
PHYSICAL REVIEW A 104, 053317 (2021)

Few strongly interacting fermions of different mass driven in the vicinity of a critical point
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It was recently argued that one-dimensional systems of several strongly interacting fermions of different
mass undergo critical transitions between different spatial orderings when the external confinement adiabatically
changes its shape. In this work, we explore their dynamical properties when finite-time drivings are considered.
By detailed analysis of many-body spectra, we show that the dynamics is typically guided only by the lowest
eigenstates and may be well understood in the language of the generalized Landau-Zener mechanism. In this
way, we can precisely capture the dynamical response of the system to the external driving. As a consequence,
we show that by appropriate tailoring of the parameters of the driving, one can target the desired many-body state
in a noninfinite time. Our theoretical predictions can be straightforwardly utilized in upcoming state-of-the-art
experiments with ultracold atoms.
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I. INTRODUCTION

Critical transitions of quantum many-body systems are one
of the most intriguing phenomena, which can be explored
from many different sides. Among their most prominent, al-
beit typical, examples are the quantum phase transitions in
which many-body systems rapidly switch between different
quantum phases having distinct order parameters [1–3]. Typi-
cally, these transitions are studied in terms of adequate lattice
models, which aim to capture the essential properties of par-
ticular solid-state materials [1,4]. The underlying theoretical
explanation of their universal behavior is delivered in the
framework of the renormalization group theory [5–7]. In the
context of quantum phase transitions, very often one consid-
ers not only adiabatic transitions through the critical point,
but also finite-time quenches which expose further curious
features such as the Kibble-Zurek scaling [8,9], relaxation
and thermalization of closed systems [10–12], or violation of
adiabatic invariants conservation [13,14]. Importantly, these
studies are not purely theoretical, but also have strong exper-
imental support. Let us mention here two seminal examples
from the ultracold atomic physics: (i) the observation of the
Mott transition triggered by the varying depth of the optical
lattice containing Bose-Einstein-condensed 87Rb atoms [15]
and (ii) the rapid switch between the polar and ferromagnetic
phases of bosonic spinor condensates [16].

Quite recently, due to tremendous progress in experimental
control on ultracold atomic systems, increasing interest in
the few-body sector has been clearly visible. In this mat-
ter, a groundbreaking milestone was delivered by Jochim’s
group by obtaining a well-controlled two-component, effec-
tively one-dimensional, few-fermionic mixture of 6Li atoms
[17–19]. These experiments have been followed by extensive
theoretical analysis in many different directions (see [20–22]
for reviews). In light of the current experimental possibilities
on preparing fermionic macroscopic mixtures of different ele-

ments [23–26], few-body mixtures of different mass atoms are
also theoretically considered as attainable in the near future
[27–31], also including dynamical problems when the system
is out of a stationary state or is driven by time-dependent
disturbances [32–36].

Typically, one associates critical transitions with many-
body systems being close to their thermodynamic limit, i.e.,
when the number of particles and spatial sizes of the system
is extended to infinity (keeping their ratio constant). In this
limit, when external control parameters approach the critical
point, one observes that some of the system’s features display
power-law divergence with well-defined critical exponents. It
is said that the considered system becomes critical. However,
it should be pointed out that granting the thermodynamic
limit is not in fact a necessary condition to make a sys-
tem critical. One other possibility was recently found for
two-component, one-dimensional systems of a few strongly
interacting fermions [37,38]. It was argued that in the vicinity
of infinite intercomponent repulsions, along with the changing
shape of external confinement, the many-body ground state
undergoes a critical transition between two different spatial
orderings. Importantly, this transition is characterized by the
divergent behavior of different observables having appropriate
scaling properties when interactions, instead of the size of the
system, tend to infinity. The analogy to typical quantum phase
transitions was supported further in [38] by confirming that
quantum correlations between different parties of the system,
quantified by appropriate entanglement entropies, are also
power-law divergent at the transition point [39–41].

In previous studies, the critical transition of few-fermion
systems was analyzed only from the point of view of their
ground-state properties. This approach corresponds to the
adiabatic transition for which the shape of the external trap
is tuned infinitesimally slowly. Since the class of systems
considered can be prepared, controlled, and measured in state-
of-the-art experiments [17–19,23,24,42], it is important to
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know their properties not only in this theoretical, experimen-
tally unattainable limit, but also when finite-time transitions
are examined. In this work, we consider the simplest sce-
nario of a single period of driving of the system containing
four particles (balanced and imbalanced) initially prepared
in its interacting many-body ground state and being close
to the critical point. We focus on subcritical systems, i.e.,
interactions are very strong but not infinite. By detailed in-
spection of the many-body spectrum, we show that for finite
(but slow enough) drivings, the properties of the system
are well captured by taking into account only the lowest
many-body eigenstates. Particularly simple are systems of an
imbalanced number of particles—their dynamical properties
are determined by the time evolution of only two many-
body eigenstates. Thus, these systems can be described by a
straightforward generalization of the two-level Landau-Zener
model [43,44]. In this way, systems containing a meso-
scopic number of particles form a very interesting connection
between the simplest quantum two-level systems and very
complex, strongly interacting many-body systems undergoing
critical transitions.

