary points take place. Thus,
we analyze the way in which rotation affects the values of the
model parameters, and further elucidate how such parameters
modify the phase portrait and time periods. Such essential
insights provided by the TM model are tested against GP
simulations, which confirm that we are dealing with a simple

and quite accurate theoretical tool accounting for the response
to rotation of a dc-AQUID.

This paper is organized as follows. In Sec. II we de-
scribe the system and details of the GP simulations we
have performed. Section III deals with the rotating TM
model, where we analyze the phase gradient on the on-site
localized functions and derive the equations of motion in
Sec. III A, while the dependence of the model parameters on
the rotation frequency is discussed in Sec. III B. The phase
portrait is described in Sec. IV, where we study the distri-
bution of stationary points with their possible bifurcations
in Sec. IV A, whereas the corresponding different types of
phase portraits, particularly those presenting a coexistence of
Josephson modes, are analyzed in Sec. IV B. Section V is
devoted to examine the dynamics of orbits on the different
regimes. We pay special attention to the time periods of both
Josephson modes, deriving an analytical expression in the
small-oscillation (SO) approximation. All the evolutions are
compared to time-dependent GP simulations. Some conclud-
ing remarks are gathered in Sec. VI. Finally, useful alternative
calculations of the hopping parameters are summarized in the
Appendix.

II. THEORETICAL FRAMEWORK

We describe in what follows the condensate we have con-
sidered in our study, which was experimentally realized as
AQUIDs in Refs. [7,12]. The trapping potential can be written
as the sum of a term depending on x and y and a term that is
harmonic in the tightly bound direction z:

Vtrap = V (x, y) + λ2z2/2 (1)

with

V (x, y)=V0

[
1 −

(
r2

r2
0

)
exp

(
1 − r2

r2
0

)]
+ Vb exp

( − y2/λ2
b

)
.

(2)
The above potential consists of a superposition of a toroidal
term modeled through a Laguerre-Gauss optical poten-
tial [31], where V0 corresponds to the potential depth and r0

is the radial position of its minimum (r2 = x2 + y2), and a
Gaussian barrier along the x axis of height Vb and width λb that
splits the torus into two halves, the one on the upper-half plane
labeled as the “u” site and the other located on the lower-half
plane, named the “l” site. The following system parameters
were considered [12]: V0 = 70 nK, r0 = 4 μm, Vb = 41 nK,
λb = 1 μm, and N = 3000 atoms of 87Rb. We have also as-
sumed a relative high value of λ, 18.8 nK1/2 μm−1, which
yields a quasi-bi-dimensional condensate. Thus, the conden-
sate order parameter is written as the product of a Gaussian
wave function along the z coordinate, and a two-dimensional
(2D) wave function ψ (r, t ) normalized to one, for which the
corresponding GP equation in a rotating frame at the angular
velocity �ẑ reads [32]

[Ĥ0 + gN |ψ (r, t )|2 − �L̂z]ψ (r, t ) = ih̄
∂ψ (r, t )

∂t
, (3)

where Ĥ0 = − h̄2

2m ∇2 + V is the noninteracting Hamiltonian,
L̂z denotes the z component of the angular momentum oper-
ator, and g corresponds to the effective 2D coupling constant
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between the atoms [32]. Such a GP equation has been numeri-
cally solved using the split-step Crank-Nicolson algorithm for
imaginary- and real-time propagation on a 2D spatial grid of
257 × 257 points [33].

III. ROTATING TWO-MODE MODEL

A. On-site localized functions and equations of motion

In our TM model, the condensate order parameter
ψTM(r, t ) is written in terms of a pair of order parame-
ters, which, by analogy with multiple-well systems, will be
referred to as “on-site” localized functions. Therefore, the
barriers being localized along y = 0 [Eq. (2)], we have an
“upper” and a “lower” localized function, ψu(r) and ψl (r),
respectively, from which the condensate order parameter is
built as

ψTM(r, t ) = bu(t )ψu(r) + bl (t )ψl (r), (4)

with bk (t ) = √
Nk (t )/N exp[ϕk (t )] (k = u, l), where Nk (t )

represents the number of particles at the site k and ϕk (t )
denotes a global phase that takes into account the time de-
pendence of the phase on that site [30]. Note that the spatial
coordinate dependence of the condensate order parameter
stems from those of the on-site localized functions. These
are complex functions, the phases of which, respectively, de-
noted as φu(r) and φl (r) for the upper and lower localized
functions, will be discussed below. In the nonrotating case,
the localized functions arise from the sum and difference of
the lowest-energy stationary order parameters obtained from
the GP equation, i.e., the ground state with winding number
n = 0 and the antisymmetric state, which for our toroidal con-
figuration corresponds to a winding number n = 1 [28]. We
note that the stationary order parameter of maximum winding
number for nonrotating ring lattices, with an even number of
sites, is characterized by presenting nodal surfaces along the
barriers. The phase is homogeneous in each site, except at
the junctions where a π phase difference exists. Hence, the
uniform phases alternate between zero and π in consecutive
sites. In our case the two-site lattice has a maximum winding
number of 1, and hence the associated order parameter has the
same behavior as an antisymmetric one.

