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Dynamics of a trapped ion in a quantum gas: Effects of particle statistics
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We study the quantum dynamics of an ion confined in a radio-frequency trap in interaction with either a
Bose or spin-polarized Fermi gas. To this end, we derive quantum optical master equations in the limit of weak
coupling and the Lamb-Dicke approximations. For the bosonic bath, we also include the so-called “Lamb-shift”
correction to the ion trap due to the coupling to the quantum gas as well as the extended Frohlich interaction
within the Bogolyubov approximation that have been not considered in previous studies. We calculate the ion
kinetic energy for various atom-ion scattering lengths as well as gas temperatures by considering the intrinsic
micromotion and we analyze the damping of the ion motion in the gas as a function of the gas temperature. We
find that the ion’s dynamics depends on the quantum statistics of the gas and that a fermionic bath enables to

attain lower ionic energies.
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I. INTRODUCTION

The interest in studying both experimentally and theo-
retically quantum mixtures of ions and ultracold gases is
increasing rapidly. Indeed, such a compound system of-
fers various fascinating perspectives both on fundamental
quantum few- and many-body physics research and on tech-
nological applications that the two systems separately cannot
afford, for instance, the exploration of novel polaronic states
[1-3] and quantum simulation of the electron-phonon cou-
pling [4-6]. For an extensive overview on atom-ion physics
research, we refer to [7-9]. Experimentally, a considerable
effort has been undertaken in the last few years in order to
cool the atom-ion compound system down to the quantum
regime, namely, when only s-wave atom-ion collisions take
place. To this end, three experimental approaches have been
pursued so far: ionization of a highly excited Rydberg atom
in a Bose-Einstein condensate [10,11]; an ion confined in a
radio-frequency (1f) trap interacting with an optically trapped
atomic gas [12,13]; sympathetic cooling of ions and atoms in
optical dipole traps [14,15]. In the former approach, the ion is
not trapped after ionization and a controlled momentum kick
via external electric fields is imparted in order to investigate
charge transport in a bosonic medium [16,17]. The second
relies on the well-established laser cooling and manipulation
techniques of trapped ions, which are confined by means of a
combination of time-dependent and time-independent electric
fields. The exquisite control of the ion motion enables to
prepare various nonclassical states [18,19] and, in principle, to
infer on environment properties by reading out the ion quan-
tum state. The time-dependent fields, however, can seriously
jeopardize the attainment of the ultracold atom-ion collisional
regime, a notorious issue named micromotion. Finally, the
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third approach is somehow a hybrid of the former two, as
it reduces drastically the impact of ion micromotion in Paul
traps and, at least in principle, it enables to control the ion
motion optically. At the same time, however, since the optical
trap is not as deep as the rf trap, unavoidable stray fields
can reduce the ion lifetime in the trap [20,21]. Moreover, an
intense laser light can induce undesired chemical reactions
between the ion and the particles of the gas.

Here, we focus our attention on the second approach and
investigate the cooling dynamics of a trapped ion immersed in
either a bosonic or fermionic environment. Albeit the s-wave
regime in hybrid traps has been attained with only fermionic
atoms so far [12,22], several ongoing experiments involve
bosonic ensembles [14,23-28]. Up until now, however, a few
theoretical studies have been undertaken in order to assess the
impact of ion micromotion on the atom-ion quantum dynam-
ics: a quantum mechanical calculation in one dimension (1D)
[29,30], a semiclassical investigation of confinement-induced
resonances in quasi-1D [31,32], and a three-dimensional (3D)
master-equation analysis [33]. Apart from the latter, all oth-
ers concerned a single trapped atom and ion, and therefore
only the emerging two-body physics has been investigated. In
Ref. [33], however, the Frohlich model was assumed, while
the Lamb shift and, specifically for the bosonic case, the con-
tribution of the noncondensed fraction were not considered.
Here, by Lamb shift we refer to the renormalization of the
ion trap parameters due to the coupling to the quantum gas.
In condensed matter and for a free impurity such a shift is
named polaron shift, whereas in this work we use the quantum
optics terminology. The aforementioned studies confirmed
that the impact of the ion micromotion can be mitigated
by choosing a small atom-ion mass ratio. With this study,
we first aim at developing a formalism for mobile quantum
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impurities based on an open quantum system approach, which
does not rely on the (linear) Frohlich impurity-bath interaction
model and rotating-wave approximation. Moreover, we want
to understand the role of the gas quantum statistics on the
ion-cooling dynamics and whether atom-ion pairs different
than Li/Yb" can reach the s-wave limit. As far as the first
objective is concerned, we find that the corrections causing
the Lamb shift yield additional dissipative contributions in
the master equation, as a consequence of the nonapplicability
of the rotating-wave approximation. Furthermore, the quan-
tum statistics of the ultracold gas affects significantly the ion
dynamics. While for temperatures larger than the Fermi tem-
perature 75 and the critical temperature of condensation 7’0O
the ion dynamics reproduces essentially the one correspond-
ing to the interaction with a buffer gas, at low temperature
the fermionic and bosonic nature of the gas is observable in a
distinct gas temperature dependence of the ion energy. Both
for the fermionic and bosonic gas we observe a minimum
in the ion energy for a temperature 7, close to 7;0 Below
Tmin the ion energy increases again, but only marginally for
fermions. On the other hand, for a bosonic gas the ion-energy
dependence on the gas temperature 7 exhibits a more rich
structure. Indeed, after the enhancement of the ion energy
for 7;0 < T < Tmin, below 7;0 it presents a maximum due
to the interplay between the condensate contribution and that
of the normal part of the gas. Moreover, the damping rate
of the ion motion exhibits the same dependence on the gas
temperature as the condensate fraction for 7 < 72. In addi-
tion, we elucidate the role of the long-range character of the
atom-ion polarization potential on the ion quantum dynamics
by comparing our findings with those of the pseudopotential.
Contrary to neutral impurities, the nonequilibrium dynamics
of the ion in the quantum gas is nonuniversal, that is, it can-
not be uniquely characterized by the impurity-gas scattering
length like for neutral impurities. Since there is no clear sepa-
ration of length scales in the many-body problem at typical gas
densities, the tail of the atom-ion interaction plays a crucial
role in the ion dynamics and the effective range corrections
cannot be neglected.

The paper is organized as follows: In Sec. II we intro-
duce the atom-ion potential, while in Sec. III the system plus
bath description is outlined, which is kept on purpose quite
general. A master equation including the contribution of the
noncondensed fraction is obtained in a way that is valid for
both neutral and charged impurities. In Sec. IV we focus on
the trapped ion case and make use of the well-known Lamb-
Dicke approximation, which enables us to further simplify the
description of the ion dynamics. We continue with Sec. V by
providing the equations of motion of observables of interest,
while in Sec. VI we present our results. In Sec. VII we draw
our conclusions and provide an outlook for future work.

II. ATOM-ION INTERACTION POTENTIAL

In this section we discuss briefly the interaction between an
atom and an ion and how we model it for the master-equation
calculation.

Polarization potential. The interaction between an atom
and an ion in free space is described asymptotically by

A
v

R*
Al

FIG. 1. Schematic view of the open quantum system with the
main length scales. The width / of the Paul trap potential (represented
by the saddle) corresponds to the size of the ion in the ground state
(large blue wave) and is (much) smaller than the two other lengths:
the average distance d among the gas particles (small red waves),
which is defined by atomic density n; the characteristic length R* of
the atom-ion potential (black thick line).

(r=1rf)

C.
Va(r) = —r—;‘ (1)

with Cy = 0% 4;60 (in SI units) [34], where « is the static
polarizability of the atom, e is the elementary electronic
charge, and € the vacuum permittivity. Here, r denotes the
separation between the atom and the ion. The potential is
characterized by the length R* = (2uCy/h*)"/? and energy
E* = hz/[Z,U,(R*)Z] scales, with u = mM/(m 4+ M) the re-
duced mass, m the atom mass, and M the ion mass.

Length scales. In our setting there are several relevant
length scales (see Fig. 1). First, the aforementioned R*, which
is typically in the range of hundreds of nanometers and
gives, as a rule of thumb, the order of magnitude of the
3D zero-energy s-wave atom-ion scattering length (see also
Refs. [35,36]). For instance, for the atom-ion pair "Li/'7*Yb*
we have R* ~ 75.15 nm, for *Na/!""*Yb* R* ~ 129.85 nm,
and for 87Rb/ I74ypt R* ~ 307.23 nm. Second, the atom-
atom (background) scattering length a;, which is typically on
the order of a few nanometers. Third, for a condensate, we
have the healing length, which is defined as & = (87nas,)~/2
with n being the gas density. For a typical gas density n =
10 /cm? we have, e.g., & ~273.61 nm for 3Rb, and & ~
380.38 nm for 2*Na. Instead, for a Fermi gas, the inverse of the
Fermi wave vector Ay = 27 /kr = (3m%n)~!/3 gives another
length scale. For n = 1014/cm3, we have Ar >~ 437.56 nm.
Fourth, the mean path length d that at the aforementioned
typical gas density is about 215.44 nm. Hence, all lengths
are comparable and therefore there is no separation of length
scales as in the neutral counterpart. As a consequence, nonuni-
versal behavior in the ion statical and dynamical properties is
expected (see, for instance, Refs. [37-39] for a static ion anal-
ysis). Thus, either very low atomic densities are considered,
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where a universal behavior is expected, or else the long-range
tail of the atom-ion interaction strongly matters.

Finally, the last relevant length for a trapped ion system is
the ion trap length [/, which corresponds to the ion ground-
state size. This length is about a few tens of nm for '74Yb*,
as we discuss in Sec. IV. While / is rather small compared to
R* for heavy atoms, for lithium it is roughly half of the cor-
responding R*. This means that scattering of an atom and an
ion should not be analyzed in free space, as we do in the next
paragraph, as the confinement affects the atom-ion collision as
for neutrals in waveguides. Here, however, we neglect effects
like confinement-induced resonances as a dedicated study of
such a phenomenology is required.

Quantum regime condition. It is important to note that
the energy E* sets the onset of s-wave atom-ion collisions,
namely, for energies smaller than E* the quantum regime can
be attained [40]. Indeed, E* corresponds to the height of the
centrifugal barrier for the £ = 1 partial wave from threshold
(see, e.g., Fig. 1 of Ref. [9]). Assuming that the kinetic energy
of the atom is negligible, since it is ultracold compared to the
ion, the collisional energy in the relative atom-ion coordinate
frame is given by [41,42]

w
Econ = kgTeon A—/IEkin 2

with Ey, = kg7 the ion’s average kinetic energy in the
laboratory frame of reference and kg being the Boltzmann
constant [43]. Hence, in order to enter the quantum regime
of s-wave collisions, the ion’s kinetic energy must be smaller

than E*, that is,
M
= <1 + —>E*. 3)
m

In case of a light atom and a heavy ion we have =~ m so that
M/ > 1, and thus a significant gain in the upper limit for
s-wave collisions is obtained. For example, for "Li/!7*Yb*
we have E/kg ~ 164.26 uK and for 2Na/!"*Yb* we find
E /kg ~ 6.07 uK. This shows that there is a rather broad
range of temperatures and that these are at least an order of
magnitude smaller than those of ultracold neutral collisions
(on the mK scale).

Regularized potential. Given the fact that the potential (1)
is singular and that later in the master equation we need to
compute the Fourier transform of the atom-ion potential, we
introduce the regularization [33]

M
Ekin < Es =—F
"

2 _¢? 1

C .
Y2 (b2t )2

Vi) =— “)

Here, b and c are tunable parameters that have units of a length
and control the energy spectrum of the potential as well as
the atom-ion scattering length. The Fourier transform of (4)
is linked to the scattering amplitude in the first-order Born
approximation, which is defined as

flg@)=~-

H iq-r
2nh2/ dr 'V (r). 5)

By using spherical coordinates and by integrating out the
angular part, we obtain

2p
f@)=——7> drrsm(qr) "(r)
qh
C27T(R*)2 3 (b4 —C4)q e
= m{e bq|:1 +Wi| —e q}, (6)

where we used the fact that (R*)> = 2uC; / 7% The determina-
tion of b and c is discussed in Appendix A.

