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Time-domain Landau-Zener-Stückelberg-Majorana interference in an optical lattice clock

Wei-Xin Liu (���),1 Tao Wang (��) ,2,3,* Xue-Feng Zhang (���) ,2,3 and Wei-Dong Li (���)4

1Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices,
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

2Department of Physics, and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
3Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, China
4Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology,

Center for Advanced Material Diagnostic Technology, and College of Engineering Physics,
Shenzhen Technology University, Shenzhen 518118, China

(Received 9 September 2021; accepted 3 November 2021; published 22 November 2021)

The interference between a sequence of Landau-Zener (LZ) transitions can produce Rabi oscillations
(LZROs). This phenomenon is a kind of time-domain Landau-Zener-Stückelberg-Majorana (LZSM) interfer-
ence. However, experimental demonstrations of this LZSM interference induced Rabi oscillation are extremely
hard due to the short coherence time of the driven quantum system. Here, we study theoretically the time-domain
LZSM interference between the clock transition in a one-dimensional 87Sr optical lattice clock (OLC) system.
With the help of both the adiabatic-impulse model and Floquet numerical simulation method, the LZROs with
special steplike structure are clearly found both in the fast- and slow-passage limit in the real experiment
parameter regions. In addition, the dephasing effect caused by the system temperature can be suppressed with
destructive interference in the slow-passage limit. Finally, we discuss the possible Bloch-Siegert shift while the
pulse time is away from the half-integer and integer periods. Our work provides a clear road map to observe the
LZROs on the OLC platform.
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I. INTRODUCTION

The transition between two energy states at an avoided
level crossing is known as the Landau-Zener (LZ) transi-
tion. When the system is modulated to traverse the avoided
crossing points back and forth, the phase collected between
two levels during the transition may result in constructive or
destructive interference, which is often referred to as Landau-
Zener-Stückelberg-Majorana (LZSM) interference [1–4]. The
LZSM interference is analyzed in a variety of physical sys-
tems [5–16], and it provides a possible approach to control the
quantum states and build quantum gates for quantum comput-
ing [17–21]. In particular, the LZSM interference process can
be used for designing an interferometer if it can be coupled to
the environment [22,23].

On the other hand, the interference between multiple suc-
cessive LZ transitions can lead to periodic oscillations of the
population in different energy levels [24,25], which is similar
to Rabi oscillations [26]. Although these time-domain oscil-
lations of LZSM interferences are usually named LZ-Rabi
oscillations (LZROs), they present more rich and distinctive
phenomena [27,28] in comparison with the conventional Rabi
oscillations. Meanwhile, they can also be used to analyze the
decay rate of the quantum system [27,29]. In comparison with
LZSM interference which has just been observed in various
experiments [6–8,13,30], the time-domain LZROs are hardly
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realized because the coherence time of most related systems is
practically shorter than the requirement for a long sequence of
LZ processes. It has only been demonstrated by making use of
the nitrogen-vacancy (NV) center in diamond [27], however,
and never observed in the atomic system.

The OLC system, based on the doubly forbidden clock
transition between 1S0(|g〉) and 3P0(|e〉), is one of the most ap-
propriate candidates for observing LZROs. The long lifetime
of the excited clock state helps to keep the coherence and can
also reduce the atom loss caused by the spontaneous emission
[31,32]. On the other hand, based on the state-insensitive
optical trap with “magic” wavelength, the fairly clean OLC
system can finely tailor the target Hamiltonian [33,34]. Then,
the only task left would be periodically modulating the transi-
tion frequency.

Recently, it has been realized in a one-dimensional 87Sr
OLC system by modulating the lattice frequency around the
magic wavelength [35,36]. Due to the Doppler effect, the
dynamics of the internal clock transition is governed by a
photon-assisted LZSM Hamiltonian [24,30,37],

Ĥnz,nx

LZSM(t ) = h̄

2
[δ + Aωs cos(ωst )]σ̂z + h̄

2
gnz,nx σ̂x, (1)

where δ is the frequency difference between the two-level
energy gap and clock laser, ωs is the driving frequency, A is
the renormalized dimensionless driving amplitude, and gnz,nx

is the clock laser coupling strength of the external energy
level |nz, nx〉 [35,38]. As demonstrated in previous work [35],
more than ten Floquet sidebands are clearly observed with
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stable spectroscopy sensitivity, and it can be well understood
under the resolved sideband approximation (RSBA) in the
parameter region ωs � gnz,nx . Meanwhile, the dynamics of the
Floquet sidebands shows smooth sinusoidal behavior which
follows the Rabi oscillations with effective coupling strengths
modified by Bessel functions. However, the characteristics of
LZROs are not found, such as the population oscillations with
steplike structure.

In this manuscript, we study theoretically the time-domain
LZSM interference between the clock states of the OLC sys-
tem. Our proposal is based on the experimentally realized
driven OLC system with Hamiltonian Eq. (1) [35]. Different
from a previous paper [35] working on the RSBA, we enter
into the parameter regions beyond RSBA and make use of the
Floquet theory to solve the system and get accurate numer-
ical results. Meanwhile, we also give an analytic expression
and qualitative explanation with the analytic approach—an
adiabatic-impulse model (AIM) [24,39]—to describe the time
evolution of the system. The LZSM interference between the
clock states is studied in both fast and slow passage limits
and the temperature effect is well treated. The AIM results
agree well with the numerical results from the Floquet ap-
proach and the time-domain LZROs are found in both limits.
In the slow-passage limit, we found the analytic expression
of coarse-grained oscillation with effective Rabi frequency is
also suitable for the half-integer period in the adiabatic basis.
At last, the fixing of zero detuning in the real experiment
parameter region is analyzed, so that the time-domain LZSM
interference can be possibly experimentally observed in the
driven OLC platform under the proper chosen parameter re-
gion [35].