For a finite angular frequency �, one may first calculate
the rotating stationary order parameters ψ0 and ψ1 of winding
numbers 0 and 1, respectively, by imaginary-time propagating
through the GP equation (3) the corresponding nonrotating
stationary states. It is worthwhile noticing that the total phase
difference of ψ1 around the torus is now distributed not only
in the junctions but also in the bulk. Since such states have
different initial winding numbers, the imaginary-time propa-
gation keeps the orthogonality between them. This represents
an important feature, as it determines the conservation of the
two-state orthonormal basis in the rotating configuration. We
may obtain the basis formed by the on-site localized functions
as the sum and difference of the rotating stationary order
parameters ψ0 and ψ1. It is important to note that in order to
achieve a maximum localization, such stationary states should
have their phases previously fixed to zero at the middle of a
site [29], which we have chosen to be the upper one, and at
the point (x = 0; y = r0). Such an ansatz for obtaining the lo-
calized functions corresponds to that of a rotating ring-shaped

FIG. 1. Isodensity contour of the on-site localized function of the
upper site ψu(r) and its corresponding phase φu(r) for the frequency
f = �/2π = 3.54 Hz. The color scale corresponds to the phase of
the function, while the contour corresponds to 1/14 of the maximum
value of |ψu|2.

optical lattice described in Ref. [30], applied in this case to a
two-well system.

Given that the bulks of the rotating stationary states acquire
a phase gradient around the condensate, a phase with the
same behavior is imprinted on the corresponding localized
functions, as observed in Fig. 1. The upper localized function
shown in this figure corresponds to the sum of both stationary
states. In Figs. 2(a) and 2(b) we further show the phase and
density of the stationary states ψ0 and ψ1 as functions of
the angular coordinate θ , at r = r0, for the frequency f =
�/2π = 3.54 Hz. In Fig. 2(c) we show the phases, φu(θ ) and
φl (θ ), for the corresponding localized functions, together with
the square amplitude of the upper localized function. There
it may be seen that a phase difference 
φu = π/2 exists be-
tween θ = 0 and π of such localized function. To qualitatively
explain such a value, it is useful to reduce the treatment of
our system to a rotating 1D annulus of radius r0 = 4 μm with
negligible barrier widths. In such a case, any fluid element
should move with an angular velocity �, and hence the phase
difference between the ends of each semicircle yields the
1D prediction 
φ1D = π�r2

0m/h̄. Then, for this simplified
model, the π/2 difference should be attained for a rotation
frequency of 3.6 Hz. On the other hand, in our more realistic
extended system, the velocity field verifies the superfluidity
condition and then acquires a more complex form [30]. Hence,
we have found that the phase difference of π/2 is attained
at the slightly smaller frequency of 3.54 Hz, with respect to
the 1D prediction. We will see that such a phase difference
on the on-site localized functions involves the presence of a
related phase difference at the junctions. First, we note that
it is easy to verify that the stationary state with winding
number n = 0 corresponds to the TM order parameter (4)
with vanishing global phases and equal populations Nu = Nl .
However, in spite of the vanishing global phases, in Fig. 2(a)
an extra negative phase difference can be appreciated at the
junctions, which will be denoted as �. In order to obtain
a quantized velocity field circulation around the torus, such
a phase should verify � = −π/2, which for any frequency
can be generalized to � = −
φu. With the purpose of better
visualizing the precision of the � value in Fig. 2(d), we
show as a solid line the phase of the TM order parameter (4)
for global phases ϕu = π/2 = −� and ϕl = 0 with identical
populations at each site. It may be seen that the discontinuity
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FIG. 2. (a) Phase (black solid line) and density (red dashed line) of the stationary state ψ0 of winding number zero for the condensate
rotating at the frequency f = �/2π = 3.54 Hz. The dotted line displays the tangent to the phase at θ/π = −0.5, the intersection of which
with the solid vertical line indicates half of the phase difference across the junction. Such a vertical solid line shows the location of the right
junction. (b) Solid and dashed lines: Same as panel (a) for the stationary state ψ1 of winding number 1. (c) Phase φu of the upper (solid
line) and lower φl (dotted line) on-site localized functions derived from the above stationary states. The red dashed line corresponds to the
square amplitude of the upper localized function, while the solid vertical lines show the location of the junctions. (d) Phase of the TM order
parameter (4) with the global phases ϕu = −� and ϕl = 0 and equal populations for three rotation frequencies: 3.54 Hz (solid line), 2.5 Hz
(dashed line), and 1.77 Hz (dotted line).