III. IMPURITY MASTER EQUATION

In this section we provide an open system description of
an impurity in a quantum gas of either bosons or fermions
by following the approach of Ref. [44], where the impurity
is described in first quantization, whereas the quantum bath
in the second one. We focus mainly on the bosonic case, for
which we apply Bogolyubov theory, but we consider also the
quadratic terms of the bosonic field operators, which result in
an extended Frohlich interaction Hamiltonian. The inclusion
of this interaction has been proven to be crucial in the descrip-
tion of the many-body response function of Rydberg [45] and
Bose polarons in vicinity of a Feshbach resonance [46]. The
fermionic case is considered only for a normal gas, i.e., not
superfluid BCS theory, and it is obtained as a special case of
the master equation for a bosonic bath for gas temperatures
above the critical temperature of condensation. We note that
in the literature a master-equation treatment of an impurity in
a degenerate Bose gas has already been undertaken [33,47—
49], but (i) only the (linear) Frohlich interaction has been
considered and (ii) the Lamb shift has not been taken into
account. Moreover and specifically for the ionic impurity, the
fermionic bath has been not investigated in Ref. [33].

A. System plus bath Hamiltonian
The total Hamiltonian of the system, the atomic impurity in
interaction with a bosonic bath, is given by H = Hy + Hp +
Hpg, where Hg is the impurity time-dependent Hamiltonian
(50]

ﬁng dr, ¥} (rb)[ g Z;L(I'b)‘lfb(l'b)]‘l’b(l‘b) @)

and
Hps = fR An U - DB m). ®

Here, Vi, denotes the interaction between the impurity and
a particle of the bath. Besides, we assume that the bath is
confined in a box of length L [51] and that the interaction be-
tween the bosons is given by a contact potential with coupling
constant g = 4nh2ai§b /m and a;y, the 3D s-wave atom-atom
scattering length, while for the fermions we assume a spin-
polarized gas with no intraparticle interaction. Let us note that
at this stage the models describing the bosonic and fermionic
baths are different, i.e., the former is interacting while the
latter is not. Nonetheless, and specifically for the ion in a Paul
trap, it turns out that the interaction among bosons is much
smaller than other energies involved, so that we can safely
neglect it (see Sec. IV for details). Hence, the differences we
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observe in the ionic dynamics in the two baths are owed to
their quantum statistics and not to the interaction. For the sake
of completeness, however, we keep here the derivation of the
master equation as general as possible.

The bosonic quantum field is expanded as

Uy (rp) = /o + 8W,(ry), )

where ny = N()/L3 is the density of the condensate, i.e., the
zero-momentum component, while Ny is the atom number.
Fluctuations around the condensate mode are described in
terms of Bogolyubov modes

$Wy(ry) = L732 Z Ughqe' V™ + vybie 4™, (10)
q
where [Eq, lij],] = 84,q- Using this expression in Eq. (7), we
arrive at
Hy = Ey+ ) _ hwgh}by. (11)
q

Here, Ey = gN;/(2L?) is the ground-state energy of the con-
densate and pg = dy,Eo = gno is the chemical potential at
zero temperature. The corresponding dispersion relation is
given by [52]

2

R q?
e(q) = hwg = /(%) + (ficsq)? (12)

with ¢, = (gno/m)"/? being the speed of sound, and the Bo-
golyubov amplitudes uq and vq are given in Ref. [52]. Given
this, the atomic density operator is

G () Wy (rp) = no + Ad(ry). (13)

The first term provides a constant energy term in Eq. (8) for a
homogeneous gas, as we consider here, and it can be neglected
since it shifts merely the energy minimum. The second term
is given by

An(ry) = W) (1) Uy (rp) — 1o
= o8 W,(rp) + 8W) ()] + 89, ()8, (r3)
= 8A(rp) + 82A(rp) (14)

with 87(ry) = /g[8 W,(rp) + 8W) (r,)]. Hence, we have

n A ~ .
Sn(ry) = /L_(; Z(uq + v;)bqelq'l’b + (u:; + vq)b:fleﬂq.rb
q

(15)
and
82f1(l‘b) — L—3 Z [uzuq/e—i(q_q’)-rbgzgq/
q.q
+u vge l(quQ)rbB b+ /el(qJF(l)rbb b/
q
* i(q—q') 1y f
+ vivge! vh ] (16)

Given this, the system-bath Hamiltonian becomes
Aus = [ dryVa(ey = DA
R3
:hZ(S‘qf“q f“*)+hz (Sl Pity
+sf1“q“)r Pl A+ 800 By + 80T 1)

=AY + A, (17

where we used the notation of Ref. [44]: Ty = bg, and

/T3
S = LL(M +v*)ei¢I‘f'c
q 7 q q q
Sw(u,u/)z uq z(q q)r ,
q.q9 i ‘q-q>
Uvy
o) _ 4”9 _i(q'+q)-t .*
Sq’q, =5 e Cq+q
viug
o) _ T979 i(q'+q)-+
Seq” = ne ot
3
sy _ Y% iq-qyi
q.q A Cq—q
! iqy
€a=13 dy eV (y). (18)
R3

In addition, 1-71;15) is the first sum over q in Eq. (17) and it
denotes the so-called Frohlich model Hamiltonian in the con-
text of the electron-phonon coupling in solid state [53], while
H (? refers to the double sum over q, q', which describes the
so-called extended Frohlich model [45,54]. Specifically for
the ionic impurity, the coefficient ¢4 is linked to the scattering
amplitude (5) as

2 i
Cq=— pE f(@. (19)

Apart from the Bogolyubov approximation, the expression
(17) is exact for a bosonic bath. For a normal Fermi gas, the
interaction Hamiltonian reduces to

Hps =hY  Sqqfily (20)
q.9'
with Sq.q = @ VTcy g /hand I'] = &) ([ = &) being the

creation (anmhﬂanon) operator of a free fermion of momen-
tum q With {6q,.6('1,} = 6(.1,(1,. o .

If the impurity-bath interaction is described by the pseu-
dopotential, as for neutral impurities, we have [55]

Vin(r) = gind(r), 21

where gy, = 27/i%a}, /. with af being the 3D s-wave
impurity-bath scattering length. Thus, Eq. (19) becomes
27 »
Cq - /LL3 b

(22)

Specifically for the atom-ion case, we see that f(g) — —aj,.
Thus, if we would replace the atom-ion interaction (4) by
Eq. (21), in all subsequent equations one has simply to replace
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TABLE 1. Top: Critical temperature for condensation 72 of a
noninteracting gas for three bosonic species and densities. Bottom:
Fermi temperature 7 for two fermionic species and three densities.
Temperature values are given in units of nK.

Boson n, =102 cm™3 1083 cm™3 10 cm~3
Li 229 1063 4934
2 Na 70 324 1506
8TRb 18 86 398
Fermion ng = 10”2 cm™3 1083 cm™3 10" cm™3
oLi 613 2844 13198
K 92 428 1987

the scattering amplitude in the first-Born approximation with
the scattering length aj,.

B. Validity requirements and chemical potential

Let us comment on the validity of the Bogolyubov approx-
imation, which implies that both the quantum and thermal
depletion must be small [56]. As we shall discuss in Sec. IV,
we are mostly interested in the high-temperature regime,
that is, kg7 > gn;, which means that the intraparticle in-
teractions are essentially negligible. Here, n; is the total
gas density that in the zero-temperature limit corresponds to
the condensate density ng. In this regime, the Bogolyubov
approximation is valid only if nrag(T)° > £(3/2). Here,
rag(T) = [27 12 /(mkg T)]"/? denotes the thermal de Broglie
wavelength, ¢(x) is the Riemann zeta function. The last

Znﬁznlz/ 3
mkg[¢(3/2)113°
where 72 is the critical temperature of condensation of a
noninteracting and untrapped Bose gas. Thus, in order to per-
form the Bogolyubov approximation, all conditions have to be
fulfilled simultaneously, namely, the noncondensed fraction
n(T/TL)/* « 1. Here, n, = ny + n, is the total density of
the gas with n, being the normal (i.e., noncondensed) compo-
nent, from which we retrieve the condensate density as

inequality can be also rewritten as 7 < 70 =

no = e —ng = n[1 — (T/72)"]. (23)

In Table I we provide some values of the critical temperature
of condensation at typical quantum gas densities.

Afterwards, it will be important to compute the chemical
potential for a noninteracting and homogeneous Bose and
Fermi gas at temperature 7. To this end, let us remind that
the chemical potential for the bosons reads as [57]

0, if7 <72,
He = . (24)
root of ntAgB =g3p(), ifT > 7'00

Here, z = T is the so-called fugacity and g3,»(z) =
312, 21732, We note that the chemical potential for 7 > 72
is negative or else g3/»(z) does not converge.

For the fermions, the chemical potential is obtained by
solving numerically the equation of state [57]

nds = f2(2), (25)

where f32(z) = Y o, (= 1)!T1Z/1732 At T = 0, the chemical
potential corresponds to the Fermi energy Er:

hz
ne = Ep = %(671%)2/3. (26)

We note that for 7 > Tr, ug is negative, similarly to the
bosonic case, where 7r = Er /kg is the Fermi temperature.
In the high-temperature limit 7> 72, 7, the chemical po-
tential of both the bosons and the fermions is well described
by that of the Boltzmann gas

pe = ks T In (nA)s). 27)

C. Markovian master equation

In this section we describe the relevant steps of the deriva-
tion of the master equation for the bosons, while for the
fermionic bath we simply provide the final result since the
derivation is analogous.

We start from the full system-bath density matrix ¥ (z),
which obeys the von Neumann equation

d i oA

—x@)=—=[H, x] 28

7 x® U X1 (28)
Writing the density operator in the interaction picture as

x(t) = 070, )™ 5 (1)~ 0, 1), (29)
where
-
O, 1) =T exp [—% / dt Hg(t):| (30)
1

with T the time-ordered evolution operator, we have

d .
X0 = _%[HBS(t)a X ()] €2V

Here, Hps is the interaction Hamiltonian in the interaction
picture, which is defined similarly to Eq. (29). The formal
solution of Eq. (31) is

i [! ~ ,
70 =720 - & [ttty 360 G
0
and substituting it into the commutator (31) we obtain
d x() = i[I:I (1), x(0)]
dt X - K BS » X

1 ! N B
- ?./o dt'[Hps(t), [Hps(t"), X ()11 (33)

Thus, we assume that initially, at ¢+ = 0, the system and
the bath are uncorrelated, namely, (0) = %(0) = 5(0) ® By,
where B is the initial bath density matrix. This is a reasonable
assumption if the impurity and the bath are initially well
separated such that no interaction occurs. By tracing over the
bath degrees of freedom in Eq. (33) we arrive to the equation
[58]

d 1 [ - -
d—b(t)=——2/ dt' Trp{[Hps (1), [Hps(t"), X ¢)11}. (34)
t h° Jo

The next step consists in performing the so-called Born
approximation, namely, we assume that the impurity-bath
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coupling is weak and that the bath is so large that j(¢') ~
p(t") ® By V t’ holds. Thus, Eq. (34) becomes

d 1 4 - - R
“p0 = / dt’ Trp{[Hgs (1), [Aps (), 5t @ Boll}.
t Jo
35)

In order to further simplify this equation, we make the Markov
approximation, namely, we replace p(¢') by p(¢) in order to
obtain a time-local master equation

d 1 [ ~ ~ A
d—f)(f) = ——2/ dt' Trp{[Hps (1), [Hps(t"), p(t) ® Boll}.
t e Jo
(36)

This equation is known in the literature as the Redfield equa-
tion [59]. The Hamiltonian Hyg () keeps the original structure
of the Schrodinger picture, but with time-dependent system
and bath operators:

Sq0) = 07(0,08,0(0,1),
ﬁq(t) — eiﬁst/hf\qe—iﬂgz/h —e ﬁg(q)tl_‘
Q) oy
Sqq )=

Next, we need to perform the partial trace over the bath de-
grees of freedom, namely, we need to assess

Trp{[Aps(t), [Hs ('), p(t) @ Byll}
= Trp{[AL (1), [HyS (¢, p(1) ® Boll}
+ Trg{[A (1), (A (), p(t) @ Boll}

0%(0.0)884°0(0,1). (37)

J

+ Trp{[A (1), (AL (), p(t) ® Boll)
+ Trp{[H (1), (A (), p(t) @ Boll).  (38)
Thus, we consider the bath’s thermal density matrix

R e*ﬂ(HB*MGI\A/ )
By=——F5—,
Z

where N is the bath number operator. The mixed terms in the
third and fourth lines of Eq. (38) are zero since they contain
an odd number of bath operators. Thus, only the terms of the
second (i.e., with Hé?(t) only) and the last line (i.e., with
Hé?(t) only) of Eq. (38) remain.

