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Dicke superradiance of a two-component Fermi gas coupled to a quantized light field
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We study the superradiance transition of a two-component three-dimensional Fermi gas interacting with a
single-mode light field of Dicke-type coupling. We find that for a noninteracting gas, due to the Fermi blocking,
a unique superradiant state with a superradiant outer shell surrounding an inner Fermi sea may appear, and the
critical atom-light coupling strength gc to trigger the superradiance approaches

√
ωcEF /3 even for a vanishing

transition frequency between a two-spin state (ωa → 0), in contrast to gc ∼ √
ωcωa → 0 for a bosonic or spin

system. When the atom-atom attraction is included, we find that the atomic superfluid would compete with the
superradiance directly and both orders cannot coexist, giving rise to an interesting ground-state phase diagram
with a tricritical point. The resultant phases and phase transitions are characterized by the unique fluctuation
spectrum beyond the mean-field level. We further analyze the effects caused by the decay of the light field,
which is inevitable for a possible realization in a cavity with a cold atom system. Our results would be beneficial
for the understanding of the interplay between Fermi superfluid and superradiance.
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I. INTRODUCTION

In recent years, the dynamical realization [1] of the
well-known Dicke superradiance [2–5] in a cavity with
Bose-Einstein condensates [6,7] has stimulated intensive re-
search to study the nontrivial effects in atom-cavity systems
brought about by collective atom-light coupling [8–27]. Such
effects include the superradiant enhancement of a Fermi
gas with a nested Fermi surface [11–13] or a disordered
Bose-Einstein condensate (BEC) [15–18], the induced long-
range interactions between atoms [19,20], and the multimode
superradiance with emergent U(1) symmetry [21–23]. Never-
theless, in most of these works the external motion degrees
of freedom (DOFs) of the atom are used to mimic the two
levels in the Dicke model, and the superradiance transition
with internal states in the cavity setup [28] has only been
realized recently [29,30].

The inclusion of the internal DOFs can have profound ef-
fects on the superradiance transition as well as the many-body
behaviors of the underlying systems [31–50]. For example,
it may lead to the self-organized spin texture in a spinor BEC
[31], the unconventional pairing of Fermi gas [35–37], and the
cavity-assisted dynamical spin-orbit coupling [38–48]. Com-
pared to the well-established Dicke superradiance of a bosonic
or spin system, there are few works devoted to fermionic
assemblies [51–54], and it is still unclear how the ground
state of a three-dimensional spinful Fermi gas with internal
atom-light coupling is affected by the superradiance and vice
versa.

In this paper, we address this issue by studying the ground
state and excitation spectrum of a two-component three-
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dimensional Fermi gas coupled to a quantized light field
homogeneously. We find that the ground state of the Fermi
gas is strongly affected by the atom-light coupling with unique
features. The main results are as follows: (i) In the presence
of a Fermi surface of a noninteracting gas, finite atom-light
coupling gc ∼ √

ωcEF /3 is needed to drive a superradiant
transition for a vanishing atomic transition frequency, in con-
trast to gc ∼ √

ωcωa → 0 of a usual bosonic or spin system.
Meanwhile, a superradiant state may appear that involves only
a partial section of the outer atoms, with the remaining atoms
forming an inner Fermi sea; this is referred to as phase separa-
tion of the superradiance and normal gas in momentum space.
(ii) When the atomic attraction is included, as the atom-light
coupling behaves as an effective transverse magnetic field, the
Fermi superfluid from the singlet pairing would compete with
the superradiance order directly, giving rise to a first-order
transition between these two states in the ground-state phase
diagram with a tricritical point even for a vanishing atomic
polarization. (iii) The observable excitation spectrum beyond
the mean-field level is obtained to characterize the resultant
phases and phase transitions. A further analysis shows that a
finite decay of the light field would shift the phase boundary
by renormalizing the superradiance threshold and lead to a
finite lifetime of the excitations, which are closely relevant
in experiment. This work would be helpful in the search for
nontrivial many-body hybrid states of atoms and light.