disappears indeed at the right junction (θ = 0), whereas a
phase of −π is present at the left junction, as expected. The
same procedure was applied to two other rotation frequencies,
showing that the phase difference at the right junction cancels
indeed. For these two frequencies we have assumed a linear
dependence for −�( f ), with �(3.54 Hz) = −π/2, although,
in practice, such a slope presents a small increment with the
frequency, and hence this approximation can only be taken
locally. The importance of presence of the phase � will be-
come evident when analyzing the behavior of the TM model
hopping parameters.

Finally, by inserting the order parameter (4) in the GP
equation (3), we may extract after some algebra the TM
equations of motion in terms of the particle imbalance Z =
(Nl − Nu)/N and the global phase difference between both
sites of the condensate ϕ = ϕu − ϕl :

h̄
dZ

dt
= −2K

√
1 − Z2 sin ϕ + ε(1 − Z2) sin 2ϕ, (5)

h̄
dϕ

dt
= Z

[
NUeff + 2K√

1 − Z2
cos ϕ − ε cos 2ϕ − 2ε′

]
. (6)

Here the TM model parameters are defined as fol-
lows [21–25]:

J = −
∫

d2r ψ∗
u (Ĥ0 − �L̂z )ψl , (7)

F = −gN
∫

d2r ψ∗
u |ψu|2ψl , (8)

where J and F denote the standard and interaction-driven
hopping parameters, respectively, the sum of which yields the
full hopping amplitude K . The remaining parameters are

U = g
∫

d2r |ψu|4, (9)

ε = gN
∫

d2r (ψ∗
u ψl )

2, (10)

ε′ = gN
∫

d2r |ψu|2|ψl |2. (11)

The effective on-site interaction parameter Ueff in Eq. (6)
arises from considering U in Eq. (9) as a function of the
imbalance. Such an effective parameter can be written as
Ueff = (1 − α)U , where the procedure to calculate α for an
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arbitrary number of particles is explained in Refs. [25,28]. The
Thomas-Fermi prediction [24] represents a lower bound for
the 1 − α < 1 value. On the other hand, ε and ε′, respectively,
denote the correlated hopping amplitude and the intersite
interaction parameter. We have adopted the above denomina-
tions for the hopping parameters in accordance with Ref. [23],
where it is shown that the second-quantized version of their
improved (nonrotating) TM model has a term stemming from
a nonvanishing value of ε = ε′ that contains correlated hop-
ping or two-particle tunneling [34] effects, whereas what we
have called the full hopping amplitude K only involves one-
particle processes. It is worthwhile noticing that when the
system is subject to rotation, the on-site localized functions
are intrinsically complex, and hence one can identify a pure
interaction parameter and a hopping amplitude, which are
given by Eqs. (11) and (10), respectively. In contrast, we recall
that in the nonrotating case a single parameter is obtained,
since for real localized functions such expressions coincide.
We note that in the derivation of Eqs. (5) and (6), we have
used the fact that for a double-well condensate all the model
parameters turn out to be real, as will be shown in the next
subsection.

B. TM model parameters

For a rotating ring-shaped lattice with a number of sites
larger than 2, the parameters J , F , and ε become complex
numbers, the phases of which are related to the imprinted
phase on the localized sites [30]. However, when only two
sites with two junctions are considered, it is easy to verify that
such parameters are real numbers. For instance, calling Jul the
parameter defined by Eq. (7), where the subscripts correspond
to the order of the localized functions in the integrand, and
taking into account that Ĥ0 and L̂z are Hermitian operators, we
have J∗

ul = Jlu. On the other hand, as a result of the symmetry
of the system, we have that the hopping amplitude must verify
Jul = Jlu = J and, hence, J∗

ul = Jul . The same analysis can be
applied to the remaining parameters, F , ε, and K .

A strong dependence on the rotation frequency is expected
for those parameters that depend on the imprinted phase of
the localized functions. Such is the case for K and ε, which
are depicted as functions of the frequency in Fig. 3. The
relative values of these parameters will become crucial in
determining the nature of the stationary points on different
frequency intervals.