Our work is organized as follows. In Sec. II, we describe
the system studied, discuss its basic properties, and define the
driving protocol used in further analysis. Then, in Sec. III,
we explore temporal many-body spectra of balanced and
imbalanced systems and we describe their properties in the
adiabatic limit, i.e., when driving is infinitely slow and the
system remains in its temporal ground state. In Sec. IV, by
defining the transition probabilities, we expose the dynamical
consequences of finite-time driving. We show that depending
on the balance between components, the system can be well
approximated by a two- or four-level model. In the former
case, the results are in perfect agreement with those predicted
by the approximate method originating in the Landau-Zener
model. For completeness of the analysis, in Sec. V, we discuss
the behavior of the system from the quantum correlations
point of view. We show that with appropriate tailoring of the
driving parameters, one can control the amount of quantum
correlations gained during the evolution. Finally, we summa-
rize in Sec. VII.

II. THE SYSTEM STUDIED

In this paper, we consider an ultracold two-component,
mass-imbalanced mixture of a few fermions confined in a tight
one-dimensional trap. Interactions between fermions are as-
sumed to be dominated by the s-wave scattering and modeled
by the δ-like potential. The Hamiltonian of the system in the
second quantization formalism has the form

Ĥ =
∑

σ∈{A,B}

∫
dx �̂†

σ (x)

[
− h̄2

2mσ

d2

dx2
+ Vσ (x)

]
�̂σ (x)

+ g
∫

dx �̂
†
A(x)�̂†

B(x)�̂B(x)�̂A(x), (1)

where indexes A and B denote the lighter and heavier compo-
nents of the mixture, respectively. A fermionic field operator
�̂σ (x) annihilates the particle from component σ at posi-
tion x and fulfills the standard anticommutation relations,
{�σ (x), �†

σ ′ (x′)} = δσσ ′δ(x − x′) and {�σ (x), �σ ′ (x′)} = 0.

It is clear that the Hamiltonian Ĥ does commute with the
particle number operators N̂σ = ∫

dx �̂†
σ (x)�̂σ (x). The inter-

component interactions in the system are described by the
effective interaction strength g and, in all the cases considered
in this paper, are strongly repulsive. From the experimental
point of view, this parameter can be controlled by varying
the intensity of the external confinement in directions perpen-
dicular to the direction of motion [45] and/or via Feshbach
resonances [23,24]. In the following, the external confining
potential Vσ (x) is controlled by a shape parameter λ and has
the form

Vσ (x) =
{

1
2λmσ x2, |x| < L

∞, |x| � L.
(2)

Parameter λ has a natural interpretation of a square of the
effective frequency in the center of the system. Thus, it is
clear that for λ = 0, the potential has a form of a uniform box,
while for large enough λ (i.e., λ � h̄4/m2

σ L4), it has the form
of a harmonic trap cropped at the edges by hard walls. As was
argued previously in [37], whenever repulsive interactions are
strong enough, the system is forced to separate its compo-
nents. A particular separation scenario depends on the shape
of an external potential. In the case of a box potential (λ = 0),
the single-particle density profile of heavier particles is split
and pushed out to the edges of the trap, while the lighter
component gathers near its center. On the contrary, in the
harmonic potential (large enough λ), the lighter component is
split and located on the edges, while the heavier one remains
in the center. Consequently, when the parameter λ is changed
between these two regimes, the system undergoes some sort
of transition [37,38] whose properties are quite similar to
that known from typical quantum phase transitions. Namely,
actual quantities characterizing phases on opposite sides of the
transition point become divergent (with appropriate scaling)
when the system approaches the transition point λ0. Exactly
at this point, in the limit of infinite repulsions, the system
becomes critical.

In our work, we want to take the first step beyond the adia-
batic transition and examine the properties of the system when
the shape of the potential is suitably modulated. To make
this analysis as simple as possible, we focus on subcritical
(very strong but finite repulsions) systems with NA + NB = 4
particles with a mass ratio mB/mA = 40/6 corresponding to
the Li-K atomic mixture. We assume that initially the system
is confined in the box potential (λ = 0) and prepared in its
many-body interacting ground state, |�(0)〉 ≡ |0〉. Then it is
driven forward and backward through the transition point. In
our approach, we assume that the shape parameter λ changes
periodically as

λ(t ) = 2λ0 sin2
(πt

τ

)
, (3)

where λ0 is the point of critical transition (its particular value
depends on the number of particles and detailed shape of
the external potential) and τ is a time period after which the
parameter λ returns to its initial value. We suspect that in the
limit τ → ∞, the state of the system continuously remains
in the temporal many-body ground state and thus previous
results for the adiabatic transition are restored. Since, in prac-
tice, all considered scenarios happen far from the limit of a
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purely harmonic trap, it is convenient to perform the analysis
in natural units of the box potential, i.e., units of length,
energy, frequency, and interaction strength are L, h̄2/(mAL2),
h̄/(mAL2), and h̄2/(mAL), respectively. In these units, we set
interaction strength g = 20.