The manuscript is organized as follows. In Sec. II,
we briefly review the Landau-Zener problem and related
adiabatic-impulse model method. In Sec. III A, we discuss the
Landau-Zener transition in the first half period. In Sec. III B,
we turn to the LZSM interference at one whole period with
two avoided crossing points. In Sec. III C, we consider the
multiperiods in both slow- and fast-passage limits, and the
time-domain LZROs observed with effective Rabi frequency
matches well with the analytic results. In Sec. IV, we discuss
the frequency shift during the time-domain LZROs. We make
a conclusion in Sec. V. A brief description of the model of the
driven OLC system and the Floquet approach are introduced
in Appendixes A and B, respectively.

II. LANDAU-ZENER PROBLEM

A. Model

The Landau-Zener problem can be described with the
generic LZSM Hamiltonian,

ĤLZSM(t ) = h̄

2
ε(t )σ̂z + h̄

2
gσ̂x, (2)

where ε(t ) is the time-dependent longitudinal driving, g is
a constant coupling, and the eigenstates of the Pauli ma-
trix σ̂z are also called diabatic states or basis |g〉, |e〉. On
the other hand, if we solve the instantaneous eigenfunction
ĤLZSM(t )|ϕ(t )〉 = E (t )|ϕ(t )〉, we can obtain the instantaneous
eigenvalues or eigenenergies E±(t ) = ± h̄

2

√
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FIG. 1. Energy sketch of the driven two-level system. (a) Energy
levels versus the driving field ε(t ) = vt . The two solid blue curves
represent the adiabatic energy levels ϕ± and the dashed red lines
show the crossing diabatic levels |e〉 and |g〉. (b) Time evolution of
the energy levels during one period. At the avoided crossing (the area
denoted by arrows), the system undergoes LZ transition described by
unitary transfer matrix X . The shaded areas indicate the phases φ1,2,3

collected during the adiabatic evolution. The diabatic energy levels
are shown by the dashed red lines.

instantaneous eigenstates:

|ϕ+(t )〉 = sin
θ (t )

2
|g〉 + cos

θ (t )

2
|e〉, ‖ϕ−(t )〉

= cos
θ (t )

2
|g〉 − sin

θ (t )

2
|e〉, (3)

where θ (t ) = arctan[g/ε(t )], and |ϕ±(t )〉 are also named as
the adiabatic basis. When g = 0, the energy gap closes at the
zero points of ε(t ). After linearly expanding ε(t ) around the
zero point, it can be approximately written as vt , where v is
the sweep rate. As shown in Fig. 1(a) in the negative t region,
the adiabatic states |ϕ+(t )〉 and |ϕ−(t )〉 are the same as dia-
batic states |g〉 and |e〉. In contrast, they will exchange when
passing the energy crossing point (zero point) and entering the
positive t region.

When g is nonzero, the two adiabatic states display an
avoided crossing with the gap h̄g at t = 0. When far away
from the avoided crossing point [meaning when |ε(t )| � g],
the adiabatic states coincide asymptotically with the diabatic
states [see Fig. 1(a)]. In the LZ model, one can exactly get the
final quantum state for an arbitrary initial state by expressing
the Schrödinger equation in terms of the Weber functions
[2,24]. Assuming the system is in the ground state |g〉 at
initial time ti = −∞, then the probability in |g〉 at final time
t f = +∞ is exactly given by the famous LZ formula [1–3]

PLZ = exp(−2πχ ), (4)

with χ = g2/(4v) called the adiabatic parameter. In the fast-
passage limit (χ � 1), PLZ ≈ 1 means the sweep rate is so fast
that the system evolves along the diabatic state. In the opposite
case—the slow-passage limit (χ � 1)—PLZ ≈ 0+ indicates
the system follows the adiabatic path.

B. Adiabatic-impulse model

In the LZ model, the adiabatic states change rather rapidly
around the region of the avoided crossing but approximately
keep constant when far from that region. Thus the evolution
of the system can be approximately treated as experiencing
a nonadiabatic transition just at the avoided crossing point
(t = 0), apart from which the system undergoes a free adi-
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abatic time evolution, and it is called an adiabatic-impulse
model (AIM). The adiabatic evolution can be described with
the help of the unitary evolution matrix in the adiabatic basis

Uφ = e−iφ(t f ,ti )σ̂z , (5)

where φ(t f , ti ) is the dynamical phase accumulated from ini-
tial time ti to final time t f ,

φ(t f , ti ) = 1

2h̄

∫ t f

ti

[E+(t ) − E−(t )] dt . (6)

Meanwhile, the instantaneous nonadiabatic transition is ap-
proximately governed by the time-independent unitary matrix
[7,24,37]

X =
(√

1 − PLZ exp(−iϕ)
√

PLZ

−√
PLZ

√
1 − PLZ exp(iϕ)

)
, (7)

where ϕ = −π/4 + χ (ln χ − 1) + arg[�(1 − iχ )] and � is
the Gamma function. ϕ approaches −π/4 in the fast-passage
limit and −π/2 in the slow-passage limit. Then, the dynamics
of the Landau-Zener problem from initial time ti < 0 to final
time t f > 0 can be proximately in a description of the AIM
with the combined evolution matrices Uφ(t f ,0)XUφ(0,ti ).