First, we consider the thermal average of the double
commutator involving Hz(as)(t) which includes the averages
of two bath operators only, for example, (I (t)F (1)), =
Trg{Bol ()T (t')}. On the other hand, (F'q(t)['y(t))5, =
(f;(z)f“jl, (t")p, = 0, while

Z = Trple” B(Hy— MGN)} (39)

(Fq@OT} @), = e @ g + 1)84q.  (40)
Here, nq = (bfby) = [efT1*@=ral — 1171 is the
Einstein occupation number and B = 1/(kgT).

The average of the double commutator with only I:I,E,?(t)
has terms that vanish when the number of raising and lowering
bath operators is not the same, while the nonzero contributions
are given in Appendix B. Putting all together into Eq. (36)
and performing the change of variable t =7 — ¢/, and finally
transforming back to the Schrodinger picture, we arrive at the
following final master equation:

Bose-

d N ! Ao N N
Zp) = —21Hs. p1 = ) /0 dt Q2 {(ng + D[ Zg, Wt D] + nglpOWq(t, 7). Zq] +H.c)
q

t
-y / dt {ng(ng + D[ Zy—q. Wy—q(t. DPOIRE(Q — @) + 2nq(ng + D[Zq—q. Wy—q(t. DROIRIL (W — @)
0

x (1 +nq +ng + ”qnq/)[zq’+qa Wq/+q(t, T)P)] + nyng [Zq’+qa ;?)(t)Wq’-&-q(t’ T)])(szj(q/ +q) + Qﬁzj(q/ + Q))

xng (ng + 1)[Zq—

Here, we have defined the operators

Zq — eiq-f‘, Wq(l, 7) = e—és(q)re—iq»f‘(t,r)’
Wq,_q([, 7) = g*ﬁ[S(Q’)*E(q)]fe*i(q/*q)-f‘(l,f)’ (42)

unrq(l’ 7) = ¢ ale@te@Ir p—ild'+@)F(. 1)

and the coefficients

|'4q+v |2
Q= h—| cql*noL?,
[/RTaV | q| | ql
Qu.u’(q _q) | Cq q|
’ i
v,v |U | |U |
Qv:v/(q -q) = qh—q| q q|

q- Waeq (0. DIDOIQVY(q — ') + Hee . (41)

IV UG Vg

QUi —q) = %Icq/-qlz, (43)
uv' o q q

Qg +q) = %wqfﬂﬂ
“ |vg|?lug 1?

Qg +q) = “h—“| cq+al’s

whereas
#t,7)=00,)070,t — )t U, t — )UT(0,1). (44)

This relation describes the impurity position evolution in ab-
sence of the gas. Equation (41) is not yet a Markovian master
equation, even though the time development of the system
density matrix relies only on the density matrix at time 7.
Indeed, the impurity density matrix in Eq. (41) still depends
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on the specific choice for the system preparation at ¢t = 0 via
the impurity’s trajectory in Wy_q (¢, ) or, in a more precise
mathematical language, it is not yet a dynamical semigroup
[59]. Hence, to render (41) a Markovian master equation,
we let the upper limit of the integral go to infinity, which
is permissible if the integrand disappears sufficiently fast for
T > tg = h/(kgT). This is justifiable if the timescale of the
system tg over which the system density matrix p(z) varies
appreciably, is much larger than the timescale of the bath
7g. In other words, we require the bath correlation functions
to decay much faster than tg [59]. Hence, the Markov ap-
proximation is justified when the bath correlation functions,
e.g., (Cq(OTk(")) g, = Trp{Bol'q(t)[(t")}, are proportional
to 8(t —t’). Instead, the Born approximation is fulfilled if the
dissipative damping rate is smaller than the relevant system’s
transition frequencies. We shall come back to this point later
in the paper. Note that with the upper limit of the integral
going to infinity, the first line of Eq. (41) is equal to Eq. (23)
of Ref. [33]. However, while in the latter the time integral in
the definition of Wy y/(¢) is included, we prefer here to write it
explicitly.

Finally, we underline that up until now Eq. (41) is valid for
any impurity in a condensate (not only for an ion), provided
that the Fourier transform (19) can be computed. Indeed,
the solution to Eq. (44) depends on the impurity dynamics
only and the Hamiltonian H(t) can also represent the free
evolution of a not trapped ion in a BEC or an impurity atom
in an optical lattice. For a normal Fermi gas, however, the
master equation (41) reduces to the double sum only, namely,
the sum over q in the first line disappears. Moreover, only one
term of the double sum contributes, as we have single-particle
energy states and not Bogolyubov modes. In practice, one
sets in Eq. (41) the Bogolyubov amplitudes u = 1 and v =0
and replaces nqg + 1 by 1 — ng because of the anticommu-
tation relations of the fermionic field operators. Here, nq =
[efTE@—ra) 4+ 1171 is the Fermi-Dirac occupation number
with ug being the chemical potential obtained from solving
Eq. (25).

IV. TRAPPED ION MASTER EQUATION

The Markovian master equation (41) can be further sim-
plified for an ion in a radio-frequency trap because of the
separation of energy and length scales between the atomic
ensemble and the trapped ion system. Indeed, we are going
to make two further approximations:

(a) the particlelike approximation;

(b) the Lamb-Dicke approximation.

The former concerns the bosonic energy dispersion (12).
Because of the large energy difference between the bosonic
bath and the ion system, only particlelike excitations couple to
the ion motion. This implies that the Bogolyubov dispersion
relation (12) is essentially quadratic in the wave vector g. For
a linear Paul trap, for instance, we have (see Appendix C 1 for
details) the following: a,, = —0.001, a, = 0.002, ¢, = 0.2,
qy = —0.2,q, = 0,and 2,y = 2w x 2 MHz, as obtained from
the trap design of Ref. [60]. These parameters yield the fol-
lowing reference trap frequencies for an ytterbium ion (see
Appendix C2): v, ~ 27 x 169 kHz, vy, ~ 27 x 112 kHz,
v, > 2w x 45 kHz (the z axis is the longitudinal direction,

l
+—>
Paul trap
AdB

FIG. 2. Schematic representation of the Lamb-Dicke approxima-
tion: the size / of the ion trap (corresponding to the size of the ion in
its ground state) is much smaller than the de Broglie wavelength Agp
of the atoms in the gas.

where a system with two or more ions would form a linear
crystal). For the sake of convenience, we rescale the disper-
sion relation (12) as

1) 72\ 2
Yo _ ("—) + @GR E=xyz  (45)
\15 2

where §=4{eqg with €= .,/h/(mve), and ¢ =

4m (ay, /Le )nﬁg. For sodium atoms with a density ny = 10'*
cm—> we have ¢, ~ 0.009 (¢ =x), ¢ ~0.014 (¢ =y), and
¢s 22 0.034 (¢ = 7). The bosons speed of sound (¢, = ¢,€e V)
is therefore quite small compared to the ion motion in the
secular trap such that only phonons of quite low § ~ ¢
(i.e., large wavelength) yield an appreciable difference in
the dispersion relation compared to the free particle energy
@*/2. On the other hand, only phonons in the condensate of
comparable energy as /iv; will couple to the ion motion, so
that we can safely assume a particlelike dispersion relation
e(q) = hzqz/(Zm), and set uq >~ 1, vq =0, namely, the
bosonic bath can be treated as a noninteracting Bose gas.
This corresponds to an atom velocity of ,/2hvg /m in the &th
direction. For example, v, >~ 0.077 m/s or, in rescaled units,
v, >~ 1.414, which is much larger than ¢, and therefore the
atom is moving at supersonic velocities. To such an atomic
velocity it is associated the wavelength A, >~ 226.63 nm. As
a consequence of the energy separation, several terms of the
quadratic corrections of the atom-ion interaction in Eq. (41)
can be safely discarded.

On the other hand, the approximation (b) implies that the
typical wavelength of the bosons or of the fermions, i.e.,
the thermal de Broglie wavelength Agg(7), is much larger
than the &th width of the ion ground state [z = \/h/(Mvg)
(see Fig. 2). Let us still consider the example of bosonic
sodium atoms at a temperature of 7 = 200 nK. Thus, we have
Aag(T) ~ 814.18 nm, while for a trapped ytterbium ion the
width of the ground state in the secular trap is [, >~ 36.05 nm.
This yields a ratio [, /Aqg(7T) =~ 0.044 (similarly for the other
directions). Even if we consider the previously estimated
supersonic atom velocity, we get g /Ag 2 0.045 for lithium
atoms, Ig /A¢ 2 0.082 for sodium atoms, and [z /As >~ 0.159
for rubidium atoms. Hence, the ion spreading is quite local-
ized compared to that of the bath’s particle, and therefore the
Lamb-Dicke approximation holds very well in the regime we
are interested in.
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A. Simplified master equation

Under the applicability conditions of the Lamb-Dicke
approximation, we can legitimately expand the exponential
functions appearing in Eq. (41) up to second order in q - f.

J

For instance, the commutator reduces to
[Zg, Wy, T)p(0)]
~ e 1O i[q - £, p()] + [q - B, q - B2, 0)P()]
—3l@- & p01}. (46)

Here, the operators Wq(t, T)= Wq(t,t — 1) and £(¢, 7) = £(r — 7) [see also Eq. (44)]. Given this, the three directions are
decoupled from each other because odd powers of the wave vectors q vanish, as a consequence of the symmetric summation in
the master equation, that is, since the bath is homogeneously confined. Therefore, Eq. (41) can be rewritten as follows:

d i o~ o0 . e(@T \rr . e . pwr
Ep(t)z—E[Hs,p]—Z/ dt sz?,qé{zsm <%)[r§,p(n]+e (R, Pe(t, PO — €T [Fe, p)F:(t, D]
a0

+2nq cos (8(2”)([&, Pe(t, PO = [Pe. A, r)])} -2 f) dt ng(ng +1)(g} = 46)* Q14 — @)
aq & 7
. (e(d)—e(q) 2 . _jle@)—e@le R jle@)—e@ic
x qisin( ————r (P2, o]+ e 7[R Bt PO — €T [F, p)R(1, T)] (47)

with & = x, y, z. The first sum over q in the first two lines of
Eq. (47) refers to the Frolich model, while the double sum
in the last two lines refers to the extended Frolich model
(17), that is, H 1(e?~ Because of the particlelike approximation,

however, only the term QZZ remains, while for the fermions
no Frolich interaction appears.

In order to make further progress, we need to explicitly
use the solution of the ion dynamics in the Paul trap in the
absence of the gas. The full solution 7:(f) is provided with
various details in Ref. [33], which is given by

Vs

Q,
Pe(t,T) = ZCfo [?g (% + s’)—f cos [If’s,(t, )]

_ b o
oM sin [Z; (z, r)]i| (48)

for & = x,y, z, [, p] = ifi (P is the ion momentum operator),
and

ij(f,f): Qrf|:<% +s>1:—(s—s’)t:|. (49)

The coefficients C%, the trap parameters Bz, and the frequen-
cies v; are introduced in Appendix C 1.