The rest of this paper is organized as follows: In Sec. II, we
present the model and derive the mean-field self-consistent
equations with the path integral approach. In Sec. III A, we
first analyze the superradiance transition of an ideal Fermi gas,
where the critical coupling can be determined analytically.
Then we determine the ground-state phase diagram numeri-
cally for an interacting gas in Sec. III B, and we discuss the
interplay of Fermi superfluid and superradiance. In Sec. III C,
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we derive the excitation spectrum of the Gaussian fluctuation
around the mean-field ground state, which can characterize
the unique features of the diverse phases and phase transi-
tions. Finally, in Sec. IV, we discuss the experiment-related
dissipation effect caused by the decay of the light field on the
superradiant transition as well as the excitation spectrum, and
we conclude in the end.

II. THE MODEL AND FORMULISM

Let us consider a three-dimensional two-component (la-
beled as σ = ↑,↓) Fermi gas of mass m interacting with a
single-mode light field homogeneously through a Dicke-type
coupling, the Hamiltonian of which can be written as (by
setting h̄ = 1)

H =ωcâ†â + g(â† + â)√
N

∫
dr[ψ̂†

↑(r)ψ̂↓(r) + ψ̂
†
↓(r)ψ̂↑(r)]

+
∫

dr
[ ∑

σ

ψ̂†
σ (r)

(
− ∇2

2m
− μσ

)
ψ̂σ (r) + U

2
n̂(r)2

]
,

(1)

where â and ψ̂σ represent the annihilation operators of the
photon and atom of spin σ , respectively. ωc is the frequency
of the light field, and we have assumed a homogeneous atom-
light interaction with the single-photon coupling strength g.
The state-dependent chemical potentials are μ↑ = μ − ωa

2 and
μ↓ = μ + ωa

2 , with μ the chemical potential to fix the total
atom number N , and ωa the transition frequency between two
spin states playing as a Zeeman field. At low temperatures,
the atomic interaction is well described by the contact density-
density attraction with strength U (< 0), which connects to the
low-energy s-wave scattering length as via the renormaliza-
tion relation m

4πas
= 1

U + 1
V

∑
k

1
2εk

. Here the atomic density

is n̂ ≡ n̂↑ + n̂↓ with n̂σ = ψ̂†
σ ψ̂σ , εk = k2/2m with k the mo-

mentum of atom, and V is the quantum volume.
Hamiltonian (1) bears the symmetry of U (1) ⊗ Z2, in-

dicating that the total atom number N̂ = ∫
dr n̂(r) and the

parity P̂ ≡ exp{iπ (â†â + N̂ )} are conserved. In general, one
can obtain the superfluid or superradiance order from the
spontaneous breaking of U (1) or Z2 symmetry, respectively.
When both orders are treated on an equal footing, they would
interplay with each other and give rise to rich physics dis-
cussed in the following.

We aim to study the mean-field ground state and fluctuation
spectrum of Hamiltonian (1). To this end, it is convenient to
work in the frame of a path integral by writing the partition
function as Z = ∫

D[ψ̄, ψ, ᾱ, α] exp(−S[ψ̄, ψ, ᾱ, α]) [55],
where ψσ and α represent the Grassmann field and boson field
variables of fermion and photon, and the action

S =
∫ β

0
dτ

∫
dr

[ ∑
σ

ψ̄σ ∂τψσ + H

]
+

∫ β

0
dτ ᾱ∂τα. (2)

Here β ≡ 1
kBT , with kB the Boltzmann constant and T the

temperature.
By introducing the pairing field �(r,τ ) =

Uψ↓(r,τ )ψ↑(r,τ ) to decouple the atomic interac-
tion and making use of the Nambu representation

�̄(r,τ ) = (ψ̄↑ ψ̄↓ ψ↑ ψ↓), the action after the standard
Hubbard-Stratonovich transformation can be recast as