In the AIM, the duration time of the LZ transition, which
is called the LZ jump time, at the avoided crossing point is
treated as zero. In order to check the goodness of the approx-
imation, the LZ jump time is defined as tLZ = P(∞)/P′(0),
where P(∞) is the asymptotic value of the LZ transition and
P′(0) is the time derivative of the transition probability at the
crossing point t = 0 [40]. In the diabatic basis, it proves the
following relation as tLZ ∼ 2

√
π/v for χ � 1 and tLZ ∼ 2g/v

for χ � 1 [40,41]. Apparently, the AIM requires the LZ jump
time to be sufficiently shorter than the time interval of the
successive two LZ transitions.

III. LZSM INTERFERENCE IN OLC

A. LZ transition in half period

The OLC system under longitudinal periodical modula-
tion in description of Hamiltonian Eq. (1) can be taken as
two LZ transitions in one period T = 2π/ωs with ε(t ) =
δ + Aωs cos(ωst ) and g = gnz,nx . When the driving frequency
ωs is larger than δ/A, the ε(t ) achieves two zero points
at t1 = arccos[− δ

Aωs
]/ωs + nT and t2 = T − t1 + nT , where

n ∈ Z [see Fig. 1(b)]. Then, in the vicinity of these avoided
crossing points, the linear approximation can be taken, i.e.,
ε(t ) ≈ ∓vt with v = Aω2

s

√
1 − [δ/(Aωs)]2, so that the AIM

can be utilized.
Different from the LZ transition of the one-body problem,

the cold atoms in the OLC platform are trapped in each lattice
site and follow the Boltzmann distribution in the external
motional energy levels. Then, the temperature will cause de-
phasing because the atoms in different motional states follow
different LZ transitions. Therefore, the asymptotic popula-
tion PLZ should be modified by thermally averaging with the
Boltzmann-weighted superposition of all external states, that
is

〈PLZ〉T =
∑
nz,nx

q(nz )q(nx ) exp

(
−πg2

nz,nx

2v

)
, (8)

where q(nz,x ) are Boltzmann factors in different di-
rections, given in Eq. (A5). We also define 〈O〉T =∑

nz,nx
O(nz, nx )q(nz )q(nx ) hereafter, where O(nz, nx ) is the

observable of external state |nz, nx〉 (see Appendix A). In
order to simulate the experiment, we choose the parameters
the same as the 1D 87Sr OLC system [35], i.e., the longitudi-
nal (transverse) frequency is νz = 65 kHz (νx = 250 Hz), the
number of states in the longitudinal (transverse) direction is
Nz = 5 (Nx = 1300), and the misalignment angle is θ = 10
mrad. In order to quantitatively verify the temperature effect,
we also adopt the numerical Floquet method (see Appendix B)
[42]. The population probabilities of state |e〉 as the function
of time t are analyzed in both (a) the fast-passage limit at A =
13.3, g/ωs = 0.6 and (b) the slow-passage limit at A = 21.8,
g/ωs = 5. As shown in Fig. 2, the numerical results (solid
lines) are approaching the asymptotic LZ results 1 − 〈PLZ〉T

(dashed lines). In both cases, a clear jump can be observed
around the diabatic states crossing point t1 = T/4 with zero
detuning. Due to the time interval of the two successive LZ
transitions at t1 and t2 being T/2, the LZ jump time (the
region between the black dotted lines) 〈tLZ〉T � 0.15T , which
is smaller than T/2, is consistent with the steplike structures,
although it is strictly not an instantaneous moment. Mean-
while, we find that increasing the temperature can strongly
depress the excitation, and it is because the Rabi frequency in
higher external energy levels is smaller (see Appendix A). On
the other hand, the different evolution behaviors are apparent
in the slow- and fast-passage limits. The high probability of
excitation in the slow-passage limit demonstrates the adiabatic
process, whereas near zero value in the fast-passage limit
reflects the nonadiabaticity. Meanwhile, the first derivatives
of Pe in the insets of Fig. 2 present different behavior in
different limits, and it may result from the state changing in
the slow-passage limit. Considering the temperature will not
change the step structure and the transition point; it is set to
be 1 μK in the following sections.

B. LZSM interference in one period

Based on the AIM, the LZ transition can be approximately
studied via combined evolution matrices. Similarly, as shown
in Fig. 1(b), the evolution matrices at the avoided crossing
points t1 and t2 are X . Meanwhile, in the other time regions,
the corresponding unitary evolution matrix Uφ is with differ-
ent accumulated phase φ. Then, the whole dynamical process
is described by the following matrix:

UT = Uφ3 XUφ2 XUφ1 =
(

α −γ ∗
γ α∗

)
, (9)

where

α = (1 − PLZ)e−iζ+ − PLZe−iζ− , (10)

γ = −2
√

PLZ(1 − PLZ) cos(φ2 + ϕ)e−i(φ1−φ3 ), (11)

with ζ+ = 2ϕ + (φ1 + φ3) + φ2 and ζ− = (φ1 + φ3) − φ2,
φi = φ(ti, ti−1), and T = t3 − t0. If assuming the system is
prepared in the ground state |g〉 at t0 = 0, the population
probability of the excited state |e〉 after one single period can
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FIG. 2. LZ transition probability in half driving period. The pop-
ulation probability of state |e〉 is plotted as a function of time with
zero detuning in (a) the fast-passage limit with A = 13.3, g/ωs = 0.6
and (b) the slow-passage limit with A = 21.8, g/ωs = 5. The solid
lines with red asterisk, blue square, and black circle markers are
the numerical results in the temperature 1 μK, 2 μK, and 3μK,
respectively, and the horizontal dashed lines (from top to bottom) are
the corresponding asymptotic LZ transition probability 1 − 〈PLZ〉T .
The time regions between the dotted black lines indicate the jump
time of LZ transition 〈tLZ〉T , which almost remains unchanged in
the different temperatures above. The solid (vertical) orange line
indicates the position of the nonadiabatic X transition. The insets
present the numerical results of first derivatives of 〈Pe〉T versus time.

be calculated as

PT = |γ |2 = 4PLZ(1 − PLZ) cos2(φ2 + ϕ). (12)

We can find PT is irrelevant to the φ1 and φ3, which means
only the intermediate region between two avoided crossing
points takes effect.