Since we consider a gas confined in a box of volume L3,
the wave vector ¢ assumes quantized values: 2 sg /L with
s¢ € Z (periodic boundary conditions) and £ = x, y, z. Hence,
in the limit L — +o0o the allowed values of q in momen-
tum space become closely spaced, and since their density is
ds = L?/(2m)*dq, we make the replacement

L3
Xq: = G /R 3 dq. (50)

(

Such a continuum limit approximation is reasonable for a
large bath. Furthermore, we use the identity [44]

1 ) (D
w — W

where P denotes the Cauchy principal value (CPV), whose
action on a test function ¢(w) is

P(l)((p) = lim do 2. (52)

@ €07 JR/[—€.e] a)

0 .
/ dt e @70 = 78(w — wy) — iP(
0

Now, we apply these results and we focus first our attention
on the Frolich contribution to the master equation, namely, the
incoherent term in Eq. (47) involving the summation over q.
Besides, at the moment, we neglect the contribution due to the
CPV and look at the § contributions only. Thus, w = &(q)/#,
while wy = 0 or wy = Q,7(B:/2 + 5) in Eq. (51). When wy =
0, however, the contribution of the term coming from the
sine function in the first line of Eq. (47) vanishes, as it can
be verified by performing the integration (50) in spherical
coordinates. On the other hand, when wy = 2,7(B:/2 + 5)
and after having moved to spherical coordinates, we first write
the Dirac’s delta as

m
8w = wp) = 2-8(q = gs) (53)
q
with ¢ = |q|, and [61]

ZmQ,f

. s
qsaé - Fl

5 +s‘. (54)

Hence, the integration in momentum space yields

A @q; 4
/ 45— g.0) = 2nq S lae) (59
R} 4q 3

with f being the scattering amplitude (6) evaluated in g =
qs,&-
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As far as the contribution of the extended Frohlich model
is concerned, namely, the terms due to the double summation
over q and ¢ in Eq. (47), we proceed in a very similar man-
ner with the exception that we now have to assess a double
integration in momentum space. In Appendix D 1 we provide
details of this calculation. On the other hand, in order to assess
the contribution due the Lamb shift we have to compute the
integral (52), whose details are outlined in Appendix D 2. We
note, however, that we performed such a Lamb-shift calcula-
tion only for the linear terms of Eq. (47) since the contribution
of the extended Frohlich model is much smaller, and therefore
it can be neglected.

Under the above outlined approximations, we arrive at

d i A A A
h() = =7 UHs +8Hs, p1 =T 3 {Aslfe, p(1)pe]
E=x,y.z
= AflFe. pep(D] = Delhe, pOF] + D[P, FeD(]).
(56)

Here, I’ = 2 ’”ZL#,”E and 8Hy is the correction to the free-ion
Hamﬂtoman due to the interaction to the quantum gas (i.e.,
the Lamb shift), which is given by

. M >
0Hs = (1 = ) EZX;,SWQ(WE (57)

with ¢ = 0 for the bosons and ¢ = 1 for the fermions,

Q
—[8ag — 28q; cos(Qst) — 284, g (). (58)
J

SWe(t) =

and

Z FE scos[(s — Q1T (gs2) — T (gs.6)],

s,8'&S;

Sas = —QJ () + 0> |

56]5 :% Z {Ffs’

[s—s'|=1

ge(t) =
FELT (g56) — T (@501},

[T} (gs8) — T (q5.0)1}, (59)

where J (q;¢) are defined in Eqs. (D32) and (D33), Sqé =
Q/2, and

Si={(s.s) 1 |s=s|=0or 1},
Q, CiC5
e mcics (B )2 st — it
S, 2 2])5 5,8 Mv;Z
32m Kng
T3 MR, (60)
rf

We see that the coupling to the quantum gas renormalizes
the geometric Paul trap parameters as ag — az + dag and
g = ge + 8q¢ [see also Eq. (C14)] and it yields additional
time-dependent driving terms [i.e., gz (¢)]. Moreover, we intro-
duced the functions ®¢ (1) = @g(z‘) + (1 - ¢)CI>§(1‘), Ae(t) =
Ag () + (1 — )AL (t), where

L) =) F, { gs.e I £ (Gse)?(1 — ¢>>[cos[(s — ) 11(1 + 21, ) + i sin[(s — s/)fzrfﬂsgn<% + s)}

+ n;ée—i(s—s/)ﬁ,-jt + n:Sei(s—s’)Q,fl } , (61)
AN =) S0, { |g5.61° £ (g5.6)*(1 = ¢)[i sinf(s — 5")S2,t1(1 + 2ny,, ) + cos[(s — s/)Q,ft]sgn(% + s)]
_ n:’—ge—i(s—s/)ﬂ,,/t + n;gei(s-—s")ﬁ,fz} (62)
with
£ _ m (1),£ =)
= ———(F + (=D F). 63
névf 167_[2;-12137_’10 ( 5,& ( ) S,S) ( )
Here, F, ;Ylg)‘i and F, 5(? are defined in Egs. (D21) and (D28), respectively, and
2 . / ! ! nq ﬂq
®LE) = = Y Fsinlls = )Ryt HT L (gne) + T (@) + 20T2 (Gue) + T (g )1H2Olsgn(Be /2 + )] = 1),
2 ! ! "z/ nq /
AL =i— 3 08 (1 = 200sgn(Be/2 + $IHTL(gne) + T (4s.) + 20T (qe) + T (g1} coslls = s )Qust]
—isin[(s — )2 11[T(g56) — T1(gs.6)D). (64)

The labels § and P indicate the origin of the contribution,
namely, with § from the Dirac’s delta in Eq. (51), whereas

(

with P from the Cauchy principal value, i.e., the Lamb shift.
On the other hand, the terms involving the functions ]—';’15’2)
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stem from the extended Frohlich model. Besides, the integrals
\71" (gs.¢ ) are defined in Eq. (D34) and they stem from the first
term in the second line of Eq. (47), i.e., the one involving the
cosine function. Interestingly, this term does not contribute
to the renormalization of the Paul trap parameters (59), as
the sum of each single exponential function, when the cosine
is written as a linear combination of exponentials, vanishes
for the part that concerns the unitary dynamics. Furthermore,
because of the Lamb-Dicke approximation we made, we note
that the three directions are decoupled. Thus, Eq. (56) can be
split into three components, each representing a direction of
the ion motion. In other words, we have a master equation per
each direction.

A few remarks, however, are in order. First, we note that
even the contribution stemming from the CPV yields inco-
herent terms, as indicated by the functions ®f(r) and A (7).
Second, the contribution stemming from the Dirac’s delta
yields coherent (i.e., unitary) dynamics as well since the func-
tions ®¢(¢) and Ag(¢) are complex. This is because we did not
perform the rotating-wave approximation (RWA), that is, we
did not neglect the nonsecular terms with w # Q, (B¢ /2 + 5),
which is typically applied in quantum optics. Given the fact
that the most relevant Paul trap coefficients C5 for a linear
geometry are those with s = 0, 1, the contributions in <D§(t)
and Ag () with sin[(s — s")$2,¢] are in general small, and
therefore one could in principle apply the RWA also in this
context. Nonetheless, we find that the term in Ag(t) involv-
ing cos[(s — s")$2,¢] has a non-negligible contribution. This
means that an application of the RWA would underestimate
the overall dissipative dynamics. A similar reasoning applies
for the coherent dynamics stemming from the imaginary con-
tributions of the ®2(r) and A2 () functions. This is also the
reason why we cannot transform Eq. (56) in Lindbland form
(see also Appendix F), as an essential requisite is the RWA
[59]. We note that, up until now, these effects have been not
taken into account in investigations in the context of impurity
physics for settings similar to ours [33,47,48,62].

V. ION ENERGY AND FIRST-ORDER MOMENTS

The energy of the ion at time ¢ is given by the expectation
value of the ion Hamiltonian (C15):

/ytral ykin M / A
HO) = EO)+ ZWolR). 69

where W (1) = W (t) + §We (1), with W (¢) given by

QZ
We(t) = T’f[aS — 24 cos(2,41)]. (66)

8We (1) defined in Eq. (58) and

i (%)
Aoy =Y ﬁ (67)
E=x,y.z

In order to calculate it, we have to determine the expec-
tation values (ﬁg @) = Tr{ﬁéf)g (1)} and (f’g(t)) = Tr{f”gi)g 1)}
V& =x,y,z with p¢(¢) being the ion density matrix corre-
sponding to the &£th direction, whose equation of motion is
obtained by considering only the pertinent direction in the sum

appearing in Eq. (56). Instead of solving the full master equa-
tion, however, it is computationally less expensive to solve
the corresponding differential equations for the expectation
values of the square of the position and momentum, which are
coupled to the covariance (¢) = ((P: pe + Pefe )(t)). There-
fore, by using the definition of the expectation value of an
observable (@) = Tr{@,?)(t)}, and the master equation (56),
one arrives at the set of coupled differential equations:

d,. (Ce)
a7 =
d
E(ﬁ%) = {2AT Im[ @ (1)] — MW, (1)}{¢¢)
— 4RT Im[A¢ (D](p7) + 27°T Re[®¢ (1)],
d . o P2
7 (66) = 2{2AT Im[®¢ (1)] — MW, O)rz) + 2%

— 2AT Im[A¢ (1)](&:) + 2R°T Re[As(1)].  (68)

In the limit for which the Lamb shift and the extended Froh-
lich model are not considered, the equations of motion (58)
of Ref. [33] are retrieved. We note that the set of equations
(68) holds for both the bosonic and fermionic baths, but with
different ®¢ and A¢ functions.

The radio-frequency fields set the smallest timescale in the
open quantum system. It is therefore useful to evaluate the
time-averaged energy over a rf period, namely,

t+Ti¢

((1@}““(;)))Tr =— dt'(Hf™ (1)), (69)
§ Tis J;
where Ty = 27 /. Here, the notation ((...))r, denotes the
time average over Ti. In this way we average out the fast
oscillations due to the rf field and the final ion energy at
thermal equilibrium with the atomic gas can be assessed.

Finally, we provide equations of motion of the first-order
moments of the ion position and momentum operators. Ex-
actly with the same procedure that we outlined previously for
Eq. (68), the coupled differential equations for the first-order
moments read as

d .. (Pe)
dt%)_ M’
d

—(Pg) = {2AT Im[ D¢ (1)] — MW, (1)}Fe)

— 2RT Im[A¢ (1)1(Pe). (70)

The first equation of motion of (7¢) is simply the definition of
the ion momentum in the £ direction, while the second one
provides the average force acting on the ion. The latter is, on
the one side, due to the ion trap, i.e., the term proportional
to WE/ (t), and, on the other side, to the atom-ion interaction,
namely, the term proportional to Im[®,(¢)]. Moreover, the
term proportional to Im[A¢(¢)] relies on the ion momentum,
that is, it corresponds to a velocity-dependent force, which
results in a damped ion motion because of the presence of the
gas, unless the initial conditions for (7z) and (pg) vanish. It
is interesting to note that the form of the equations of motion
(70) resembles that of (77) and (p7), where (é;) is replaced
by (pe) or (7¢) and (ﬁ?) by (pe), but Eq. (70) does not have
source terms.
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Y —— "Li, ng = 108cm ™3
—2®Na, ng = 102cm™>
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FIG. 3. Corrections to the Paul trap parameters along the x direc-
tion for sodium and lithium atoms for two densities as a function of
the atom-ion scattering length. Top panel: relative correction to the ¢
parameter. Bottom panel: relative correction to the a parameter.