In order to qualitatively explain the behavior of K and ε

as functions of the frequency, one can separately analyze the
origin of both terms at the right-hand side of the equation of
motion (5). First, we may consider that Ż has two contribu-
tions coming from the currents, IL and IR, flowing through
the left and right junctions, respectively. In turn, each current
has, in analogy with a single junction double-well system,
two terms, one current I (1)

i proportional to sin(ϕi), and the
other current I (2)

i proportional to sin(2ϕi ), where ϕi denotes
the phase difference at the right (i = R) and left (i = L) junc-
tions, respectively. In view of the fact that, as described in the
previous subsection, an additional phase difference � appears
at each junction, we obtain that the phase differences at each
junction are ϕR = ϕ + � and ϕL = ϕ − �. Hence, denoting
as Ż1 the time derivative of the imbalance due to the sum of
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0
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FIG. 3. TM parameters K and ε vs the rotation frequency f =
�/2π . The three frequency intervals indicated with different colors
(grayscale values) correspond to qualitatively distinct phase-space
portraits, which are characterized by the number and position of
the energy minima. The intersection points K = ±ε (red circles)
define the bifurcation frequencies f1 = 3.18 Hz and f2 = 3.90 Hz
which determine the limits of the central frequency interval where
coexist two energy minima at ϕ = 0 and π . At the central frequency
(3.54 Hz), where K = 0 (denoted by a blue square), such minima
possess the same depth. The remaining two frequency intervals,
f < f1 and f > f2, exhibit a single minimum, as indicated in the
drawing.

the currents I (1)
R and I (1)

L , we have

Ż1 ∝ sin(ϕ + �) + sin(ϕ − �) = 2 cos(�) sin(ϕ). (12)

Since Ż1 stems from the term of Eq. (5) proportional to K , we
may conclude that the parameter K should be modulated by
cos(�), and the same modulation should apply for J and F .

Analogously, we may obtain the time derivative of the
imbalance Ż2 due to the sum of the currents I (2)

R and I (2)
L as

Ż2 ∝ sin[2(ϕ + �)] + sin[2(ϕ − �)] = 2 cos(2�) sin(2ϕ),
(13)

which added to Ż1 yields, the total imbalance derivative Ż =
Ż1 + Ż2. Thus, from Eqs. (13) and (5), we may conclude that
the parameter ε should be modulated by cos(2�).

One may further use the 1D approximation −� � 
φ1D =
π�r2

0m/h̄ and define f0 = h̄/(m2πr2
0 ), from which we have

K � BK ( f ) cos( f π/ f0) and ε � Bε( f ) cos(2 f π/ f0), where,
as seen from Fig. 3, the amplitudes Bi( f ) are positive and
do not vary substantially as functions of f . For our system,
the linear relationship between � and f is less rigorous since
its modulus has a slightly increasing slope, but, as seen from
the graph, such an approximation certainly captures the main
behavior.

In nonrotating systems, the parameters F and ε were first
introduced by Ananikian and Bergeman [23] in order to im-
prove the TM model; however, as discussed by the authors,
the latter in general verifies ε � K . Hence, in most cases it is
not taken into account, or at least it is only used to introduce
small corrections [25]. In this paper the nonrotating value of ε

turns out to be about an order of magnitude smaller than K .

053319-5



D. M. JEZEK AND H. M. CATALDO PHYSICAL REVIEW A 104, 053319 (2021)

The above modulation of K implies that it should vanish
at � = −π/2, which is attained for f = 3.54 Hz. On the
other hand, at the same frequency, the hopping parameter ε

should acquire its maximum absolute value. Then, we infer
that around such � value, ε turns out to be the leading hopping
parameter of the model. As a consequence of this effect, in the
next section it will be shown that two energy minima coexist
in the phase portrait in the vicinity of such a frequency. It is
worthwhile noticing that the same type of phenomenon also
occurs at, for instance, � = −3/2π for a rotation frequency
of 10.54 Hz.

On the other hand, we have found that the parameters
U and α remain almost constant when varying the rotation
frequency, as also observed in a previous work [30]. In par-
ticular, we have utilized the values U = 1.186 × 10−2 nK and
1 − α = 0.814 for the whole frequency interval. Given that
we have assumed a rather low number of particles, we could
not make use of Thomas-Fermi estimates, and hence the value
of α was numerically obtained, as described in Refs. [25,28].
We note that such a value lies in between the 1D and 2D
Thomas-Fermi predictions.

Finally, we note that in the Appendix we discuss alternative
formulas for obtaining the TM parameters K and ε, in addition
to the above expressions (7), (8), and (10). There we show that
in the case of ε, such alternative calculations can be used to
provide results with a better accuracy.