III. ADIABATIC LIMIT

Before we discuss the quench dynamics of the system, let
us first describe the properties of the many-body spectrum
which reflects the system’s properties during the adiabatic dy-
namics (τ → ∞). It is a matter of fact that all the eigenstates
of the Hamiltonian (1) can be divided into two disjoint classes.
These two classes correspond to two orthogonal subspaces
of the spatial parity operator P̂ : x → −x. Indeed, since the
external potential always remains spatially symmetric [one
finds Vσ (x) = Vσ (−x) for any λ] and the contact intercom-
ponent interactions do not change the corresponding parity
of the many-body Fock states, one can show that the many-
body Hamiltonian Ĥ commutes with P̂. As a consequence,
the Hamiltonian can be diagonalized in each eigensubspace
of P̂ independently. Moreover, since initially the system is
prepared in the many-body ground state belonging to one
of these subspaces, successive evolution of the system [in-
dependent of the details of the protocol λ(t )] is restricted to
this eigensubspace. Therefore, in the following, we always
restrict ourselves to the eigensubspace of P̂ which contains
the initial many-body state, i.e., |�(0)〉 = |0〉. Technically, the
eigenspectrum of the Hamiltonian is calculated by a direct
numerical diagonalization. The Hamiltonian is represented
as a matrix in the Fock basis built from K = 32, the low-
est single-particle orbitals of the noninteracting system with
λ = 0. We checked that the results obtained with this cutoff
are well converged, i.e., they do not significantly change when
higher cutoffs are employed. In Fig. 1, we display spectra
(in the chosen eigensubspace) of the Hamiltonian Ĥ for dif-
ferent distributions of particles as functions of time rescaled
by the transition period τ . It is clear that for any shape λ,
each many-body eigenstate of the system remains isolated
from other states. It automatically means that in the case
of the adiabatic driving, the system remains in the temporal
ground state of the Hamiltonian and finally returns to its
initial form. We note, however, that for confinements being
close to the transition (t/τ ≈ 0.25 and 0.75), energy gaps
between particular eigenstates decrease and the corresponding
states bunch to quasidegenerate manifolds. At the same time,
energy gaps between different manifolds largely persist (for
these particular systems, the value of the shape parameter λ0

is 0.55, 0.81, and 1.07, respectively, for systems with NA =
4 − NB = 1, 2, 3 particles). It means that for slow enough
transitions, the evolution of the system is guided only by the
first few eigenstates. Only in the limit of infinite repulsions
(not considered here) do these energy gaps vanish and spectra
become degenerate. At this point, let us also emphasize a
fundamental difference between the balanced system of NA =
NB = 2 particles and unbalanced ones with |NA − NB| = 2. As
shown in Fig. 1, when the system is close to the transition,
in the former case four eigenstates become quasidegenerate
in the ground manifold, while in the latter only two of them
approach degeneracy. Of course, this substantial qualitative

FIG. 1. Temporal spectra of the Hamiltonian (1) in the subspace
of the parity operator P̂ containing the initial state of the sys-
tem |�(0)〉 for different number of particles. Note a characteristic
quasidegeneracy of the lowest states which appears when the system
approaches the vicinity of the transition point (t/τ ≈ 0.25 and 0.75).
Depending on the balance of particles, the ground manifold contains
two or four eigenstates.

difference between balanced and imbalanced systems will
have an impact on the dynamical properties of the system sub-
jected to quench dynamics. As a side note, let us also mention
that typically the degeneracy of manifolds appearing in the
limit of infinite interactions is essentially different than the
degeneracy for systems containing particles of the same mass.
For equal-mass systems, degeneracy of the ground manifold
(in the g → ∞ limit) is independent of the external confine-
ment and is always equal, (NA + NB)!/(NA! NB!) [46]. On the
contrary, when particles belonging to different components
have different masses, this degeneracy is partially lifted and
becomes dependent on the shape of external confinement.

In the case of nonadiabatic transitions described be-
low, an exact evolution of the system is predicted by
straightforwardly solving the many-body Schrödinger equa-
tion ih̄∂t |�(t )〉 = H(t )|�(t )〉. We represent the Hamiltonian
as a time-dependent matrix in the time-independent Fock
basis described above. Then we use the fourth-order Runge-
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Kutta method with time step δt at least 10−2 times smaller
than τ and at least 10−2 times smaller than h̄/δE , where δE is
the largest relevant gap in the spectrum. We checked that this
accuracy is sufficient for obtaining well-converged results.