VI. NUMERICAL RESULTS

Before we present and discuss our numerical findings,
we note that hereafter they are based on the parameters b
and ¢ computed as explained in Appendix A. Moreover, the
bare Paul trap parameters are chosen as a,, = —0.001, a, =
0.002, g =—¢y,=0.2, g; =0, and Q=27 x 2 MHz.
Such parameters correspond to a linear trap geometry, whose
frequencies are v, >~ 2w x 169 kHz, v, ~ 27 x 112 kHz,
v, ~ 27 x 45 kHz (a '"*Yb ion is always assumed). Thus, we
have B, , >~ 0.1389 and $; >~ 0.0447. Details on the choice of
the initial density matrix are provided in Appendix C 2.

A. Renormalized Paul trap parameters

To begin with, we analyze the impact of the coupling to
the quantum gas on the ion dynamics by considering the
renormalized trap a and g parameters. The absolute amount
of change of those parameters from their bare values, i.e.,
without the gas, provides us a rule of thumb to assess how
strong can be the coupling, that is, how large can be the atomic
density such that the master equation can yield a faithful
description of the ion dynamics. The modification of those
parameters relies on the particular atom-ion species via the
mass ratio as well as on the condensate density.

In Fig. 3 we show the corrections to the Paul trap parame-
ters da; and 8ge relatively to their bare values as a function
of the atom-ion scattering length for ny = 10'2/cm® and
ny = 103 /ecm? for sodium and lithium, respectively, along
the transverse direction & = x. Note that for lower densities
the values of 8as and 8¢ are reduced by no/(10'?/cm?) for
sodium and by 7y/(10'3/cm?) for lithium due to their defini-
tion. As it can be seen, the ¢ parameter, namely, that of the
driving 1f field, is very weakly affected by the coupling to the
gas (top panel). The a parameter, instead, assumes larger val-
ues, especially for positive scattering lengths (bottom panel).
Furthermore, we see that the heavier the atom, the larger is
the impact on the trap (for equal densities), as expected (in
the figure the result for lithium has to be divided by 10 to be
compared with that of sodium). These results show that, while
for lithium densities up to ng = 10'3/cm?® can be considered

(ideally the ratio should be smaller than unity), it is better not
to exceed ny = 10'>/cm® for sodium atoms because of the
strong modification to the a parameter.

B. Ion in a lithium gas

In Fig. 4 we show the averaged ion kinetic energy ex-
pressed as a temperature Tgin = 2((HF™(T)))7,,/3ks at the
final time T, namely, when the ion has thermalized with the
quantum gas, where the averaged energy is given by Eq. (69).
The definition of the kinetic temperature 7y, includes the
secular motion and the micromotion of the ion and the factor
% is due to the equipartition theorem [42]. We note that the
value of the thermalization time 7 relies on various system
parameters, especially on the atomic density. For a fixed scat-
tering length, decreasing the density by an order of magnitude
implies an increase of the thermalization time by roughly the
same amount. As a consequence and for 7 < 72, T strongly
depends on the gas temperature since the latter determines the
density of the condensed fraction, i.e., ng. A first estimation
of the thermalization time for each plot is found by looking at
Txin as a function of time for a single value of the temperature
(see, e.g., the bottom panel of Fig. 7). Then, the values of 7y,
at all temperatures are computed at the estimated time and
at several larger times up to the one at which the difference
between the curves becomes negligible.

General remarks. Let us first focus on the bosonic case
below 7. As we can see from the insets of Fig. 4, the behavior
of the ion kinetic energy is the result of the interplay among
the different contributions. The empty blue circles correspond
to the Frohlich model, i.e., they show the contribution of the
condensed part of the gas only. The final temperature of the
ion is basically independent of the gas temperature in this
approximation. This result is consistent with the fact that the
density barely affects the final energy of the ion. Indeed, in
the Frohlich model the dependence of the equations on the
gas temperature is almost entirely carried by the conden-
sate density ng, as the temperature-dependent factor ng , in
the definitions of ®(¢) and A(¢) is always much lower than
unity. This behavior has to be traced back to the nature of
the condensate, in which all the particles occupy the same
single-particle state. For this reason, the cooling effect of the
condensate does not change when its temperature changes,
as the latter only affects the fraction of condensed particles.
A similar reasoning can be applied to the Lamb shift, whose
contribution can be observed in the purple empty squares of
Fig. 4. The additional cooling effect is stronger at temper-
atures much lower than 7'CO This phenomenon is related to
the condensate density ng increasing when the temperature
is decreased, which implies a stronger coupling to the gas,
and it is in agreement with what discussed in Sec. VI A about
the dependence of the da; and §g; parameters on ny. On the
other hand, the contribution of the extended Frohlich model
shows the opposite trend. As it can be seen from the full blue
circles of the aforementioned insets, when 7 approaches the
critical temperature the contribution of the interaction with
the normal part of the gas bends the ion temperature down-
ward. The extended Frohlich model, which is the only one
contributing at 7 > 7;0 in the bosonic case and at every gas
temperature 7 for the fermions, is responsible for a minimum
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FIG. 4. Ion temperature obtained from the averaged energy (69) for b >~ 0.0780 R*, ¢ 2~ 0.2239 R*, which correspond to a, >~ R* The
square and circle symbols refer to the bosons, while the diamonds to the fermions. The black vertical line indicates the position of the
critical temperature of condensation 7;0, while the Fermi temperature is not indicated. (a) n, = 10> cm™3, T = 50 ms, T = 0.61 uK. (b) n, =

108 ecm™3, T = 6 ms, T = 2.48 uK.

in the final ion temperature, i.e., kinetic energy. In order to
understand its nature, we studied the temperature dependence
of some characteristic quantities involved in the equations
such as nfé [see Eq. (63)]. For simplicity, let us now focus
on the fermionic case, where no other contributions have to
be considered. In this case, all the temperature dependence
relies on nfg, which monotonically increases with 7 for all
s and £ = x,y, z (not shown). Moreover, by looking at the
kinetic energy along the three directions at t = T (also not
shown), i.e., when thermalization is achieved, we found that
the temperature dependence along & = x and y presents the
same minimum of 7y, while along & = z it is monotonic.
We can therefore attribute the emergence of the minimum to
the presence of the trap and, in particular, to the interference
between terms with different s due to the radio-frequency-
induced micromotion. Finally, in Fig. 5 we observe that when
the regularized polarization potential is substituted with the
pseudopotential, the depth of the minimum is strongly de-
creased for n; = 10'> cm™ (orange data), and even barely
visible at n, = 10'* cm~3 (light blue data). We thus conclude
that the long-range character of the atom-ion potential renders
the occurrence of the minimum in the kinetic energy more
pronounced.

Density dependence. While the overall behavior is not sub-
stantially affected by the value of the density, there are some
differences that are worthy of remark. First, for large densi-
ties, the ion temperature in the case of °Li (green diamonds
in Fig. 4) is slightly lower at very low 7. This difference,
though, is not substantial and is definitely negligible compared
to the scale of s-wave energy threshold. Another difference
concerns the contribution of the Lamb shift (purple squares),
which is enhanced at large densities, thus confirming what
we discussed in Sec. VIA and in the previous paragraph.
Both of these differences, though, are only visible at very low
temperatures. At high temperatures, neither the density nor the
statistics of the gas influence the result in a sensible way, apart

from the time required for thermalization that, as anticipated,
increases linearly with the decrease of the density.

Damping rates. We investigated the temperature depen-
dence of the damping rates y, of (7). In Fig. 6 they are shown
for °Li and 7Li with a density n, = 10'3 cm~3. Before com-
menting on the result, let us briefly explain the procedure we
followed in order to calculate the values of y,. We started from
a nonzero initial condition for (7). Its value is not particularly
important because the damping rates do not rely on it anyway.
By solving the system in Eq. (70), we obtain (7()), whose
behavior is a damped oscillation with zero average value. We

—=—TLi, ny = 102cm™3
——OLi, ny = 102cm™3
-u-"Li, ny = 108cm ™3 -
~4-OLi, ny = 108cm ™3

55 L L L L L
2.5 3 3.5 4

FIG. 5. Ion temperature obtained from the averaged energy (69)
with the pseudopotential and a, = R*. The dotted-dashed light blue
lines correspond to n, = 10" cm™, while the solid orange ones
to n, = 10'> cm™3. The simulation time is 7 = 10 and 100 ms,

respectively.
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FIG. 6. Damping rates of (7:) as a function of the gas tempera-
ture with a total density n, = 10'* cm~3. The dotted line in the inset
represents a fit with the condensate density dependence on the ratio

T/T2.

calculated the curve enveloping the oscillation and we fitted
it with the exponential function o, e "' (the same procedure
was applied to all other directions with similar findings). In-
terestingly, the temperature dependence of the coefficients y
does not reproduce that of 7y;,. In the case of SLi (fermion),
the curve is monotonic and so it is for "Li (boson) above 7;0 In
the bosonic case, when the gas temperature is reduced below
72, the damping rates increase with the density of the con-
densate. The gray circles in the inset of Fig. 6 show that in the
Frohlich model there is a one-to-one correspondence between
the damping rates and the condensate density. The extended
Frohlich model (brown squares) enhances the damping rates
when the contribution of the normal part of the gas becomes
stronger. This relation between the condensate density and
the values of y: strongly underlines the difference between
bosonic and fermionic baths at low temperatures. Moreover, it
could be exploited in experiments, where the condensate frac-
tion may be extracted from the measurement of the damping
rates.

Scattering length dependence. Figure 7 shows the depen-
dence of the ion energy on the atom-ion scattering length at
T =100 nK in the case of °Li. As it can be seen in the top
panel, for some values of the scattering length convergence
is already achieved at T = 6 ms. When the value of aj, ap-
proaches roughly —0.5R*, the thermalization time strongly
increases, as shown in the bottom panel (red dotted line). Such
(numerical) observation suggests an instability that could be
related to the occurrence of a resonance, as experimentally
observed recently [15]. Indeed, although the master equation
does not entail information about two-particle bound states,
the behavior of the final energy could still give some hint
about the microscopic dynamics, the latter emerging through
the parameters of the atom-ion potential. As a reference, the
gray dashed line shows the values of the converged ion tem-
perature in the case of the pseudopotential approximation,
where the only parameter involved is the scattering length.

12 - T =6ms 1
1 ——T = 8ms
——T =10ms
10| - - T = 10ms with pseudo.
2
& 8
7,
6F —mm A& Ao
S
-4
I
| e a, ~—051R" |
o —af, 2 054R*  ye T

t (ms)

FIG. 7. Top panel: ion temperature vs the atom-ion scattering
length for °Li for n, =10 cm™ and a gas temperature 7 =
0.1 uK. Bottom panel: ion temperature vs time for two different
scattering lengths.

The curve is symmetric because f(k) o —aj, and the latter
enters only via |f(k)|*>. Hence, the long-ranged character of
the polarization potential together with the fact that there is
no separation of length scales in the impurity system crucially
affects the ion dynamical properties.

Let us conclude by mentioning that recently the polaronic
properties of a free ion in a condensate have been investigated
[2]. There, quite different polaronic states have been identified
on the basis that the atom-ion polarization potential supports
either one bound state or none. Without a two-body bound
state, a polaron resembling that of a neutral impurity, albeit
with a larger effective mass, has been found. Here, we have
also investigated the scenario for which the potential does not
support any bound state. In this case, however, we found for
a broad range of negative atom-ion scattering lengths that the
ion does not thermalize, that is, its dynamics is very unstable
in the Paul trap. Thereby, even though in the framework of
the master equation we cannot make quantitative predictions
on the dynamical formation of many-body bound states such
as its size, the presence of two-body bound states and the in-
clusion of the extended Frohlich model in the master-equation
description is of paramount importance for stabilizing the ion
dynamics in the rf trap.