IV. PHASE PORTRAIT

The equations of motion (5) and (6) can be written in
Hamiltonian form as

Ż = −∂H/∂ϕ and ϕ̇ = ∂H/∂Z, (14)

where the classical Hamiltonian H depends on the canonical
variables Z and ϕ as

H (Z, ϕ) =
(

NUeff

2h̄
− ε′

h̄

)
Z2 − 2

K

h̄

√
1 − Z2 cos ϕ

+ ε

2h̄
(1 − Z2) cos 2ϕ. (15)

A. Stationary points

According to (14), the stationary points correspond to the
condition of vanishing partial derivatives of the Hamiltonian
with respect to the canonical variables. For a nonrotating
condensate [21–25], given that ε < K , the stationary points
consist of an energy minimum at (Z = 0, ϕ = 0), a saddle
at (Z = 0, ϕ = π ), and two maxima at (Z � ±1, ϕ = π ).
However, these maxima do not possess stationary state coun-
terparts in the GP equation, and hence they present no physical
interest. New features appear when the condensate is subject
to rotation, as a consequence of the fact that the value of K
decreases and the absolute value of ε can become larger than
K (see Fig. 3). We will see that stationary point bifurcations
occur at certain frequencies f1 and f2, and in between them
two energy minima coexist. In particular, the first bifurcation
frequency f1 = 3.18 Hz is attained where K = −ε, a con-
dition which makes the second derivative ∂2H/∂ϕ2 vanish
at (Z = 0, ϕ = π ). This gives rise to a bifurcation along the
Z ≡ 0 axis of the kind s → 2s + m, where s denotes a saddle

-1.0 -0.5 0.0 0.5 1.0

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Z

FIG. 4. Phase-space portrait Z vs ϕ arising from the Hamilto-
nian (15) for the rotation frequency f = 3.72 Hz. Each orbit is
represented by a thin solid line, except for the separatrix that is
depicted as a thick solid line. The circles and the star, respectively,
represent the location of absolute and relative minima, while the
triangles correspond to saddles. A very good agreement with a few
selected orbits corresponding to GP simulations is observed (blue
dashed lines).

and m a minimum. Then, at increasing frequencies, such a
relative minimum stays at ϕ = π , while the saddles, located
at ϕs = ± cos−1(K/ε), move in opposite directions along the
Z ≡ 0 axis towards the point ϕ = 0. Particularly, when the
saddles reach ϕ = ±π/2 at the frequency of 3.54 Hz, the min-
ima at ϕ = 0 and π have the same energy, whereas for larger
frequencies the minimum at ϕ = π acquires a lower energy
than the minimum at ϕ = 0. Finally, at the second bifurca-
tion frequency for which ε = K , f2 = 3.90 Hz, the second
derivative ∂2H/∂ϕ2 again vanishes, provoking a bifurcation
of the type 2s + m → m. In other words, the saddles collapse
at the origin, along with the relative minimum, yielding a
single saddle at ϕ = 0 for larger frequencies, in addition to
the minimum at ϕ = π .

We display in Fig. 4 the phase portrait for the rotation
frequency f = 3.72 Hz, which belongs to the central interval
of Fig. 3, located in between the bifurcation frequencies f1

and f2. We may observe that it presents an absolute and a rel-
ative minimum at ϕ = π and zero, respectively, and a couple
of saddles at ϕs = ± cos−1(K/ε) � ±π/3 (ε � 2 K for this
frequency).

B. Dynamical regimes on the different types of phase portraits

By following the premise that the position and character of
each stationary point organize the dynamics, we may conclude
from the above study that three topologically different types
of phase portraits can be obtained, depending on in which
range of values, defined by the bifurcation points, the rotation
frequency lies. On the other hand, one can identify different
regimes for each kind of phase portrait. For instance, we
observe in Fig. 4 closed orbits around the minimum at the
origin, which are referred to as zero modes. Analogously,
the closed orbits around the minimum at ϕ = π are called π

modes. Both, the zero and π modes correspond to Josephson
oscillation regimes. On the other hand, the open orbits with
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a running phase not crossing the Z ≡ 0 axis belong to the
macroscopic quantum self-trapping regime. Such a regime is
separated from the Josephson regimes by the limiting orbit
known as the separatrix. Such a curve serves as a boundary
between different types of orbits and has been depicted as a
thick solid line in Fig. 4. Since the separatrix has the energy
of the saddle points, it is defined by the condition

H (Z, ϕ) = H (0, ϕs), (16)

where H denotes the Hamiltonian (15). One can determine
from the above equation the maximum particle imbalance Zc

that can be reached either in the zero or the π modes. In
fact, in the low-frequency interval of Fig. 3 (0 < f < f1), we
have only zero modes (ϕ = 0) and a saddle at ϕs = π , which
according to (16) and (15), and under the assumption that
NUeff is much larger than any other model parameter, yields