The population of the excited state oscillates as a function
of the interference phase φT = φ2 + ϕ and it can be inter-
preted physically as a quantum interference between the two
paths along which the system evolves. In comparison with
the Mach-Zehnder interferometer in which interference of
paths is located in real space, the paths of our system are

in phase space. Meanwhile, the avoided crossing acts as a
beam splitter and the evolution path acts as the two arms
of the Mach-Zehnder interferometer [6,43]. The destructive
interference PT = 0 happens at φT = (n + 1/2)π , while the
constructive one with PT = 4PLZ(1 − PLZ) at φT = nπ . For
the Hamiltonian Eq. (1), φ2 can be calculated analytically at
δ = 0 from Eq. (6) [44]

φ2 =
√

A2ω2
s + g2

nz,nx

ωs
EllipticE

⎛
⎝ Aωs√

A2ω2
s + g2

nz,nx

⎞
⎠, (13)

where EllipticE() is the complete elliptic integral of the sec-
ond kind, so the analytic value of φT = φ2 + ϕ can be exactly
obtained. In Fig. 3, we show the numerical results of construc-
tive and destructive interference in one period at zero detuning
in (a) the fast-passage limit with 〈φT 〉T � 4π (7/2π ) for con-
structive (destructive) interference and (b) the slow-passage
limit with 〈φT 〉T � 7π (13/2π ) for constructive (destructive)
interference. The analytic solution Eq. (12) denotes the max-
imum of population is 〈4PLZ(1 − PLZ)〉T and the numerical
results of constructive interference in both limits can be found
oscillating around it (dashed red lines) from Fig. 3. There-
fore, with the help of Eq. (13), we can check the relation
between the interference phase 〈φT 〉T and the renormalized
driving amplitude A. As shown in the inset of Fig. 3, it follows
monotonic increase, but also presents nice linearity in a large
parameter region. It indicates the LZSM interference in the
OLC platform can be flexibly tuned.

C. Time-domain LZROs for multiperiod

One of the better advantages of the ultracold 87Sr OLC
platform is its long coherence time, so it is straightforward
to expect observing the time-domain LZROs when consider-
ing the multiple LZ processes. Following the mathematics of
Appendix B of Ref. [24], the time evolution over N periods
is governed by the N th power of the single-period evolution
operator

U N
T = (Uφ3 XUφ2 XUφ1 )N . (14)

By diagonalizing the operator UT , we can obtain

UT = MET M†, (15)

with

M = 1

Q

(
α∗ − e−i� γ ∗

−γ α − ei�

)
, (16)

ET =
(

e−i� 0
0 ei�

)
, (17)

where Q =
√

|r|2 + |α − e−i�|2, cos � = Reα, and thus

U N
T = MEN

T M† =
(

u11 −u∗
21

u21 u∗
11

)
, (18)

u11 = cos N� + i(Imα)
sin N�

sin �
, (19)

u21 = γ
sin N�

sin �
, (20)
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FIG. 3. Constructive versus destructive interference in one pe-
riod. The population probability of state |e〉 is plotted as a function
of time with zero detuning in (a) the fast-passage limit at g/ωs =
0.6, A = 13.3 for constructive interference (red line with asterisk
markers) and A = 11.75 for destructive interference (blue line with
square markers); (b) the slow-passage limit at g/ωs = 5, A = 21.8
for constructive interference (red line with asterisk markers) and
A = 20.2 for destructive interference (blue line with square markers).
Meanwhile, the dashed red lines are the LZSM results 〈4PLZ(1 −
PLZ )〉T . The insets in both figures are the relationship between the
interference phase 〈φT 〉T and A, where the asterisk (square) markers
correspond to the constructive (destructive) interference.

where cos � = Reα [24]. Then the population probability of
state |e〉 after N periods is

Pe = |u21|2 = |γ |2
|γ |2 + (Imα)2

sin2 N�. (21)

We can correspond the integer periods’ time-dependent factor
sin2 N� in Eq. (21) to a coarse-grained oscillation sin2 �

2 t
with frequency � = ωs

π
arccos |Reα|, when � is smaller than

the driving frequency ωs [25,28,45]. If Imα = 0 with solution

PLZ sin ζ− = (1 − PLZ) sin ζ+, (22)

0 2 4 6 8 10 12 14 16

t/T
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0.2

0.4

0.6

0.8

1

P
e

LZRO

CDT

FIG. 4. Multiple driving periods in the fast-passage limit. The
population probability of state |e〉 is plotted as a function of time
with zero detuning. The parameters for red (upper) and blue (lower)
lines are the same as those in Fig. 3(a). The dashed black line shows
the coarse-grained oscillation with the Rabi frequency Eq. (24) for
constructive interference. Destructive interference corresponding to
CDT is shown with solid blue lines. All the solid lines are numerical
results from the Floquet method.