C. Ion in a sodium gas

We have also investigated the ion dynamics in a heavier
bosonic ensemble. In Fig. 8 we illustrate the result of this
analysis. With the linear Paul trap that we have assumed so far,
the ion energy as a function of the gas temperature is shown
by the purple squares. As it can be seen, the ion energy is
always above the s-wave threshold and therefore no ultracold
atom-ion collisions can be expected. Nonetheless, by reducing
the rf by an order of magnitude, that is, Qs = 27 x 200 kHz,
and by reducing the g parameter by one-half, i.e., g, = —¢q, =
0.1, which result in the trap frequencies v, >~ 2w x 7 kHz,
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FIG. 8. Ion temperature obtained from the averaged energy (69)
for b~ 0.0780R*, ¢ ~ 0.2239 R*, which correspond to aj, >~ R*,
and a total density n, = 10'> cm~>. The gray squares with dotted
line correspond to the shallow trap (see text for parameters). The
black vertical lines indicate the position of the critical temperature
of condensation 7., while the dashed horizontal one to the s-wave
threshold.

vy, 2w x 6 kHz, v, >~ 27 x 4 kHz and B, , ~ 0.0634, g, =~
0.0447, we find that at low gas temperatures (i.e., <400 nK)
the s-wave limit can be beaten, as shown by the gray squares
with dotted line in Fig. 8. The resulting trap frequencies indi-
cate an almost isotropic ion trap. It has to be noticed, however,
that with such a shallow Paul trap it will be experimentally
challenging to suppress excess micromotion and to keep under
control the ion heating due to the background electric noise.

VII. SUMMARY OF THE MAIN RESULTS
AND CONCLUSIONS

We have investigated the quantum nonequilibrium dynam-
ics of an ion in an rf trap superimposed to a quantum gas of
either bosons or fermions. To this end, in Sec. IV, we devel-
oped a quantum master equation by including the contribution
of the Lamb shift and the extended Frohlich model, that is,
the noncondensate fraction. The final master equation can be
found in Eq. (56), where the definitions of the corresponding
functions discern the case of the fermionic and bosonic baths.
The equations of motion for the second and first moments are
calculated in Sec. V directly from the master equation and are
given in Eqgs. (68) and (70), respectively. These systems of
equations were numerically solved resulting in the findings
exposed in Sec. VI. We also note that the master equation
(41) is also an important result of our study, as it can be the
starting point for other investigations, such as a free ion in
a Bose-Einstein condensate. We found significant differences
in the ion dynamics between the bosonic and fermionic baths
at low temperatures (7" < 70), where the quantum nature
of the gas emerges. As shown in Fig. 4, in this regime, a
fermionic environment seems to ensure better cooling of the
ion compared to the bosonic one, while at higher temperatures

the difference gets less and less pronounced and it vanishes
when T > 7;0 Similarly, the nature of the gas affects the
damping of the ion below 7 (see Fig. 6): the temperature de-
pendence of the damping rates in the bosonic case is strongly
characterized by the presence of the condensate and reflects
the arising of its density. Moreover, we observed that the ther-
malization time strongly increases for values of the scattering
length around —0.5R* (see Fig. 7) and thermalization may
not even be achievable if the potential does not support any
bound state. The former might be related to the occurrence
of a resonance as recently found experimentally [15] and it
will be a subject of future investigations. Furthermore, as
illustrated in Fig. 8, we found that a proper choice of the ion
trap parameters enables to cool the ion motion in a sodium gas
to the quantum regime, which affords prospects to quantum
simulate impurity physics with large atom-ion mass ratios.
Finally, with the developed theoretical methods it will be in-
teresting to investigate how the gas quantum statistics affects
the Fock-state distribution of the ion motion, the coherence of
ionic motional superpositions, and to develop interferometric
protocols for measuring the gas temperature by reading out
the thermal phonon distribution.
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APPENDIX A: PARAMETERS OF THE
REGULARIZED POTENTIAL

To determine the parameters b and c¢ of the regularized
potential (4), we follow the approach of Ref. [33]. Here,
however, we provide details that were not discussed in that
reference.

Since we have two free parameters, we need two physical
conditions to determine them. To this aim, we impose the
following:

(a) The scattering length amplitude in first-order Born
approximation (6) is exactly equal to minus the atom-ion
scattering length at zero energy.

(b) The potential (4) supports one bound state only.

The condition (b) is motivated by that fact that the energy
separation between bound states of the atom-ion polarization
potential (1) is rather large (order of hundreds of E™*), thus
rendering very unlikely the population of deeper bound states
at typical atomic gas densities.

In the zero-energy limit the three-dimensional s-wave ion-
atom scattering length is indeed defined as

afa = —lim fs(q) (A1)
q—0

with f;(q) being the full s-wave scattering amplitude at en-

ergy 12/ (2w), where ¢ = |k — K| is the magnitude of the

momentum transfer in the relative frame of reference. Hence,

the first aforementioned condition (a) reads as

a, = —f(0). (A2)
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FIG. 9. . Atom-ion scattering length (blue line) computed via
Eq. (A6) and minus the scattering amplitude (orange line) at zero
energy (A3) as a function of the b parameter of the regularized
atom-ion interaction (4). Here, we have chosen ¢ = 0.2039R*. The
two lines intersect at b ~ 0.0770R*, which yields a scattering length
al, =~ 0.5385R*.

In the zero-energy limit ¢ — 0, and therefore, by expanding
the exponential functions in the last line of Eq. (6) to first
order, we obtain

_ *2(b2+2bc—cz)
JO =m R e

Note that the scattering amplitude has the units of a length,
which is consistent with the definition (A1).

The fulfillment of the second condition (b) is attained by
determining the s-wave scattering length as a function of
either b or ¢ by solving the scattering problem at zero energy.
To this aim, we solve numerically the radial time-independent
Schrodinger equation

(A3)

n? d?
[_ﬂﬁ + Vai(r>]1/f(r) =0, relf0,4o0) (A4
|

which in the E* and R* units reduces to

2 22
— 1
[ d r—c (A5)

e + 2 (B + r2)2:|w(r) =0
This differential equation is solved with boundary conditions
¥(0) =0 and ¥'(0) = €, where € is a small number (e.g.,
0.1). We note, however, that the result does not rely on the
particular numerical value of €, as we have verified numeri-
cally. Thus, we fix the value of the parameter ¢ (in units of
R*) and we solve iteratively Eq. (A5) for different values of
the parameter b by evaluating the corresponding scattering
length, which becomes a function of b. We do the same for
the scattering amplitude (A3) and thus search for the value of
b where a;, (b) and — f (b) do cross, particularly where the first
zero-energy resonance occurs, which indicates that we have
one bound state only (see Fig. 9).

Let us now briefly explain some details about the numerical
calculation of the scattering length. First, we note that the
solution to Eq. (A5) behaves like r — af, (D) at large distances,
where the atom-ion interaction vanishes. Hence, we have

@(b) = lim |:r— 'W)].
N TS

(A6)

Numerically, we have noticed that a large grid size has to be
chosen (a few thousands of R*) such that the term on the right-
hand side of the limit (A6) converges to a constant value, i.e.,
it is r independent. An example of such a calculation is given
in Fig. 9.

For instance, by fixing ¢ =0.2239R*, we find b~
0.078 R*, which yields aj; ~ 1.0054 R*. Finally, let us remark
that such a strategy relies crucially on the first Born approx-
imation. Other strategies can be adopted in order to relax the
latter (see, e.g., Refs. [35,36]). We chose, however, the method
outlined above for consistency since we make use of the
first Born scattering amplitude in the derivation of the master
equation, as a consequence of the perturbative description of
the open system.

APPENDIX B: THERMAL AVERAGES

The thermal averages of the double commutator (38) that yield nonzero contributions are

(CLOF (O LT (1)) 5, = en O ONHEC =N 50 4 8q 10 + ngig (g gk + S xdq )],

(CLOT g (OTETL (), =
(FQOT g (OO 1)), = e 1@ HIeedonn

(TqOTq OTL T ()5,

e lIE@—e @Ry (] 4y )(8

q’,q‘sk,k’ + (Sq’,k"sq,k)v

ngng ((Sq’,ksq,k’ + 8q’,k’8q,k)s

= 6%;{lg(k)+5(k’)]t/ilg(q,)+£(q)]t}(1 + l’lq =+ nqr —+ nknk/)((sq/’kSqVk, —+ Sq’,k’gq,k)v

(BT} (O ()T (1)) 5, = en O @IHIMN N [y 6 1S ke + MicSgq ki + g i (g qBk ke + S Bq 1],

(FCq(OF ) (T, (1)) 5, = en D @IHERD =N [y 5 80k + (1 4 mi + 1q)8q.q'0k i + g i (g gBicke + g kBq.10)].

For these identities we used the relation (4.7) of Ref. [63].

(B1)
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APPENDIX C: ION MOTION IN A PAUL TRAP

Here, we provide details on the analytical solution of the
ion motion in a Paul trap using the notation of [18]. The goal
is to provide the relevant steps of its derivation such that the
interested reader can implement them in numerics quickly and
efficiently.

1. Classical solution of a charge in a Paul trap

Let us consider a particle of mass M and charge Z|e| in the
quadruple field

U
D(x,y,2,1) = 3(‘”2 + By +yz%)

U ,
+ 7 cos(Q,,1)(@'x* + B'y* +y'2%).  (Cl)

For a linear Paul trap we have 0 < y = —(a 4+ 8), o’ = —f/,
and y’ = 0 and Poisson equation, V2® = 0, is fulfilled. The
Newton equation of motion along the x direction is given by
(similarly for the other directions)
.. le|Z 9 le|Z
ity=———=

[Ua + Ua' cos(Q,51)]x.
m ox

m
By introducing the dimensionless variable T = Q,t/2, the
corresponding rescaled equation reads as

X(t) + [ay — 2g,cos(21)]x = 0, (C2)
where the newly introduced parameters are defined as a, =
4|e|ZaU/(Msz,2,f) and g, = —2|e|Za/U/(Msz§f). Note that
for a linear Paul trap we have ¢, = —¢g, = ¢ and ¢, =0,

where a, = a, = —a;/2 = a. The above outlined equation is
solved by using the following ansatz:

oo oo
x(7) = APy " e + B Py Cle ™, (C3)
n=—oo n=—00
where A,, B, are constants that depend on the initial con-
ditions, while the parameter 8, and coefficients C;, have to

J

Dy, -1 0 0 0
-1 Diy_y -1 0 0
0 1 Dy, -1 0

be determined recursively. Here, we use the same notation of
Ref. [18], but we note that the coefficients C3, could have been
named C;,, as we actually do in Eq. (48). To this end, we insert

the ansatz into Eq. (C2) and we obtain

X x x ay — (ﬂx + 2”)2
G — D36, + 6, , =0, Dy, = .
X

n

(C4)

Iterative application of the above identities yield the continued
fraction solutions

G, 1

Gy Dy —
n+2 Dy, - n§n7147...
G 1

Cx2n = D ; A (CS)
m=2 2n D5u+2_%

With these expressions and Eq. (C4), we obtain
! 1 1
D=t (O
2n—2 D}, 4. 2n+2 DS, y—e

Since Dy = (a, — ,8)3) /g, and D3, above, we have
1 1

- + ,’]. (C7)

DY, 27 Di-.

ﬁf:ax—%[

Note that the expression in the brackets [...] of Eq. (C7)
still depends on By, a,, and g,. Nonetheless, given a, and g,
Eq. (C7) can be solved with respect to B, after a few iterations
of the continued fraction.