S =
∫

dτ dr
[

1

2
�̄G−1� − |�(r,τ )|2

U
+ (K̂↑ + K̂↓)

2

]

+
∫

dτ ᾱ(ωc + ∂τ )α, (3)

where K̂σ = −∇2

2m − μσ , and G is the single-particle Green’s
function with the inverse

G−1 =

⎛
⎜⎜⎜⎜⎝

∂τ + K̂↑
g(ᾱ+α)√

N
0 �

g(ᾱ+α)√
N

∂τ + K̂↓ −� 0

0 −�̄ ∂τ − K̂↑ − g(ᾱ+α)√
N

�̄ 0 − g(ᾱ+α)√
N

∂τ − K̂↓

⎞
⎟⎟⎟⎟⎠. (4)

Integrating out the field �, we arrive at the effective action

Seff =
∫

dτ dr
[

− 1

2β
ln(−βG−1) − |�(r,τ )|2

U

+ 1

2
(K̂↑ + K̂↓)

]
+

∫
dτ ᾱ(ωc + ∂τ )α. (5)

Here we have used the identity ln det(· · · ) = Tr ln(· · · ).
In what follows, we write � = �0 + δ� and α = α0 + δα,

with δ� and δα being the fluctuations around the saddle point
(�0, α0), and further we write G−1 = G−1

0 + MF with G−1
0 =

G−1|�=�0,α=α0 and

MF =
(

g(δᾱ+δα)√
N

σx iδ�σy

−iδ�̄σy − g(δᾱ+δα)√
N

σx

)
, (6)

with σx and σy being the Pauli matrices. For small fluctuations,
we expand the effective action (5) to the second order of MF

as Seff 
 S0 + SF, where

S0 =
∫

dτ dr
[
− 1

2β
ln(−βG−1

0 ) − |�0|2
U

− ∇2

2m
− μ

]

+βωc|α0|2 (7)

and

SF =
∫

dτ dr
[
−|δ�|2

U
+ 1

4β
(G0MF)2

]

+
∫

dτ δᾱ(∂τ + ωc)δα (8)

are the action at the saddle point and that of the fluctuation.
The mean-field ground state is generally determined by the

thermodynamic potential at the saddle point �0 ≡ 1
β

S0, which
in terms of the momentum-frequency coordinates (k, iωn) is
given by

�0 = − 1

2β

∑
kn,s

ln β(iωn − Ek,s)

+
∑

k

ξk + ωc|α0|2 − V |�0|2
U

, (9)

where ωn = (n + 1
2 ) 2π

β
, n ∈ Z is the fermionic Matsubara fre-

quency. Ek,s=± =
√

ξ 2
k + |�0|2 ± √

ω2
a/4 + g2(ᾱ0 + α0)2/N
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are the mean-field quasiparticle spectra in the presence of
both superfluid order � and superradiance order α with ξk =
εk − μ. Further summing over the Matsubara frequency, we
arrive at

�0 = − 1

β

∑
k,s

ln(1 + e−βEk,s ) − V |�0|2
U

+ ωc|α0|2

+
∑

k

[
ξk − 1

2
(Ek,+ + Ek,−)

]
. (10)

Finally, we minimize the above �0 with respect to �0 and
α0 to obtain the equations for the superfluid and superradi-
ance, which are

− m

4πas
= 1

V

∑
k

[∑
s

1

4Ek
tanh

(
βEk,s

2

)
− 1

2εk

]
(11)

ωc = − 1

N

∑
k,s

sg2

�
tanh

(
βEk,s

2

)
. (12)

Here, Ek =
√

ξ 2
k + |�0|2 and � = √

ω2
a/4 + g2(ᾱ0 + α0)2/N .

Self-consistently solving the above Eqs. (11) and (12) together
with the atomic number equation

N ≡ −∂�0

∂μ
=

∑
k

[
1 −

∑
s

ξk

2Ek
tanh

(
βEk,s

2

)]
, (13)

we can determine the ground state of the system. In this paper,
we focus on the zero-temperature case, and the extension to
finite temperature is straightforward.