Zc =
√

8|K|
NUeff

, (17)

that is, the same expression obtained for the nonrotating
case [25]. On the other hand, in the central frequency interval
between the bifurcation values ( f1 < f < f2), we have both
zero and π modes, i.e., minima at ϕ = 0 and π , and saddles at
ϕs = ± cos−1(K/ε). Thus, replacing such values in Eq. (16),
we obtain the following expression for the critical imbalances
Z+

c and Z−
c of the zero and π modes, respectively:

Z±
c =

√
−2

εNUeff
(ε ∓ K )2. (18)

Replacing in the above expression the parameter values corre-
sponding to the phase portrait of Fig. 4, one obtains a quotient
Z−

c /Z+
c = 3, which turns out to be in accordance with the

separatrix values at ϕ = π and zero, as seen in the graph.
Finally, it is easy to show that the critical imbalance for the π

modes of the last frequency interval, f > f2, in Fig. 3, is again
given by the expression (17). We note that it is straightforward
to verify that Eqs. (17) and (18) coincide at the bifurcation
frequencies, as expected. Such theoretical predictions, which
show an excellent agreement with the GP simulation results,
are depicted in Fig. 5.

V. DYNAMICS

First, it is interesting to analyze the impact that both the
correlated hopping and the intersite interaction parameters,
have on the time periods when varying the rotation frequency.
In the nonrotating case, a system for which such a correction
(ε = ε′) cannot be neglected was recently considered [25].
There it was shown that the main effect was restricted to low
imbalances in the Josephson regime. That is, such a correction
turned out to be appreciable only in the SO limit, with a
decreasing incidence for increasing particle imbalances up to
the critical value and negligible effects in the self-trapping
regime. In the present rotating case, we will focus on the SO
approximation for the time periods, which is expected to be
deeply modified at frequencies where ε becomes of the order

FIG. 5. Critical particle imbalance vs the rotation frequency. The
vertical dashed lines indicate the bifurcation frequencies, which sep-
arate the three frequency intervals of Fig. 3. The circles denote the
values of GP simulation results, while the full lines correspond to the
theoretical predictions (17) and (18). The results belonging to zero
modes (π modes) are depicted in red (black).

of K . Then, by linearizing the equations of motion we obtain

T± = π h̄√
(±K − ε)(NUeff/2 ± K − ε/2 − ε′)

, (19)

where T+ (T−) denotes the SO period of the zero (π ) modes.
We note that the above formula for T+ reduces to the one
previously obtained in Ref. [25] for a nonrotating condensate
by taking ε = ε′. Given that NUeff turns out to be much greater
than the remaining parameters, the intersite interaction has
a negligible effect on (19). On the other hand, divergencies
of the period occur at the bifurcation frequencies due to the
(±K − ε) factor in the denominator. In Fig. 6, we display
the results arising from Eq. (19) (solid lines), together with
the corresponding results for vanishing values of ε and ε′
(dashed lines). Thus, we may observe that for the condensate
without rotation, the period does not differ appreciably from
that of the ε = ε′ = 0 case, as happens for most nonrotating

0 1 2 3 4 5 6 7
0

100

200

300

_TT
+

T
 (

m
s)

f (Hz)

FIG. 6. SO periods T+ and T− given by Eq. (19) vs the rotational
frequency f (solid lines). The vertical dotted lines indicate the bi-
furcation frequencies which separate the three frequency intervals of
Fig. 3. Within the central interval, the vertical red line corresponds
to the frequency f = 3.72 Hz of the phase portrait of Fig. 4. We
also depict as dashed lines the periods obtained from Eq. (19) with
vanishing values of ε and ε′.
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FIG. 7. Time evolution of the imbalance (a), (b) and phase difference (c), (d) for the Josephson modes of the condensate rotating at
f = 3.72 Hz. Left (a), (c) and right (b), (d) panels show the zero and π modes, respectively. Black solid (blue dashed) lines correspond to TM
model (GP simulation) results.

systems. In contrast, for the rotating condensate, even out
of the two-minimum zone delimited by the bifurcation fre-
quencies, there exists a sizable difference between the dashed
and solid lines in Fig. 6. Particularly, above f = 2 Hz such
a separation between lines becomes very visible, reflecting
the incidence of the correlated hopping on the period. Time
evolutions of particle imbalance and phase difference for ini-
tial conditions within the Josephson and self-trapping regimes
are shown in Figs. 7 and 8, respectively. We have considered
the case of the rotation frequency 3.72 Hz, the phase-space
portrait of which was discussed in Sec. IV. The left panels
of Fig. 7 show the evolutions obtained from the TM model
and the GP simulations for the zero-mode Josephson orbit
depicted in Fig. 4, whereas the corresponding evolutions of
the π mode of the smaller orbit are shown on the right panels.
We note that the time periods in the SO approximation for the
present frequency (marked with a vertical red line in Fig. 6)
are around T+ � 250 ms and T− � 150 ms, for the zero and π

modes, respectively. Such values can be considered as rough
estimates of the periods of Fig. 7, where we observe a closer
estimate for the π mode, despite its larger initial imbalance.
This is due to the fact that such an orbit lies farther from the
separatrix than the zero mode. Actually, it has been shown in

Ref. [25] that the SO periods constitute lower bounds of the
Josephson periods, which, on the other hand, diverge when
approaching the critical imbalance.