For the numerical assessment of the coefficients C}, we
proceed as follows: First, we set the maximum of the n index
to some positive integer Ny and Cj = 1 such that C},, =0
V n > Np. Second, using the previously obtained value of
B and the formula (C4), we solve an inhomogeneous linear
system of equations given by

G, 0
C%(Np—l) 0
Cg(zv,.-fz) 0
0 c = aE (C8)
-1 0 ¢, 1
Coon, 0
..0 -1 D* N
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The total number of numerically calculated coefficients is
therefore 2Nr. Moreover, the normalization condition

00 Np
Y Y G-t
n=—Np

n=—00

(C9)

has to be satisfied, from which we obtain the final normal-
ized goefﬁcignts o, =G5,/ Z?’i_NF G, In this way we can
then immediately evaluate the reference harmonic oscillator
frequency

(C10)

NF ﬂ
Ve = Quf Z c’ﬁn(?x +n>.
n=—Np
Exactly the same procedure applies to the determination of
the coefficients C5°, ¢ and frequencies v, .. We note that the
coefficients appearing in the ion solution (48) are precisely the
coefficients ¢57**.
Finally, the classical trajectory is obtained as x(t = 0) =
A, + B, = xg and
Np p
. . 0
x(t =0) =i(A; — Bx)|:,3x +2 Z nc)ch:| = M

n:—Np

From these equalities we obtain

Ne -1
X . p .
A, = EO - zﬁ[ﬁx +2) nc2ni| , (C11)

n=—Nr

Ni -1
X0 . Po x
B, = ?+lﬁ|:,3x+2 E nCZn:| . (C12)

l’l:—Np

In the limit a, < |¢,|*> < 1 and for py = 0, an approximated
solution is given by

Xapu (T) = 22x° cos(ﬁxr)[l — %cos(zr)]. (C13)

X

This solution can be compared with the numerically obtained
one from Eq. (C3). In Fig. 10 an example is shown, where we
compare the solutions x,px (7) (thin black line), Eq. (C3) (blue
slighter thicker line than the black line), and the numerically
solved Eq. (C2) (thick yellow line).

2. Quantum Hamiltonian

As it can be verified, Eq. (C2) reproduces the motion of a

parametric harmonic oscillator with squared frequency
Q

Wg (t) = T[ag — 2q$ COS(Qrft)]. (C14)

As it can be shown formally with the Heisenberg equations of

motion for 7 and pg [18], the following Hamiltonian in one
spatial direction

ey)
a D M
trap 5 2
HI = 27|y+ 2 ”S(t)rga E_'xayaz (CIS)

reproduces exactly the same equation of motion (C2) for the
operators 7¢. Thus, Eq. (C15) is the quantized version of the
classical Hamiltonian for an ion in a Paul trap, where we
have promoted the ion position and momentum variables to

0 20 40 60 80 100
T

FIG. 10. Comparison of the numerically exact solution obtained
by solving the Newton equation of motion (C2), the analytical so-
lution (C3), and the approximated one (C13). We have chosen the
following parameters: a, = 0, g, = 0.28, and Ny = 20.

operators. Aside from this, we note that the spatial direc-
tions are uncoupled because of the form of the quadrupole
field (C1).

The eigenfunctions of H,"" are given by

g\
o= (12)
Th V2 nlug (1)
M\)g

o\ 70 —oa"s | (1o

Tilug (1)
where
oo
Ug (t) = eiﬂégrftﬂ Z anemﬂ'ft’ (C17)

n=—00

with us (0) = Y02
Eq. (C10).

Finally, as initial condition of the ion density matrix for the
solution of the master equation we have chosen

pe = Yot = Tip)) (Yot = Ti)l,

since by starting from |y (t = 0))(o(t = 0)| and by comput-
ing the expectation value (65), one can numerically verify that
the minimum of the ion energy occurs at the time ¢ = 27 /€2,+.
This is the energy minimum we assumed in our analyses and
Eq. (C18) as initial condition. With that initial matrix we have
computed the initial conditions for the moments of Sec. V.

C5. =1, 11 (0) = ive, and v given by

Vé=xy,z (C18)

APPENDIX D: ION MASTER EQUATION DETAILS

In this Appendix, we provide a few technical details on
the calculation of the double integral as a consequence of
the double summation in momentum space in Eq. (47). The
derivations are detailed for a bosonic bath only, while for a
fermionic one we simply provide the final result, as they are
very similar. Additionally, we provide details of the analytical
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calculation of the Cauchy principal value within the Frohlich
model that yields the Lamb shift.

1. Double integration in momentum space

In Eq. (47) we have to evaluate terms of the kind

> ng(ng + 1)(gh — g lcq—ql*8(0q — 0q £ o). (D1)
q.9'

where ;¢ = Q(B: /2 +5) and wq = £(q)/h. To this end,
we first perform the center-of-mass and relative coordinate
transformation

) q+q
k=q -q K= 5 (D2)
with
, k
q =K+ —, q:K—E, (D3)
and therefore we have
h \2 2 h
;- = — — = —(k-K). D4
wg — Wq 2m[((l) q] m( ) (D4)
Given this, we can rewrite Eq. (D1) as
- o+ 2 e R
an,K(nk,K + Dkglek| 0| —k - K+ e |, (D5)
k.K mn
where
_ 1
nk’ = ) 5 e y
exp {p7[5, (K> + % —k-K) — pg]} — 1
1
hy (D6)

n = .
T exp {Br[ L (KR +E +k-K) —pg]} - 1

We remind that pg is the bosons’ chemical potential and
B1 = (kgT)~'. Thus, we perform the continuum limit

L6
Z - — / dk / dK,
(271) R3 R3

kK

D7)

which transforms the double sum in Eq. (DS5) in the following
two double integrals:

B
Il+12:/ dk/ dKnkKk§|ck|28<—k.K:I:a)s,g>
R3 R3 ’ m

T T Y A
+ | dk | dKnygemigkilex|"8| —k- K wge ).
R3 R3 ] ’ m
(D8)
Here, we have neglected the common factor (%)6. In order to
solve them, we first move to spherical coordinates
ky = k sin(6;) cos(¢x),
ky = k sin(6) sin(gy),

k; = k cos(6k). (DY)

Thus, the corresponding volume element is given by dk =
dk dOydpk? sin(;) with k = |k|. While a similar change of
variables applies to the center-of-mass variable K as well, but
with subscript K for the angular variables, we note that we
choose the “z axis” of the vector K along the relative variable

k. In such a way the scalar product appearing in the Dirac’s
delta can be written as

k- K = kK cos(fk). (D10)

Given this, the first integral becomes
T, = 272(1 +51,5)/ dkk“/ d0yg: (6r) sin(0p) ek |
0 0
o0 g
x / dK K* / db sin(Ox )ny g
0 0

i
X 8(—kK COS(@K):I:a)s,g), (D11)
m

where we have performed the integrations of the variables ¢y
and ¢k since only k¢ relies on ¢, while none of the functions
in the integrand depend on ¢ . Aside from this, because of k;
we have introduced the angle function g¢ (6x) = 8 ¢ cos(6y) +
(1 —8,¢)sin(B) with 8, being the Kronecker delta. Since
neither |ck|? nor n,_y rely on 6, we can easily perform the
integration Y

T 2
| degi@sin = Se +20 - 0.0 012
0

Our next step is to integrate out the variable K. Towards
this end, we first rewrite the Dirac’s delta as

h
8(—kK cos(fg) = wx,;;-)
m

_ m
k| cos(6x)|
x 8(K + K £ (0, k)30, 1£sgn(ws ¢ cos@x)),  (D13)

where sgn(. .. ) is the sign function. The last Kronecker delta

ensures that K; ¢ (0k, k) = #;ék) > 0 in the minus case and

K £ (0k, k) < 0in the plus case since K € R™ and the integral
over K would be zero otherwise, and so would be Z;. Hence,
we obtain

8 m\3 o0
I = ‘”2(5) wié/o di ke |?

tan(Ox )m g, 6.0

K 14sgn (s ¢ cos .
cos(Bx )| cos(Bg )| O EsEn (s cosr)

(D14)
Finally, we perform the angular integral
/ T @nO0n ok oo
A K COS(@K)|COS(9K)| 0, 1Esgn(wy,e cos(k))
UM K, k)
— dy—F2ns W8 o (o ei)s D15
/_1 u 2] O (D15)

where we performed the change of variable u = cos(6k).
Hence,

1

(k02| o

(D16)

nk,Ks.s (k) = Bho, ¢

g
e 2kty6)? L u? 4

-1
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with Zf £ = L and (D15) can be rewritten as
J = / "K“(” o fl du (D17)
0 u3(eu2 tox _ 1)
where
_ IBTFLQ)S,E
oy = 5,
2(kls)
(ktse)*
%=%[4Eiwﬁf—w%. (D18)
In order to solve 7, we perform the change of variable:
W d
Z—a——l-oti — du=-YX__ & (D19)

2 (z—ax)?
In such a way J is rewritten as
1 T dz _ag o — In(e®te — 1)

2a0 wotar € — 1 20

)

which holds as long as ¢y > 0, as it is indeed the case. Hence,
the integral (D14) is given by

(L)ﬁzizl M\ A o
2m/) 1 6\mu) Br st

0tk F s (k) — Ine®te®) — 1)
£

(D20)

with
FE _ /
5,& 0

The integral over k in Eq. (D21) is computed numerically. We
note that oo(k) ~ k2 and therefore the exponential diverges
for k — 0, which is not the case for oy (k) ~ k? that tends to
zero. Because of the logarithm, however, the exponent of the
exponential function compensates the o (k) on the left-hand
side of the logarithm so that the overall behavior of the inte-
grand is zero when k — 0. Instead, when kK — 0o, we have
ao(k) — 0, while a4 (k) diverges. For the same argument as
before, the function of the integrand numerator tends to zero.
Therefore, the integral converges, even if | f(k)|> = 1. For the

(D21)

J

fermionic bath, we get the expression

FE _ /Dodk i+ ero®reas®y — g (k) — oz (k)
o 0 f ()2

(D22)

The result is very similar to the bosonic case, but one has to
remember that the chemical potentials are different, especially
for temperature below the Fermi temperature and the critical
temperature for condensation.

The integral 7, is almost the same, but 7 in Eq. (D17) is
defined now as

7= [

_/ du
0 ug(euZ o 1)(e142+°’+ - 1).

To solve it, we first perform the change of variable (D19),
which yields

+
MK, ¢ (u, k) M K, e (k)

(D23)

1 [+ dz
— . (D24)
2000 Jogta (€8 — 1)(esto+m2- — 1)

Thus, we perform the additional change of variable y = ¢°
with dz = dy/y, and we obtain

! f " dy (D25)
C 2ape 4 J, Yy — D —b)

with @ = e¢®t*- and b = ¢*~%. The integral in Eq. (D25)
can be solved analytically, which finally gives

7 In(e®t¥- — e+ )_— ap — o
20[0(1 — e%- ct+)
_ ¢*"“Refarctanh(1 — 2e%0ta- )}' (D26)
(1 — e¥-—9+)
Hence, 7, preserves the structure of 7, that is,
(—) T =- L F2, (D27)
2n Br

where the radial integration in momentum space is given by

7= Oodkk3|f(k)|2[
0

For the fermions we obtain a similar expression

FO = f T Ak [
0

In(e®0te- — %) — gy — o — 2¢*-~*+Refarctanh(l — ze%w)}} (D28)
1 — e*—9+
&=t In(] ooty 1 o — Oy o0 +0o—
e ind A et - nie ) i) — a_(k):|. (D29)
eu-—0

We note that in the numerical assessment of F| @ we found that both for the bosons and the fermions the integral is essentially
zero, as a consequence of the large numerical Values taken by the exponents. For high densities and high temperatures, however,

F ;2 is not negligible anymore.