III. SUPERRADIANCE TRANSITION OF THE FERMI GAS

A. Noninteracting case

We first consider the superradiance transition of a nonin-
teracting gas. In this case, the superfluid is absent, and the
self-consistent equations for the superradiance order (12) and
atom number (13) at T = 0 reduce to

ωc = V g2

3π2N�
[(μ + �)3/2 − (μ − �)3/2], (14)

N

V
= 1

6π2
[(μ + �)3/2 + (μ − �)3/2]. (15)

Then we can derive the critical coupling strength of super-
radiance,

gc/EF =
√

4ωcEF

ω2
a + 12μ(ωa)2

, (16)

where EF is the Fermi energy and μ(ωa) can be obtained
from Eq. (15) by setting α = 0. In Fig. 1(a), we give the
evolution of critical gc with respect to the transition frequency
ωa (solid line). Across gc, the system transits from a nor-
mal gas (NG) with |α| = 0 to a superradiant state (SR) with
|α| > 0. Compared to the Dicke transition of a Bose or spin
system where gc 
 √

ωcωa, the dependence of gc on ωa of
the Fermi gas is quite different due to the Fermi blocking

especially for ωa � EF , where we have μ 

√

1 − 3ω2
a

32E2
F

and

gc 
 gc0(1 − ω2
a

192E2
F

). Specifically in the limit of ωa = 0, gc =

210
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FIG. 1. (a) The solid line shows the critical atom-light cou-
pling strength gc/EF as a function of atomic transition frequency
ωa/EF . The color bar shows the scaled photon number |α|2/N . The
dashed line separates the superradiant state with (kin > 0) or without
(kin = 0) an inner Fermi surface, which ends at a tricritical point at
(ωa/EF , g/EF ) = (1.577, 0.6288). (b) The Fermi momentum kin/kF

of the inner Fermi sea and the scaled superradiant order parameter
α/

√
N as functions of the atom-light coupling strength g/EF for

different ωa/EF = 0 (blue solid) and 1 (red dash-dotted). Here, the
light field frequency ωc/EF = 1.

gc0 = √
ωcEF /3 ≈ 0.58

√
ωcEF , in contrast to the gc → 0 of

the Bose or spin system.
More remarkable in Fig. 1(a), we find a regime in which

the superradiance can coexist with an (inner) Fermi sea. To
see it clearly, in Fig. 1(b) we plot the evolution of the Fermi
momentum kin of the Fermi sea and the scaled superradiant
order parameter α/

√
N with respect to the atom-light coupling

g. One can see that for an intermediate-coupling strength g
(> gc), we have α �= 0 and kin > 0, suggesting a coexisting
state with both superradiance and a normal Fermi sea. The
emergence of a such state is a unique feature of this fermionic
system and is distinct from the bosonic counterpart, which
results from the interplay of the Fermi blocking and the atom-
light coupling.

To understand the underlying physics, it is intuitive to first
consider ωa = 0. In this case, the atoms form a (spinful) Fermi
sea in the momentum space with Fermi momentum kF of the
Fermi surface for g = 0. To produce the superradiance, one
needs to bring the atoms out of the Fermi sea to form the
polaritons on top of the Fermi surface, which nevertheless is
energetically unfavorable for g < gc, with kin = kF and α = 0
shown in Fig. 1(b). When the coupling strength g goes beyond
the threshold gc, the energy cost to take atoms out of the Fermi
surface can be compensated by the formation of polaritons
for the atoms around the Fermi surface, which generate the
superradiance, while the atoms deep in the Fermi sea are not
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FIG. 2. (a) The ground-state phase diagram in the g-ωa plane at
unitary regime with (−askF )−1 = 0, which contains three phases: the
superfluid (SF) state, the superradiant (SR) state, and the normal gas
(NG); (b) the SF order parameter �/EF (blue solid) and the SR order
parameter α/