which is called the resonance condition, the amplitude of Pe

achieves its maximum value.
In the fast-passage limit, 1 − PLZ ≈ 0+, the resonance con-

dition Eq. (22) is proximate ζ− = kπ . In the large driving
amplitude limit Aωs � gnz,nx , we can approximately derive an
analytic result [24,25]

ζ− � 1

2

∫ T

0
δ + Aωs cos(ωst ) dt = δπ

ωs
, (23)

so the resonance condition changes into δ = kωs, which is
the same as the kth Floquet sideband in Ref. [35] with a
resolved Floquet sideband approximation (RFSA) in the con-
dition ωs � gnz,nx . Meanwhile, the oscillation frequency can
be expressed as

� = gnz,nx

√
2

Aπ
cos

[
A − π

4
(2k + 1)

]
(24)

and it will approach the effective Rabi frequency of the
kth Floquet sideband geff

k = gnz,nx Jk (A) [35] because of
the asymptotic behavior of the Bessel functions: Jk (A) ∼√

2
Aπ

cos[A − π
4 (2k + 1)] at A � |k|.

In the slow-passage limit PLZ ≈ 0, the resonance condition
is proximate ζ+ = kπ . Assuming Aωs � gnz,nx and δ = 0,
we get ζ+ � 2A − π [24,28]. Then the resonance condition
for constructive interference takes the form A = π

2 (2k + 1)
with integer k and the corresponding oscillation frequency is
� = 2ωs

π

√
PLZ. Moreover, the resonance condition for destruc-

tive interference is A = kπ , which corresponds to PT = 0 in
Eq. (12).

In order to check the analysis above based on the AIM,
we also implement the numerical simulation of long-time
evolution. In the fast-passage limit, as shown in Fig. 4, we plot
the population probability of excited state Pe as the function
of time t . We can see that Pe exhibits a clear oscillation
with steplike structure, and it matches well with the Rabi
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FIG. 5. Time-domain LZSM interference fringes in the fast-
passage limit. The excited-state population probability Pe is plotted
as a function of driving amplitude A and the detuning δ at (a) t =
1.5T and (b) t = 3T and g/ωs = 0.6. The dashed red lines denote the
boundary of the LZSM interference: the region above them indicates
the system can experience avoided crossing.

oscillation with effective frequency given in Eq. (24) (dashed
black line). Meanwhile, because of the dephasing effect
caused by temperature, the magnitude of Pe is decreasing
over time. On the other hand, the solid blue line indicates
the destructive interference between diabatic states, which
also corresponds to the so-called coherent destruction of
tunneling (CDT) [46]. The CDT phenomena can also be un-
derstood with the help of the Rabi frequency Eq. (24). The
destructive interference with A = 11.75, k = 0 corresponds to
J0(11.75) � 0 and � � 0. So the CDT can also be interpreted
as the disappearance of the effective Rabi frequency of the
zeroth Floquet sideband [47].

Meanwhile, the time-domain interference fringes in the
fast-passage limit at a certain driving time are shown in
Fig. 5. Compared with the Fig. 7 of Ref. [24], which is the
time-averaged LZSM interference, here we show the inter-
ference pattern at different evolution times. We can see that,
along with the increase of driving amplitude A, more inter-

(a)

2 1
+

3 2

E
+
(t)

E
-
(t)

0 2Tt

E

(b)

2 1
+

3 2 1
+

3

E
+
(t)

E
-
(t)

0 2.5Tt

E

FIG. 6. Time evolution of the energy levels with (a) 2T and
(b) 2.5T . The shaded areas indicate the effective dynamic phases
φ1,2,3 collected during the adiabatic evolution.

ference patterns can be observed, which correspond to more
Floquet sidebands being visible. Meanwhile, because of the
coarse-grained Rabi oscillation, the probability Pe is mono-
tonically increasing in the first half Rabi period T� = 2π/�.
Thus stronger interference requires longer evolution time but
shorter than T�, as demonstrated in Fig. 5(b).

In addition, we find the interference pattern is asymmetric
when the measuring time is set at integer period (NT ), but
symmetric at half-integer period [(N + 1/2)T ], where N is an
integer, as shown in Fig. 5. This symmetry can be interpreted
with the difference of collected dynamic phases during the
time evolution. From Fig. 6, one could see that, when the
measuring time is set at NT , the picked up effective dynamical
phase is Nφ2 + (φ1 + φ3)(N − 1) [Fig. 6(a)], while at the
measuring time (N + 1/2)T , the picked up effective dynam-
ical phase is Nφ2 + N (φ1 + φ3) [Fig. 6(b)]. From Eq. (6) we
can see that, when δ is replaced by −δ, the dynamic phases
φ2 and φ1 + φ3 are exchanged with each other. Thus the
total effective picked up dynamical phase at measuring time
(N + 1/2)T will be the same, while at NT it will be different,
which accounts for the asymmetry.