Finally, Fig. 8 displays the time evolution of particle imbal-
ance and phase difference for the self-trapping orbit of Fig. 4
with the initial conditions Z (0) = 0.017 and ϕ(0) = −π . We
may see that the imbalance presents peaks of absolute and
relative maxima corresponding to ϕ = ±π and zero, respec-
tively, which is in accordance with having a larger Zc for
the π mode than that of the zero mode, as shown in Fig. 5.
Given that also in the self-trapping regime the dominant term
of the right-hand side of Eq. (6) is the first one, one can
approximate the period as TST = 2π h̄/(〈Z〉NUeff ), where 〈Z〉
denotes the mean value of the imbalance over one period.
Hence, the above modulation of the imbalance due to the role
of the hopping amplitude ε indirectly affects the time period.
In particular, the period observed in Fig. 8 is about 140 ms,
which is consistent with 〈Z〉N � 35.

To conclude we remark that a very good agreement be-
tween the TM model and the GP simulation results was
observed for all the rotational frequencies we have explored,
and the above exposed results may be taken as a representative
example of such an accordance.
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FIG. 8. Particle imbalance and phase difference vs time are
shown in the upper (a) and lower (b) panel, respectively. The
initial conditions Z (0) = 0.017 and ϕ(0) = −π correspond to a
self-trapping orbit in Fig. 3. The black solid and blue dashed lines
correspond to the TM model and GP simulation results, respectively.

VI. CONCLUSION

We have shown that by rotating a toroidal-type double-
well condensate, a much richer dynamics of the macroscopic
conjugate coordinates can emerge, basically the coexistence
of Josephson zero and π modes. Our findings have relied on
a TM model suitable for such a rotating system. We have
shown that the behavior of the hopping amplitudes K and ε

with respect to rotation leads to an inversion of their rela-
tive strengths, as compared to the usual nonrotating relative
values. Such parameters exhibit periodic modulations as func-
tions of the rotational frequency, but, given that the period
of one of them is one-half of the other, there exist crossings
between such curves. In particular, at the frequencies where
the absolute values of both hopping amplitudes coincide, bi-
furcations of stationary points in the phase space occur, which
in turn give rise to the coexistence of two regimes of Joseph-
son modes. We have shown that the frequency periods of

such parameters can be easily estimated using a 1D approach,
which may be useful for designing a convenient experimental
setup to reproduce this dynamics.

An extra benefit of having explored the rotation aspects
of the system was to gain a more profound insight on the
nature of the model parameters. Due to the phase gradient
experimented by the on-site localized functions, we were able
to distinguish between the hopping and interaction parame-
ters ε and ε′, which are coincident in the nonrotating case.
Moreover, as previously observed, such a correlated hopping
can be related to the tunneling of pairs of particles, which
suggests that the coexistence of Josephson modes could be
a consequence of such tunneling processes.

To conclude, we have presented a simple and quite accurate
bimodal model of the rotation dynamics of a dc AQUID,
which can be regarded as an important advance to be em-
ployed to analyze the interference of persistent currents in
atomtronic devices.
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APPENDIX: ALTERNATIVE CALCULATION OF THE TM
PARAMETERS K AND ε

There is a simple relationship between the parameter K and
the energy gap between both stationary states:

K = 
E/2, (A1)

where 
E = E1 − E0, with E1 (E0) the energy per particle
of the stationary state with winding number n = 1 (n = 0)
obtained from the GP equation. Equation (A1) provides a
useful tool to test the accuracy of the TM model. For instance,
if the potential barriers were not high enough, or the on-site
functions were not properly localized, the energies E1 and E0

would not satisfy (A1) [29]. Then, we have utilized the above
formula to test such accuracy of the K values obtained from
the integrals (7) and (8), finding a coincidence within four
digits along the whole frequency range of Fig. 3.

It is worthwhile noticing that the above winding numbers
correspond to the nonrotating case, as they can change in
amounts of two units at increasing angular velocities due to
the discrete twofold rotational symmetry of the system [30].
For instance, the stationary state of winding number n = 0
acquires for frequencies approaching 7 Hz the value n = 2,
whereas the stationary state of winding number n = 1 con-
serves this value for the whole frequency range shown in
Fig. 3.