IV. TRANSITION PROBABILITY

One of the simplest quantities characterizing properties
of the driven system is the temporal probability P0(t ) =
|〈0(λ(t ))|�(t )〉|2 where the system remains in its current
ground state |0(λ(t ))〉. Of course, we suspect that in the
limit of very long transition periods (τ → ∞), i.e., when the
transition resembles the adiabatic process, the state follows
its temporal ground state. Thus, in this limit, the probabil-
ity saturates at unity, P0(t ) → 1. It is clear that for faster
transitions, the probability P0 is typically less than one and
some other probabilities Pn(t ) = |〈n(λ(t ))|�(t )〉|2 increase,
signaling that the system can be detected in the nth temporal
eigenstate |n(λ(t ))〉.

From both the experimental and theoretical points of view,
it is fundamentally important to settle if one can prepare a
finite-time transition in such a way that at the final instant,
the selected probability becomes exactly equal to one. Specif-
ically, the famous shortcut to adiabaticity problem [47,48] is
related to finalizing the dynamics of the system in its many-
body ground state, P0(τ ) = 1. To find a satisfying answer to
this question, let us focus on two well-defined instants of the
transition process: the moment just after the first transition,
t = τ/2, and the moment after a whole cycle of driving when
the Hamiltonian returns to its initial form, t = τ .

First, let us discuss the simpler cases of the imbalanced
system of |NA − NB| = 2 particles. Since both imbalanced
cases have very similar structures of the many-body spectrum,
their dynamical properties caused by the transition protocol
λ(t ) are qualitatively the same. Therefore, in the following, we
focus on the particular case of NA = 1 and NB = 3 particles.
The half time and the final transition probabilities Pn(τ/2)
and Pn(τ ) as functions of the transition time τ are shown
in Fig. 2. It is clear that after the first transition (t = τ/2),
the system may become excited to another many-body state
|1〉. Moreover, if the transition is instantaneous (τ → 0),
then the system is almost perfectly transformed to this state,
P0(τ/2) ≈ 0. In contrast, in the adiabatic limit (τ → ∞), the
system continuously remains in a temporal many-body ground
state, and P0(τ/2) remains equal to 1. For intermediate
transition periods τ , both probabilities smoothly interpolate
between these two scenarios. This overall picture is in perfect
agreement with predictions of the Landau-Zener model de-
scribing a two-level system undergoing a finite-time transition
[43,44]. Indeed, taking into account the dependence of the
energy spectrum displayed in Fig. 1, one can straightforwardly
show that the transition probability to the excited state after
the first transition is expressed as

P1(τ/2) = 1 − P0(τ/2) = exp

(
−π

√
2δ

γ

τ

TLZ

)
, (4)

where δ and γ are directly related to the properties of the
spectrum at the transition point λ = λ0. Namely, if the energy
difference between two eigenstates is written as 
E (t ) =

FIG. 2. Transition probabilities P0(τ/2) and P1(τ/2) for the
system of NA = 1 and NB = 3 particles after the first transition (top
panel) and the transition probability P0(τ ) after a whole driving pe-
riod (bottom panel) as functions of the transition time τ . Red and blue
solid lines correspond to the numerically exact results obtained by
straightforwardly solving the many-body Schrödinger equation. The
corresponding dots are obtained in the Landau-Zener approxima-
tion without any fitting parameters. Note the small deviations from
the Landau-Zener approximation for sufficiently rapid transitions
(τ → 0).

E1(t ) − E0(t ), then 2δ = 
E (t )|t=τ/4 and γ = ∂2
t 
E (t )|t=τ/4.

The half-energy gap δ defines a natural Landau-Zener
timescale TLZ = h̄/δ. To make this quantity more understand-
able, let us relate it to possible experimental realizations.
For example, if we consider a typical experiment with BEC
confined in a potential box of width L ∼ 80 μm [49,50], the
corresponding Landau-Zener time TLZ is quite large and of
the order of several seconds (i.e., 12.1, 11.1, and 5.4 s for
NA = 1, 2, and 3, respectively). However, if we consider the
Heidelberg experiments where spatial sizes of confining traps
are around 20 times smaller, i.e., around one micrometer per
particle, then the Landau-Zener time is reduced to several
milliseconds (i.e., 30.3, 27.7, and 13.4 ms for NA = 1, 2,
and 3, respectively), making the proposed protocol attainable.
Moreover, since TLZ depends directly on the size of the box, it
can be experimentally tuned by modifying length L.