In the slow-passage limit, the population of the excitation
Pe follows the coarse-grained oscillation at the integer-period
time, but not the half integer ones, as demonstrated in
Fig. 7(a). It is because the evolution of the system is almost
adiabatic that the population changes drastically between dia-
batic states at every avoiding crossing point. Considering the
corresponding probability of excited state P+ in the adiabatic
basis is small in the first half period, we expect it can follow
the AIM result in the whole region. As pointed out in Fig. 5
of Ref. [24] in the slow-passage limit, here we also plot the
excited probability P+ of the state |ϕ+(t )〉 versus the time t .
We compare the population probability in both the diabatic
and adiabatic basis for both constructive and destructive in-
terference. For the constructive case shown in Fig. 7(a), we
can see the steplike structure associated with multiple LZ
transitions, but the long-time dynamics are irregular in the
diabatic basis. In contrast, after transforming into the adiabatic
basis, we see clearly that all the steps follow the LZ Rabi os-
cillations (dashed black line) including the half integer period.
In fact, considering the constructive interference under reso-
nance condition Eq. (22) and zero detuning, the population of
adiabatic state P+ at N +1/2 periods can be expressed as P′

+ =
sin2 N� + PLZ cos 2N� + √

PLZ(1 − PLZ) sin 2N� with the
combined evolution operator Uφ2/2XUφ1U

N
T . Considering the

small PLZ in the slow-passage limit, we can approximate P′
+
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FIG. 7. Multiple driving periods in the slow-passage limit. The
population probability of excited state Pe in the diabatic basis (solid
blue lines) and P+ in the adiabatic basis (dashed red lines) are
plotted as a function of time with zero detuning. The parameters in
(a) and (b) correspond to red and blue lines in Fig. 3(b), respectively.
The dashed black line shows the coarse-grained oscillation with
the effective Rabi frequency � = ωs

π
arccos |Reα| for constructive

interference. All the solid lines are numerical results from the Floquet
method.

as sin2 N�, which gives the same Rabi oscillation frequency
as the N periods’ results.

For the destructive case shown in Fig. 7(b), the effect CDT
is visible in the adiabatic basis. In comparison, the popula-
tion probability of the excited state in diabatic basis Pe also
shows CDT at an integer period, but has high amplitude and
also the time-domain steplike structures at half-integer period.
Meanwhile, interestingly, no apparent dephasing is observed.
In order to verify it, we prolong the evolution time up to
50 periods shown in Fig. 8(a). We can see the magnitude
of Pe [see solid blue line in Fig. 8(a)] is nearly one without
any decay even after 50 driving periods. For comparison,
we also plot the population probability of excited state |e〉
[dashed red line in Fig. 8(a)] under the nondriven situation
(that is, A = 0), which decays to 0.5 very fast. We also show
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(a)
destructive

nondriven
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(b)
destructive
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(c)
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nondriven

FIG. 8. Destructive interference in long evolution time for the
slow-passage limit compared with the nondriven time evolution.
The population probability of excited state |e〉 is plotted with time.
The parameters in (a) are the same as those of the solid blue line in
Fig. 7(b) except A = 0 for the dashed red line. And the parameters for
the solid blue (dashed red) line in (b) are chosen with g/ωs = 8, A =
28.62 (A = 0), and temperature Tz = Tx = 1 μK. The parameters for
the solid blue (dashed red) line in (c) are chosen with g/ωs = 8,
A = 19.56 (A = 0), and temperature Tz = Tx = 3 μK. All the lines
are numerical results from the Floquet method.
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FIG. 9. Population probability of |e〉 as the function of detuning
at t = 1.5T (lower red line) and t = 3T (higher blue line) with A =
13.3, g/ωs = 0.6 at 1 μK. The solid lines are the numerical results
from the Floquet approach, and the colored diamonds indicate the
results from AIM.

this nondephasing effect by enlarging the coupling strength
g and elevating the system temperature. In Fig. 8(b) we plot
the population probability of excited state |e〉 with the solid
blue (dashed red) line with g/ω = 8, A = 28.62 (A = 0) at
the system temperature Tz = Tx = 1 μK, corresponding to
the destructive interference with 〈φT 〉T � 19/2π ; in Fig. 8(c)
we plot the population probability of state |e〉 with the solid
blue (dashed red) line with g/ω = 8, A = 19.56 (A = 0) at
the system temperature Tz = Tx = 3 μK, corresponding to
〈φT 〉T � 13/2π . From both of them we still cannot observe
any signature of dephasing effect for destructive interference.
These results imply that the destructive interference in the
slow-passage limit may suppress the dephasing effect of clock
transition caused by the temperature.

IV. FREQUENCY SHIFT

Based on the simulation and analysis above, the time-
domain LZROs could be well observed in real experiment
parameter regions. However, the steplike structure may cause
the frequency shift, so that the zero detuning cannot be fixed.
In order to check it, we simulated the excitation probability
as a function of detuning at (a) t = 1.5T and (b) t = 3T with
A = 13.3, g/ωs = 0.6, and 1 μK. In Fig. 9, we can see the
excitation probabilities for zero detuning are well recognized
and thus could be easily chosen to fix the detuning of the clock
laser.

However, if we consider the pulse duration away from
the integer and half-integer periods, as shown in Fig. 10(a)
near one-period driving time, there exist obvious shifts in
the locations of the peaks corresponding to the generalized
Bloch-Siegert shift [48]. In contrast, the spectra near four-
period driving time in Fig. 10(b) do not show any distinct
deviations of the peak positions. Thus the steplike structure of
time-domain LZROs should be with some distortions at short
evolution time, but more obvious at longer evolution time in

-3 -2 -1 0 1 2 3

/
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P
e
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7/8T

1T

9/8T
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/
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31/8T
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33/8T

FIG. 10. Population probability of |e〉 as the function of detuning
near one-period driving time (a) and four-period driving time (b) with
A = 13.3, g/ωs = 0.6 at 1 μK, calculated with the numerical Floquet
approach.

the fast-passage limit. In addition, here we only consider the
region where the driving amplitude is much larger than the
coupling strength, that is, Aωs � gnz,nx due to these reasons:
(i) small Aωs will give large LZ jump time tLZ, and then can
deteriorate the validity of AIM; (ii) when Aωs is large enough,
the diabatic and adiabatic states can be treated coinciding
except in a small region around the avoided crossing. This is
not only consist with AIM but also convenient for the further
experimental treatment, because one can transform the state
populations from the diabatic basis (the measurement basis)
to the adiabatic basis more straightforwardly [27].