2. Cauchy principal value calculation

We need to compute the Cauchy principal value

r=¢ [ a
R3

2
qf (9)q:q:

wy) — w

, £,8=12,3 (D30)
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where wg = [Q2,7(B: /2 + 5)|, w = £(q)/h, and f(g) given by
Eq. (6). Henceforth, we neglected the imaginary unit i in
Eq. (51). The above integral can be rewritten as [g;.¢ is defined
in Eq. (54)]

2m 2(q)qsqs
T (g6) = 7"/1;3 dq%
2 2
_ —P/ dq & / d0 sm(@)/ / (61)61;615’
-4
(D31)

where we transformed the wave vector in spherical coordi-
nates (D9). The only angular dependence in the integrand
comes from ggqe, as the other functions rely on g only.
Given this, one can verify that the angular integral of gzge
always vanishes for & = £&’. Thus, we just need to compute
the CPV for each direction separately. The angular part of
the integration is the same for all directions, namely, it yields
47 /3. Thus, we need to assess the integral

SmnP/‘oo dq 2 (¢q* 8mm
3 ),

= T (gs6)-
|qu5| - 3h
(D32)

In case the denominator of the integrand has a plus sign,
we have an integration without any singularity:

1 (gs5) =

volved and it includes Meijer G functions. A similar argument
holds for the integrals involving the bosonic occupation num-

ber, that is,
7 _ oS 2(9)q; 1
< (4sg) = T R ‘If,s’ + g2 elfTE@—ol — |

8
el I @) (D34)

To compute them, we performed a numerical integration with
Mathematica.

APPENDIX E: RESCALED EQUATIONS OF MOTION

In our numerical simulations we solve the differential
equations (68) in rescaled units, namely, we rescaled the time
and space variables with respect to vg and lg = \/i/(Mvg),
respectively, that is, with respect to the reference harmonic

oscillator frequency and length scale. Hence, we have fg =

(re)/1e)?, i = pe) /Ueve M) = (le/R)*(p}), and & =
ce/ (l§ veM) = c¢ /I, where we introduced a bar for indicating
the dimensionless quantities. Given this, Egs. (68) in rescaled
units read as

d ,

57‘52 = Cg,

d _ - - _ _
— i = {TeIm[®; (v)] — W, (1)} — 2T Im[A¢(1)]p;

dt ~ -
2m A (@a; 8mm _, + eRe[@¢ (1)),
I+(QS,E) = _7 RS dq |q2 |+q2 = - 37 j—}—(‘]a‘,é)- d B B _ 5 5
s.E —C¢ = 2T eIm[®P: (v)] — W/ (0)}s +2p
(D33) dr ¢ § § 3 3 3
— [ {Im[A;(7)]é: — Re[As(T El
This integration can be in principle carried out analytically, elml A (0l [ @) EL
but we refrain to provide an expression since it is quite in- with T = vgt, S_Zf = Q,¢/ve, and
|
r 2 m <M>2( 13)
== ) (k).
§ 3 M\ n §
W) + oW _ (25
-, T T ’ _ _ = o~
Wi(r) = ST"E = (Tf> [ag + 8a: — 2(q: + 8gz) cos (for) — 25q$gg(r)],
&
2e(r) = Y Fy cosl(s — QT T (@se) — T (s,
5,8'¢S;
_ 32m (M\?* (nol}
i =
§ H (Qrf)

and J, (gs.e) = J.(¢s.¢ )l Here, for the sake of simple notation, we just refer to the bosonic case. Moreover, the rescaled ® and

A functions read as

Ae(r) =i Z CECH |G P (G (1 = @) sinl(s — )R TI(1 + 2ng,,) + cosl(s — )L Tlsgn(Be /2 + 5)]

_ r—’;fgefi(sfs’)ﬂrfr + ﬁ;sei(sfs’)fl,fr} _

2 - -
z £ — — 26
— Sy E, C5Ci{ cosl(s — s)2,Tl1 — 2@[sgn(Bz /2 + )]

X [T Gse) + T(Gse) + 20T (Gs.e) + T4 (Gs.e)N — i sinl(s — s)QTILT (Goe) — T (@51}, (E3)
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Pe(r) = Qpp Y CEC;(Be/2 + ){1Gs.c P F(Gee (1 = ¢)[ cosl(s — s)QpTI(1 + 205, )

5,8

+isin[(s — ), Tlsgn(Be /2 + )] + iy ge TN 4 pf 0700

2 _ _ _
— 2Q Y CICHB/2 4 ) sinl(s — )R TI20sgn(Be /2 + )] = VT @) + T/ (Gt

+ 2L (Gs.e) + T4 (G511

where  f(Goe) = f(qse)/les By = Brhve, JTi"(Goe) =
j:Zq (Qs,f )lg . and

Lom BT+ CDPRY

fee = —

5,6 1672 M (nolg)B,%— s

_ 2mS2 s | Be

5. = l 5. & = _— ] . ES
ds.& = leGs.e Mo, ot (ES)

For the numerical assessment of the integrals involved in the
functions F| 5(,22) =F 5,15.2) /12, we note that they have the units
of a wave vector. Given this, we replace the integral variable
by k — IEE = klg in Eqs. (D21) and (D28) and we define the

rescaled parameters in Eq. (D18) as

2 pé
_ mwl p
b= 35"
&
- ng& kkm 1 &
s (k) = =T fa—wfil — B,
Qi (B -t _ MG
o= (B ), pf = Le E6
me (5 e) men e

Finally, let us comment on the rescaling of the scattering
amplitude f(g). The expression given in Eq. (6) assumes that
the regularization parameters b, ¢ are given in units of R*,
as it is more convenient to work with that unit length when
solving the Schrodinger equation (A4). Thus, if everything is
in that unit length, that is, also the ¢ wave vector, then the
scattering amplitude is in R* units as well. As a consequence,
if we wish to have it in /¢ units, we have to multiply f(g) by
R*/I;. Hence, when we have to assess the scattering amplitude
in the A and ® functions, we need first to provide g, ¢ in R*
units as well as b and ¢, and then multiply the obtained result
by R*/I¢. The wave vector g, ¢ in R* units is given by

q;,g = R*CIS,S = Eqs,éa (E7)

where g ¢ is defined in Eq. (E5). The situation is slightly dif-

ferent when the integrations involved in the functions ]—'s(.lg’z) s

J1(gsg), and Jf (gs,¢) are considered. We can rescale the
integrands in R* units, as the scattering amplitude (6), and then
we rescale the result in /; units. Alternatively, we first rescale
the scattering amplitude in units of /g, thus, we perform the
integrations in /¢ units. We have chosen the second option, as
the regularization parameters b, ¢ have been obtained in R*
units. In this case the scattering amplitude in /¢ units is given

(E4)

{
by

’

(E8)

_ Ezn(R*)Zlgz{ ”‘?[1

G i
o= Gzl S e

4be?

where we have introduced the factor (R*/I¢)*. The regular-
ization parameters b, ¢ are in Iz units, which can be obtained
from the b, ¢ in R* units using the relations

- R* R*

b=b—, Cc=c—. (E9)

I I

A similar reasoning applies for the integral (D32). Indeed,
using the definitions (E9) and (D32), one has to replace R* in
Eq. (D32) by (R*/I¢)*. Furthermore, the free-particle disper-
sion relation is rescaled as £(q) = £(q)/(fivg) = M3*/(2m).

APPENDIX F: LINDBLAD FORM OF
THE MASTER EQUATION

The ion master equation (56) cannot be transformed in
a Lindblad-type Markovian master equation, as a crucial
assumption to obtain such a form is the rotating-wave approx-
imation. Using the definitions for the position and momentum
operators for each spatial direction £ = x, y, z,

fe = JL@+@»
2MV§ §

we can rewrite Eq. (56) as

. [Mhv;
=1

@ —ag), (F1)

A

be = _E[HSé + 8H; + Hy, pel + v&Dlag)pe + v Dlallps
i
h

Here, we have introduced the operators

_ @) +a
AE = I [agag + ==

+ v Gilae, aL1ps — —ve G-lag, a{lp:. (F2)

2

+ilALl@) - agl,

At A A PPN N

N R A a.dg Pg + Pgazdg
Dlaglps = aprdf - ———————.

@)? £ az)pe + pe[ @) £ aF]
- 5 . (F3)
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and the damping rates as well as energy shifts

u Re(d) 4 Re(d)
Y =EF[ ~|—Im(A):|, Ve =EF[ —Im(A)],

MVE MUE
Al Re(d) ~
+ _ 12
Ve = TMve ve =T Re(A),
AT Im(®) . RCIm(A)
=, A=— (F4)
M\)g 2

The first line of Eq. (F2) has the structure of the usual Lindb-
land master equation with damping rates yy', yg“T and damping

operators dg and &2, respectively. The second line of Eq. (F2),
however, cannot be recasted in either a unitary term like the
commutator in the first line or in a dissipative term as the
second and third terms of the first line of Eq. (F2). Those
two last terms originate from the fact that we did not apply
the rotating-wave approximation. The additional Hamiltonian
term ﬂs’ is also a consequence of this fact. Now, looking at
the structure of the ® [Eq. (61)] and A functions [Egs. (62)
and (64)] and at the fact that we consider a linear Paul trap
for which the most relevant coefficients C5 are those for n =
0, £1, we see that while Re(®") = ®F has a negligible effect,
Re(®?) provides a non-negligible effect such that it renders
y;' nonzero. A similar argument holds for y,~ for which

Re(AP) yields a significant contribution, but not Re(A?%). On
the other hand, Im(®?) is almost negligible so that A ~ 0, but
Im(A%) produces a non-negligible contribution, while Im(A)
is negligible, so that A’ provides an important contribution to
the ion dynamics.

In conclusion, the ion master equation like the ones for
a neutral impurity in a condensate [47,48,62] cannot be re-
casted in Lindblad form, unless the counter-rotating terms
are neglected. In the future, however, it would be interesting
to explore another approach that has been recently proposed
[64]. Here, it is shown that one does not need to apply the
rotating-wave approximation and, by using another strategy to
apply the Markov approximation, it is possible to derive a dif-
ferent Markovian quantum master equation in Lindblad form,
but with time-dependent decay operators. The advantage of
this approach is that the master equation can be equivalently
simulated by a stochastic Schrodinger equation, similarly to
the well-known Monte Carlo wave-function approach [65,66].
The reduction from a density matrix to a ket state description,
albeit averaging over many quantum trajectories, could be
especially useful for simulating the impurity dynamics fully
in three dimensions.

APPENDIX G: SELF-CONSISTENCY OF
THE MASTER EQUATION

As we already pointed out, the dissipative damping rate
must be smaller than the thermal energy and the typical
system’s transition frequencies. In this case, the dissipa-
tive rate in the &th direction is proportional to [see also
Eq. (F4)]

Ve ~ T g5l F(goe) g, [FE. (G1)
-

x10

e}
T
I

Correlation (arb. units)

0.3 -0.1 0.1 03
vyt

FIG. 11. Example of bath correlation function as evaluated by
Eq. (G2) for the x direction.

where we have neglected the contribution of the terms for
which s # 5" since these, on average, vanish due to the fast
rf oscillations. The dissipative rate has to satisfy the two con-
ditions hyg /(kpT) < 1 and y¢/ve < 1. For instance, for the
23Na/'7*Yb™ pair with a gas temperature of 7 = 200 nK and
trap parameters a = —0.001, ¢ = 0.2, and @,y = 27 2 MHz
we obtain the trap frequencies v, =27 112 kHz, v, =27
169 kHz, v, = 27 45 kHz, kg7 /i = 27 4 kHz, for which the
dissipative rate fulfils the above outlined requirements rather
well, i.e., the ratios are smaller than 3 x 10~* for an atomic
peak density 10" cm™3. These conclusions can be further
corroborated by an evaluation of the bath correlation func-
tions. For example, starting from Eq. (47) and by performing
the replacement (50), the first correlation function due to the
single sum over q in the curly brackets is given by

Z Qfl sin[e(q)t /g qs

q
e8] L . ([)4 _ —4)q
O(/o 1 {e [ T

— e—cq} sin(23%7), (G2)

where E = wE*/(mhve), T = ve7, and the regularization pa-
rameters b, ¢ as well as the wave vector g have been rescaled
with respect to R* and 1/R*, respectively. An example of
such a correlation function is given in Fig. 11 for the spatial
direction x. As it can be seen, the function decays rapidly to
zero, i.e., for times larger than, approximatively, 0.15/v, it
vanishes. Hence, the Markov approximation in our setting is
satisfied reasonably well.
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