Taking values of δ and γ directly from the energy spectrum
obtained numerically, we see that our numerically exact pre-
dictions are in perfect agreement with those obtained in the
framework of the Landau-Zener theory (solid lines and dots
in Fig. 2, respectively). Note, however, that there is a clear de-
viation from the Landau-Zener approximation for very rapid
transitions (τ → 0). This is a direct consequence of the fact
that the two lowest many-body states at t = 0 do not exactly
span the same space as states at t = τ/2, but rather they also
have tiny contributions from higher many-body states. Thus,
for rapid transition, the state |0(λ(0))〉 does not ideally transit
to the state |1(λ(τ/2))〉, and the transition P1(τ/2) becomes
lower than 1 although P1(0) remains equal to 0.

The situation changes slightly when the system is driven
back again through the second, returning transition. As clearly

053317-4



FEW STRONGLY INTERACTING FERMIONS OF … PHYSICAL REVIEW A 104, 053317 (2021)

seen (bottom panel in Fig. 2), in this case, the probabilities
P0(τ ) and P1(τ ) experience specific oscillations. Importantly,
by an appropriate choice of the finite transition time τ , it is
possible to drive back the system ideally to the ground state.
An explanation of this nonmonotonic behavior is not compli-
cated, but requires full quantum-mechanical argumentation. In
general, after the first transition, the system is in some well-
defined superposition of the two many-body states. Thus, the
probability that the system will return to the ground state after
the second transition cannot be expressed as simple products
of the half-time probabilities P0(τ/2) and P1(τ/2) (like the
naive semiclassical picture suggests), but it requires additional
knowledge of the relative phase φτ/2 of the half-time superpo-
sition of many-body eigenstates. Careful but straightforward
considerations of this issue, similarly as is done in the the-
ory of Landau-Zener-Stueckelberg interferometry [51], shows
that the final probability of returning to the ground state is
expressed as

P0(τ ) = |P0(τ/2)e2iφτ/2 + P1(τ/2)|2. (5)

Since P0(t ) + P1(t ) = 1, the final probability P0(τ ) is equal
to one whenever the relative half-time phase φτ/2 is a multiple
of π . Obviously, the phase φτ/2 depends on the details of
the many-body spectrum during a whole evolution, the de-
tailed form of the transition protocol λ(t ), and the transition
time τ . Nevertheless, it can be rigorously determined if these
features are known. Namely, as shown in [52], the phase
φτ/2 depends on the transition time τ as φτ/2 = A(τ ) + Bτ ,
where B is a transition-time-independent constant determined
by the spectrum, while A(τ ) is a monotonic function inter-
polating between two extreme cases A(τ = 0) = π/4 and
A(τ → ∞) = 0. The exact form of this relation is given in
[52]. Taking all these considerations into account, we find that
the relation (5) ideally reproduces our numerical results (solid
lines and dots in Fig. 2) without any fitting parameters.

It is worth noticing that the half-time phase φτ/2 can be
controlled quite easily by a simple interruption of the protocol
at t = τ/2 for some particular time T . Due to the substan-
tial difference of eigenenergies at this moment, the relative
phase is ballistically winded by a factor δφ = 
E (τ/2)T/h̄.
Thus, it can be tuned to any chosen value by the appropriate
choice of the halting time T . In Fig. 3, we display the depen-
dence of the final probability P0(τ ) on the halting time T for
two exemplary transition times τ . For the unfrozen protocol
(T = 0), the final probability P0 is the same as previously
determined. It is clear that by changing the halting time T ,
the final probability P0 can be easily tuned to unity. Note,
however, that it is not always possible to tune the probability
to 0, i.e., to assure a perfect transition to the excited state.
This impossibility is caused by specific values of half-time
probabilities P0(τ/2) and P1(τ/2), which are determined
solely by τ . It is worth mentioning that this exact idea was
recently exploited in quantum dot systems to tailor a relative
phase and, as a consequence, the final state of the system
to the desired form [53]. Thus, the presented method can
be viewed as an approach for quantum optimal control and
shortcut to adiabaticity techniques complementary to a variety
of other methods based on nonadiabatic change of the control
parameters [54–59].

FIG. 3. The final transition probability P0 for the system of NA =
1 and NB = 3 particles as a function of the halting time T for two
representative driving periods τ = 10TLZ (thin blue) and τ = 30TLZ

(thick red). It is clear that by an appropriate choice of the halting
time T , one can easily tune the final transition probability and thus
the final state of the system. Importantly, it is not always possible to
tune the halting time to ensure a transition to the excited state. See
the main text for details.