V. CONCLUSION AND DISCUSSION

With the help of the AIM analytic approach and the nu-
merical Floquet theory method, we study theoretically the
periodically modulated one dimensional optical lattice clock
system. In both slow- and fast-passage limits, the analytic
method matches well with the numerical approach, so that we
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can locate the proper parameter regions to observe the time-
domain LZROs in the real experimental region. In the fast-
passage limit with zero detuning, if the constructive condition
is fulfilled, the time-domain LZROs follow the coarse-grained
oscillation with effective frequency which can be directly
obtained from the analytic formula. Meanwhile, the CDT
effect can be clearly observed if the destructive interference
condition satisfies. On the other hand, in the slow-passage
limit, the coarse-grained oscillation curve is proved to be
more in accord with the population probability of the excited
state in the adiabatic basis, which is quite different from the
fast-passage limit case. In particular, the long-time evolution
in the slow-passage limit demonstrates the dephasing effect is
suppressed with destructive interference.

All the time-domain LZROs we simulated theoretically
here are feasible in the real experiment parameter region [35],
so it can be directly used for guiding the experiment. Based
on our discussion of the frequency shift, the time-domain
LZROs are more easily detectable in the fast-passage limit
with long-time evolution. Our work not only paves the way
for observation of LZROs in the OLC platform, but also
sheds a light on the quantum metrology based on the LZSM
interference in the atomic system. Additionally, the frequency
shift discussed in Sec. V opened an interesting issue to be
explored about the generalized BS shifts in the OLC system
in the future. Moreover, our theory can build a fundamental
theoretical framework and serve as the latter for adapting
those methods to other situations of interest, such as more
complicated optical lattice geometries or different forms of
modulation.
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APPENDIX A: HAMILTONIAN OF THE DRIVEN OLC
SYSTEM

Here we will give a brief introduction to how we treat the
driven OLC with both the internal and external degrees of
freedom. One can also get a more detailed derivation in the
Supplemental Material of Ref. [35].

Under the lattice laser modulation ωL(t ) = ω̄L +
ωa sin(ωst ), the intensity of the lattice laser along the z direc-
tion could be described as I = I0 sin2{ω̄L[z + ∫

v(t )dt/c]},

where v(t ) � ωaωsL cos(ωst )/ω̄L is the effective lattice
velocity and L = 0.3 m denotes the distance between the
center of the MOT and the HR mirror. So in the lattice comov-
ing frame, the frequency of the clock laser that the atom feels
needs to shift to ω′

p � [1 − v(t )/c]ωp duo to the relativistic
Doppler effect. This modulating pattern does not change the
external trapping potential. Considering a small misalignment
angle θ along the transverse x direction (we can choose
the θ along x axis because the transverse trap is isotropic)
between the clock laser axis and the lattice axis in real
experiments, the external Hamiltonian with lattice potential
having a Gaussian profile in the x direction can be expressed
as

Ĥext = p̂2

2m
− U0 sin2

( ω̄Lz

c

)
e
− 2x2

w2
0 , (A1)

where U0 = 4α0P0/(πcε0w
2
0 ) is the lattice depth and x de-

notes the transverse distance from the lattice axis. Due to the
large lattice depth U0, we can neglect the intersite tunneling.
With the harmonic approximation, the external Hamiltonian
can be expressed as

Ĥext � p̂2

2m
−

(
U0ω̄

2
L

c2
z2 + 2U0

w2
0

x2

)
. (A2)

This external Hamiltonian has the harmonic-oscillator eigen-
states |nz, nx〉 with the corresponding eigenenergies

Enz,nx = hνz(nz + 1/2) + hνx(nx + 1), (A3)

where νz =
√

U0ω̄
2
L/(2mπ2w2

0 ) and νx =
√

U0/(mπ2w2
0 ) are

the longitudinal and transverse trap frequencies, respectively.
The number of the harmonic-oscillator states in the trap is
approximately given by NzN2

x , where Nz,x � U0/(hνz,x ) is the
number of states in the longitudinal (transverse) direction.
Meanwhile, the internal Hamiltonian (after the rotating wave
approximation) can be written as the LZSM Hamiltonian
Eq. (1) [35], in which δ = ω0 − ωp is the frequency detuning
of the clock laser, and A = h̄ωaωpL/(cω̄L ) is the renormalized
driving amplitude, which is dimensionless and independent
of driving frequency ωs. gnz,nx = ge−η2

z /2e−η2
x /2Lnz (η

2
z )Lnx (η2

x )
is the coupling strength in the external state |nz, nx〉 [38],
where Ln is the Laguerre polynomial. ηz = √

h/(2mνz )/λp

and ηx = √
h/(2mνx )θ/λp are the Lamb-Dicke parameters.

Due to the temperature being a few μK in the system, we
can consider a normalized Boltzmann distribution to describe
the cold atoms in the external states |nz, nx〉. Then the clock
transition probability can be expressed by

〈Pe〉T =
∑
nz,nx

q(nz )q(nx )Pe (A4)

as a Boltzmann-weighted superposition of single external
state transition probability Pe obtained from the Hamiltonian
Eq. (1), where q(nz ) [q(nx )] are the Boltzmann weights corre-
sponding to the longitudinal (transverse) temperature Tz (Tx)

q(nz,x ) = e−Enz ,x/(kBTz,x )∑
nz,x

e−Enz ,x/(kBTz,x ) , (A5)

where Enz,x = (nz,x + 1/2)hνz,x is the energy of motional state
|nz,x〉 and kB is the Boltzmann constant.
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APPENDIX B: FLOQUET APPROACH

The dynamics of the internal clock transition governed
by the time-periodic LZSM Hamiltonian Eq. (1) can also
be solved by the Floquet theory, which provides an accurate
approach to deal with the periodically driven quantum system
[42,49,50].