In Sec. V, the parameters ε and ε′ were shown to be related
according to Eq. (19) to the SO period arising from the Hamil-
tonian (15). Now, taking into account that we work with a
NUeff value which is three orders of magnitude larger than the
remaining parameters K , ε and ε′, we may approximate (19)
as

T± = π h̄

√
2

NUeff (±K − ε)
, (A2)
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from which we may obtain the following expression,

ε = ±K − 2π2h̄2

NUeff T 2±
, (A3)

which was in fact utilized to calculate the values of the param-
eter ε, given that it provides results of a much better accuracy
than the numerical integration of expression (10).

[1] L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura,
L. -C. Kwek, D. Aghamalyan, V. Ahufinger, D. Anderson, N.
Andrei et al., AVS Quantum Sci. 3, 039201 (2021); L. Amico,
D. Anderson, M. Boshier, J. -P. Brantut, L. -C. Kwek, A.
Minguzzi, and W. von Klitzing, arXiv:2107.08561 (2021).

[2] J. Clarke and A. I. Braginski, The SQUID Handbook (Wiley,
New York, 2004); R. L. Fagaly, Rev. Sci. Instrum. 77, 101101
(2006).

[3] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and
G. K. Campbell, Phys. Rev. Lett. 110, 025302 (2013).

[4] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark,
C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell,
Nature (London) 506, 200 (2014).

[5] J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Rev. Mod.
Phys. 83, 1523 (2011).

[6] Y. Sato and R. E. Packard, Rep. Prog. Phys. 75, 016401
(2012).

[7] C. Ryu, E. C. Samson, and M. G. Boshier, Nat. Commun. 11,
3338 (2020).

[8] G. Pelegrí, J. Mompart, and V. Ahufinger, New J. Phys. 20,
103001 (2018).

[9] E. Nicolau, J. Mompart, B. Juliá-Díaz, and V. Ahufinger, Phys.
Rev. A 102, 023331 (2020).

[10] P. Kumar, T. Biswas, K. Feliz, R. Kanamoto, M.-S. Chang,
A. K. Jha, and M. Bhattacharya, Phys. Rev. Lett. 127, 113601
(2021).

[11] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

[12] C. Ryu, P. W. Blackburn, A. A. Blinova, and M. G. Boshier,
Phys. Rev. Lett. 111, 205301 (2013).

[13] F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards,
C. J. Lobb, and G. K. Campbell, Phys. Rev. Lett. 113, 045305
(2014).

[14] D. Aghalmalyan, M. Cominotti, M. Rizzi, D. Rossini, F.
Hekking, A. Minguzzi, L. -C. Kwek, and L. Amico, New J.
Phys. 17, 045023 (2015).

[15] D. Aghalmalyan, N. T. Nguyen, F. Auksztol, K. S.
Gan, M. Martínez Valado, P. C. Condylis, L.-C. Kwek,

R. Dumke, and L. Amico, New J. Phys. 18, 075013
(2016).

[16] L. Amico, D. Aghalmalyan, F. Auksztol, H. Crepaz, R. Dumke,
and L.-C. Kwek, Sci. Rep. 4, 4298 (2014).

[17] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).

[18] J. Polo, R. Dubessy, P. Pedri, H. Perrin, and A. Minguzzi, Phys.
Rev. Lett. 123, 195301 (2019).

[19] A. Pérez-Obiol, J. Polo, and T. Cheon, Phys. Rev. A 102,
063302 (2020).

[20] R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).
[21] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.

Rev. Lett. 79, 4950 (1997).
[22] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.

Rev. A 59, 620 (1999).
[23] D. Ananikian and T. Bergeman, Phys. Rev. A 73, 013604

(2006).
[24] D. M. Jezek, P. Capuzzi, and H. M. Cataldo, Phys. Rev. A 87,

053625 (2013).
[25] M. Nigro, P. Capuzzi, H. M. Cataldo, and D. M. Jezek, Eur.

Phys. J. D 71, 297 (2017).
[26] H. M. Cataldo and D. M. Jezek, Phys. Rev. A 90, 043610

(2014).
[27] H. M. Cataldo, Phys. Rev. A 102, 023323 (2020).
[28] D. M. Jezek and H. M. Cataldo, Phys. Rev. A 88, 013636

(2013).
[29] M. Nigro, P. Capuzzi, H. M. Cataldo, and D. M. Jezek, Phys.

Rev. A 97, 013626 (2018).
[30] M. Nigro, P. Capuzzi, and D. M. Jezek, J. Phys. B 53, 025301

(2020).
[31] E. M. Wright, J. Arlt, and K. Dholakia, Phys. Rev. A 63, 013608

(2000).
[32] Y. Castin and R. Dum, Eur. Phys. J. D 7, 399 (1999).
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