Of course, the dynamical properties of the balanced system
of NA = NB = 2 particles are substantially different. It is a
direct consequence of the structure of the system’s eigenspec-
trum having not two, but four different many-body states (we
enumerate them with n ∈ {0, 1, 2, 3}, respectively). Depend-
ing on the driving time τ , different states are occupied with
different probabilities. Nonetheless, the overall picture just
after the first transition (t = τ/2) is still relatively simple.
As shown in Fig. 4(a), occupations of four relevant states at
half-time instant Pn(τ/2) are sensitive to the transition time.
Note that for sufficiently large τ , only two of the lowest states
contribute to the dynamics. Thus, in this case, the system
resembles the imbalanced scenario. This behavior is in full
agreement with a phenomenological explanation—for suffi-
ciently slow processes, the system follows its temporal ground
state and the most relevant corrections are induced mostly
by excitations to the nearest many-body state. Therefore, a
two-level approximation is sufficient to explain the system’s
behavior.

After a whole driving cycle (t = τ ), occupations Pn(τ ) of
different many-body states become much more complicated
[Fig. 4(b)]. Detailed but straightforward analysis shows that
analogously to the imbalanced case, they are dependent on
their corresponding half-time values Pn(τ/2) and three dif-
ferent phases related to the half-time superposition of the
system’s state. For example, the probability of returning the
system to its initial ground state after a whole period is given
by [compare with (5)]

P0(τ ) =
∣∣∣∣∣P0(τ/2) +

3∑
n=1

Pn(τ/2)e2iφn

∣∣∣∣∣
2

. (6)

These three different and independent phases are the main
sources of irregular oscillations of the final probabilities when
plotted as functions of the transition time τ . However, for
sufficiently slow driving (large enough τ ), only two of the
lowest states are occupied. As mentioned earlier, in this range
of τ , reduction of the problem to the two-level system is fully
relevant and the description becomes analogous to the imbal-
anced counterpart. When the transition time τ is increased
further, the contribution of the lowest excited state slowly
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(a)

(b)

(c)

FIG. 4. Transition probabilities Pn(t ) for the balanced system of
NA = NB = 2 particles, (a) after the first transition (t = τ/2) and
(b) after a whole driving period (t = τ ), as functions of the transition
time τ . Different colors correspond to different transition probabili-
ties Pn(t ). (c) Transition probability P0 of returning to the ground
state after the whole evolution as a function of the halting time
T for three different driving periods: τ/TLZ = 10 (thin blue lines),
τ/TLZ = 30 (dashed green lines), τ/TLZ = 60 (thick red lines).

diminishes. Finally, in the adiabatic limit (τ → 0), the system
remains in its initial ground state. For rapid transitions, all
four states contribute to the final state of the system. Although
transition probabilities are very irregular, it is still possible
to choose transition time τ to perform a perfect return to the
initial ground state. Importantly, this tuning is possible not

only in the range of slow transitions where two many-body
states contribute to the dynamics, but also for quick quenches
where the nontrivial interplay of all four eigenstates is less
trivial.

For completeness of the discussion, let us mention that also
in the balanced-system scenario, one has a possibility to tune
the final probabilities by a transient halting of the driving
at t = τ/2. In this case, however, this control has limited
capability due to nontrivial relations between the transition
time τ , the relative phases φn, and the half-time probabilities
Pn(τ/2) [see Fig. 4(c) for particular examples].

V. CONTROL OF QUANTUM CORRELATIONS

Dynamical control of the target quantum state of the sys-
tem described above is only one of the interesting directions
of quantum engineering. Equally important is an ability to
control quantum correlations gained by the system during the
evolution. Since the considered system is strongly interacting,
it is interesting to ask the question if one can drive the system
in such a way that the final state |�(τ )〉 is the most or the least
correlated [48]. Since here we deal with the two-component
mixture of distinguishable components, it is natural to focus
on the intercomponent correlations which can, in principle,
be determined experimentally [60–63]. These correlations are
typically quantified with the von Neumann entanglement en-
tropy defined as

S (t ) = −Tr[ρ̂A(t ) lnρ̂A(t )] = −Tr[ρ̂B(t ) lnρ̂B(t )], (7)

where ρ̂σ (t ) is the reduced density matrix of the σ com-
ponent obtained from a temporal state of the whole system
|�(t )〉 by tracing out the remaining component σ ′, ρ̂σ (t ) =
Trσ ′ (|�(t )〉〈�(t )|). In the following, we focus on proper-
ties of entanglement entropy after a whole period of the
driving, S (τ ).

The case of adiabatic transition (τ → ∞) can be easily
reconstructed from detailed studies of the ground-state proper-
ties of the system [38]. It is known that in this case, the entropy
rapidly increases near the critical shape of the trap, signaling
a strong enhancement of intercomponent correlations. Then
it decreases and finally saturates on a value appropriate for
the ground state on the opposite side of the transition point.
Of course, after the reverse process, as suspected, the en-
tropy comes back to its initial value. This picture changes
significantly when the transition is not adiabatic since then
other many-body states start to contribute. It is clear that
quantum intercomponent correlations equally depend on the
final superposition and the internal structure of each partic-
ipating many-body state. Therefore, even in the imbalanced
case of four particles, i.e., when only two many-body states
are relevant, the entropy may not be trivial.