According to the Floquet theorem, the quantum system
described by the time-periodic Hamiltonian Ĥ (t ) = Ĥ (t + T )
gives rise to generalized stationary states called Floquet states.
These Floquet states are the solutions of the periodically time-
dependent Schrödinger equation

ih̄
∂

∂t
|ψ (t )〉 = Ĥ (t )|ψ (t )〉 (B1)

and have the form

|ψα (t )〉 = |uα (t )〉e− i
h̄ εαt , (B2)

where εα are the quasienergies, which are the eigenvalues of
the so-called Floquet Hamiltonian ĤF = Ĥ (t ) − ih̄∂/∂t :

ĤF |uα (t )〉 = εα|uα (t )〉 (B3)

and |uα (t )〉 are the Floquet modes, which have the same peri-
odicity with the Hamiltonian, i.e., |uα (t + T )〉 = |uα (t )〉.

The Floquet states are also the eigenstates of the time-
evolution operator over integer driving periods with the
eigenvalues exp(−iεαnT/h̄) (n is an arbitrary integer):

Û (t0 + nT, t0)|ψα (t0)〉 = e− i
h̄ εαnT |ψα (t0)〉, (B4)

where Û (t2, t1) is the time evolution operator from t1 to t2.
The Floquet states can be computed with the time-evolution
operator, |ψα (t )〉 = Û (t, t0)|ψα (t0)〉. Note that the eigenvalue
exp(−iεαT/h̄) does not depend on the initial time t0. So the
time-evolution operator can be composed by these complete
and orthogonal Floquet states at any fixed time t

Û (t, t0) =
∑

α

e− i
h̄ εα (t−t0 )|uα (t )〉〈uα (t0)|. (B5)

Now consider the state

|uα,n(t )〉 = |uα (t )〉einωst , (B6)

which gives a physically equivalent state to |uα (t )〉; it is also a
solution to Eq. (B3) with the shifted quasienergy εα,n = εα +
nh̄ωs, but the corresponding Floquet state is not altered:

|ψα (t )〉 = |uα,n(t )〉e− i
h̄ εα,nt = |uα (t )〉e− i

h̄ εαt . (B7)

Now considering the system is initially in the ground state
|g〉, which means |ψα (t0)〉 = |g〉, then the population proba-
bility of the state |e〉 at time t can be obtained by

Pe = |〈e|Û (t, t0)|g〉|2. (B8)

Then the problem turns to finding out the Floquet modes
|uα (t )〉 and the corresponding quasienergy εα . Equation (B5)
constitutes an eigenvalue problem in an extended Hilbert
space [49,51], which is given by the product space of the
original Hilbert space and the time-dependent Fourier space.

Here this extended Hilbert space can be constructed by

[|g〉, |e〉] ⊗ [1, e±iωst , e±2iωst . . .]. (B9)

In this extended Hilbert space,

|u(t )〉 =
+∞∑

n=−∞
|un〉einωst , (B10)

where each |un〉 = (un
p, un

s )T (the T here denotes a transpose)
is a two-component vector, and the component of the Floquet
Hamiltonian ĤF can be represented as

Ĥm−n
F = ωs

2π

∫ 2π
ωs

0
e−imωst

[
Ĥnz,nx

LZSM(t ) − ih̄
∂

∂t

]
einωst dt

= Ĥm−n + nh̄ωsδm,n, (B11)

where Ĥm−n + nh̄ωsδm,nÎ (Î is a 2 × 2 identity matrix) forms
the mth row and nth column of the Floquet block. For clarity,
the Floquet Hamiltonian can be visualized in this extended
Hilbert space as the following matrix form:

⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · Ĥ0 − h̄ωs Ĥ−1 0 · · ·
· · · Ĥ+1 Ĥ0 Ĥ−1 · · ·
· · · 0 Ĥ+1 Ĥ0 + h̄ωs · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (B12)

where

Ĥ0 = h̄

2

(
δ gnz,nx

gnz,nx −δ

)
,

Ĥ+1 = Ĥ−1 = h̄

4

(
Aωs 0

0 −Aωs

)
,

and the blocks with |m − n| larger than 1 are zero.
Now, we can see that the time-dependent Schrödinger

equation is transformed into an eigenvalue equation of an
infinite dimensional but time-independent Hamiltonian with
infinitely repeating block structure. Obviously, this eigenvalue
problem has an infinite number of solutions, but we can see
that those infinite solutions can be divided into two groups,
each of which are related to each other, and the same group of
the solutions generate the identical Floquet state by Eq. (B7).
So we can truncate the number of the Floquet blocks that
converged sufficiently to get the eigenvalues of this infinite
dimensional Hamiltonian, of which just two solutions are
needed. In order to get the numerical solutions in Secs. III and
IV, 161 Floquet blocks (n = −80 to 80) are truncated, and
we choose the two solutions with n = 0 to get the transition
probability with Eq. (B5) and Eq. (B8). It is worthwhile to
note that we have not made any approximation to solve the
original time-periodic Hamiltonian. This should not be con-
fused with the Floquet-Magnus expansion method, which is
only applicable in the high-frequency regime [42]. In contrast,
the Floquet approach used in our manuscript can be applied to
any parameter regime.
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