Let us start from the system of NA = 1 and NB = 3 par-
ticles. Based on previous considerations, it is clear that the
system at the final moment is in the superposition of two
many-body states with amplitudes determined by occupations
P0(τ ) and P1(τ ). One can write this superposition as

|�(τ )〉 =
√
P0(τ )|0〉 +

√
P1(τ )eiϕ(τ )|1〉, (8)

where ϕ(τ ) is the relative phase between the states after the
full period of driving. The resulting entropy as a function
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(a)

(b)

FIG. 5. (a) Intercomponent entanglement entropy S(τ ) at the
final instant as a function of the driving period τ for a system of
NA = 1 and NB = 3 particles. Horizontal solid green and dashed red
lines indicate values of the entanglement entropy S in many-body
eigenstates |0〉 and |1〉, respectively. (b) Entanglement entropy as a
function of superposition parameters P0 and ϕ between two eigen-
states of the Hamiltonian of the same system. The minimal entropy
is obtained for the system being close to the ground state |0〉, while
the maximally entanglement state is a superposition described by
parameters P0 ≈ 0.65 and ϕ = 0.

of driving time τ is displayed in Fig. 5. Although the gen-
eral dependence of S (τ ) resembles the behavior of the final
probability P0(τ ) (compare with Fig. 2), some substantial
differences are also visible. The main difference comes from
the fact that extreme values of the entropy are not achieved
for any of the system’s eigenstates (indicated in Fig. 5 by
horizontal green and red solid lines), but rather for their par-
ticular, well-defined superpositions. As a consequence, the
largest (lowest) quantum correlations are not obtained for
the same driving periods τ as the largest (lowest) transition
probabilities Pn(τ ). In particular, this is evidently the case
when the maximally entangled state is considered. This is
reflected in Fig. 5 as an additional periodic structure close
to the bound of maximal entropy. It should be pointed out,
however, that the many-body eigenstate |0〉 is very close
to the state having the lowest intercomponent correlations.
Therefore, whenever the final probability P0(τ ) is close to
one, the system almost achieves the smallest entanglement
entropy.

To get a better understanding of these results, let us more
deeply analyze the relation between intercomponent entan-
glement entropy and the superposition parameters P0(τ ) and
ϕ(τ ). As clearly seen in Fig. 5(b), the minimal amount of
correlations is achieved for the superposition which is very
close to the many-body ground state |0〉 having only a small

FIG. 6. Top panel: Intercomponent entanglement entropy S(τ ) at
the final instant as a function of the transition time τ for a balanced
system of NA = NB = 2 particles. Bottom panel: Final entanglement
entropy for the same system as a function of the halting time T
introduced after the first transition t = τ/2 for three different driving
periods: τ/TLZ = 10 (thin blue lines), τ/TLZ = 30 (dashed green
lines), τ/TLZ = 60 (thick red lines). In both plots, the horizontal
black solid line indicates the entanglement entropy in the state |0〉.

admixture of the excited state |1〉. On the other hand, the max-
imally correlated many-body state is formed by a particular
superposition with significant contribution of both eigenstates
|0〉 and |1〉 (P0 = 1 − P1 ≈ 0.65 and ϕ = 0). Note, however,
that there is a plethora of other superpositions encoding al-
most the same amount of intercomponent entanglement as the
maximally entangled state. Each of these states can be equally
easily targeted with appropriately tailored driving. Indeed, by
changing τ , one can tune the superposition to the desired
ratio. Again, the relative phase ϕ(τ ) [due to a substantial
difference between eigenenergies at final instant 
E (τ )] can
be engineered by a simple prolongation of ballistic dynamics
after the driving. This means that targeting the state with larger
intercomponent correlations is much easier and seems to be a
rather generic scenario.

In the case of the balanced system of four particles, the
situation is slightly different. Now, four different many-body
states participate in the state at the final instant. Thus, the
entropy is strongly affected by different relative occupations
Pn(τ ) and relative phases ϕn(τ ), i.e., it is much less regular
when plotted as function of τ (Fig. 6). As a consequence, it
is much harder (if possible) to tune the driving parameters
precisely to values maximizing entanglement entropy. In this
context, minimizing entropy, by a sufficient prolongation of
the transition time τ , seems to be relatively easier since the
many-body ground state remains close to the state of minimal
intercomponent correlations. For completeness, in Fig. 6, we
also show how the final entanglement entropy S depends
on the halting time T after the first transition at t = τ/2. It
suggests that controlled freezing of the dynamics at half of the
period may be an appropriate tool to engineer the final amount
of correlations.
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(b)

(a)

FIG. 7. (a) Temporal spectrum of the system with external po-
tential given by (9) (in the relevant subspace of P̂) for the system
of NA = 1 and NB = 3 particles. Notice the clear resemblance to
the top spectrum presented in Fig. 1. (b) Transition probabilities
P0(τ/2) and P1(τ/2) for the same system after the first transition
(top) and the transition probability P0(τ ) after a whole driving period
(bottom) as functions of the transition time τ . Red and blue solid
lines correspond to the numerically exact results, while dots are
obtained in the Landau-Zener approximation. In all plots, we set the
interaction strength g = 20. The transition point λ0 = 6.365.

VI. ROLE OF THE EXTERNAL CONFINEMENT

Finally, let us also address an issue of the universality
of our findings. This question is important since it is not
excluded that the transition protocol proposed may be highly
biased by the external potential that is chosen. Indeed, up to
now, the external potential (2) was chosen to have exactly the
same central frequency for both components. In experimental
realization, however, this constraint is of course not rigorously
achieved. In particular, this is the case if one considers com-
ponents of substantially different elements having different
spectroscopic properties. Therefore, to settle whether or not
this small but rigid detail has any importance, in the following
we consider a completely opposite extreme case. Namely,
we focus on the parabolic external potential being exactly
the same for both components (for convenience expressed in

terms of A-particle units),

Vσ (x) =
{

1
2λmAx2, |x| < L

∞, |x| � L.
(9)

In this scenario, all atomic constituents experience exactly
the same, linearly position-dependent force, independently of
their mass. The first sign that the physics of both considered
scenarios should be the same comes from the direct inspection
of the many-body spectrum. As explicitly shown in Fig. 7(a),
the spectrum of the system with NA = 1 and NB = 3 particles
resembles the spectrum of the system with the previous con-
finement (compare to the top plot in Fig. 1). Therefore, one
may suspect that the dynamical behavior of these two extreme
cases will also be very similar. Indeed, by repeating all the cal-
culations in the same manner but for the current confinement,
we obtained the transition probabilities P0(τ/2), P1(τ/2),
P0(τ ) presented in Fig. 7(b) (red and blue dots, respectively)
and compared them with the analytical predictions based on
the Landau-Zener approximation. Exactly as previously ob-
tained, both approaches match almost ideally and they give the
additional premise that the presented protocol, when tailored
appropriately, has a large dose of generality. We checked that
similar conclusions are reached when the opposite imbalance
case with NA = 3 and NB = 1 particles is considered.

VII. CONCLUSIONS

In this work, we have explored the dynamical properties
of the interacting system of a few fermions driven through
the critical transition by a time-varying external potential. In
contrast to previous studies [37,38], we focused on diabatic
transition in which the system can be dynamically excited
to other many-body states. By detailed investigation of tem-
poral many-body spectra, we argued that a whole driving
process can be well described in significantly reduced Hilbert
space spanned by only a few of the lowest many-body states.
Particularly, in the case of an imbalanced system of four
particles, only two many-body states are sufficient to give
a comprehensive and adequate description of the system’s
behavior. In this case, a straightforward implementation of the
Landau-Zener model, without any fitted parameters, gives a
fully correct description of the many-body system’s properties
independently of the details of the external confinement. For a
balanced system, the situation becomes less trivial. Nonethe-
less, characterization in terms of a few of the lowest states
still gives complete knowledge of the dynamical properties.
This means that these particular systems of several and well-
controlled particles may help in our understanding of systems
containing a mesoscopic number of particles [20–22] and thus
give some other perspective to many-body generalizations of
the Landau-Zener problem [64,65].

We have argued that periodic driving of the studied system
gives a route to coherent control of many-body excitations
in systems of a small number of particles. By appropriate
experimental tailoring of the driving period and halting time,
one can tune the final state of the system to a desired many-
body eigenstate or their superpositions. Since the many-body
eigenstates are typically not the states with extremal (maximal
or minimal) quantum correlations, the method may be fur-
ther exploited for the initial preparation of many-body states
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with assumed intercomponent entanglement and then used for
other purposes.

Finally, the presented studies can also be utilized in an
opposite direction, i.e., to determine the system’s parameters
whose precise adjustment can be experimentally challeng-
ing, for example, the interaction strength g. Typically, for
dynamical systems correctly modeled by the Landau-Zener
transition, the energy gap in the transition point can be mea-
sured experimentally by measuring the transition probability
[66,67]. In the studied case, the transition probability can be
obtained from the experimentally accessible density profile
since the ground state and the excited state have significantly

different (opposite) separations of their components. Having
the probabilities in hand, one can determine the interaction
strength g since there is a direct one-to-one relation between
the interaction strength g and the energy gap at the transition
point. From this perspective, this additional possibility of de-
termining the strength of interactions may have importance
for quantum engineering.
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