√
N (red dash-dotted) as functions of scattering length

(−askF )−1. The inset shows the evolution of the chemical potential
μ. Other parameters are ωc/EF = ωa/EF = g/EF = 1. (c) The crit-
ical coupling strength gc/EF as a function of the scattering length
(−askF )−1 for ωa = 0 (blue dashed) and ωa/EF = 1 (red solid). Here
ωc/EF = 1.

affected by the uniform atom-light coupling and form an inner
Fermi sea with Fermi momentum kin < kF , giving rise to the
phase separation in momentum space. Further increasing g,
more and more atoms contribute to the superradiance, and the
inner Fermi surface is smeared out gradually with a decreasing
kin [see Fig. 1(b)]. Finally, across a second critical coupling
gt =

√
ωcEF /24/3 ≈ 0.63

√
ωcEF (labeled by the dashed line

in Fig. 1), all atoms are involved in the superradiance and
kin = 0. For ωa > 0, the parameter regime of the superradi-
ant state with an inner Fermi surface shrinks and vanishes
at a tricritical point ωa = 22/3EF 
 1.59EF and gc = gt . In
comparison, such a unique superradiant state is absent in 2D
[51], where the constant density of states gives a constant
superradiance threshold below ωa/EF = 1.

B. Interacting case

Above we have discussed the case without atomic inter-
action. When the atom-atom attraction is included, we solve
Eqs. (11)– (13) to find the ground state. Figure 2(a) depicts
the phase diagram in the g-ωa plane, which contains three
different phases: the SR, NG, and a superfluid (SF) state.
For small g and ωa, the system is always in a SF state with
Bardeen-Cooper-Schrieffer (BCS) type pairing. For large ωa,
such BCS pairing is suppressed and the ground state becomes
a polarized NG. With the increasing of g, both the SF and

NG undergo a transition to the SR phase. The difference is
that for the SF, the transition to SR is of first-order while it is
continuous for the NG [refer to Fig. 2(b) and the correspond-
ing discussions in the following]. These three phase transition
lines merge at a tricritical point.

The discontinuous transition between the SF and SR states
suggests that the two orders cannot coexist in the mean-field
ground state [56]. In Fig. 2(b), we give a typical evolution of
the order parameter � and α across the superradiant transition
by tuning the scattering length. One can clearly see that in
the SF phase, � �= 0 and α = 0, while α �= 0 and � = 0 for
the SR state. It can be understood that the spin-flipping terms
in the atom-light coupling, which behave like a transverse
magnetic field and tend to form (triplet) polaritons, are in
competition with the atomic singlet pairing from the contact
interaction [24]. As a result, in the BEC regime (as > 0),
a larger g is required to break the tight binding between
atoms compared with that required for the loose pairs in the
BCS regime (as < 0) [refer to Fig. 2(c)]. It is worth noting
that unlike the suppression of superfluid in a large polarized
environment, here the atom-light coupling itself does not in-
troduce polarization (though it produces an effective Zeeman
field), and it can destroy the singlet pairing even for ωa = 0
with vanishing polarization.

Figure 2(c) presents the critical coupling strength gc as a
function of scattering length as for different ωa. In general,
gc decreases with as moving from the BEC side to the BCS
side, and it approaches the noninteracting result in the BCS
limit. Note that for ωa �= 0, gc becomes a constant in the weak-
coupling regime, where the ground state is a polarized NG
independent of the scattering length.

C. Fluctuation spectrum

To further characterize the unique phases and phase tran-
sitions, we turn to the excitation spectrum of the fluctuations
δ� and δα around the mean-field ground state. From Eq. (8),
the action of the fluctuation can be rewritten as

SF = −βV

U

∑
q

δ�̄qδ�q + β
∑

n

δᾱn(−iνn + ωc)δαn

+
∑
k,q

1

4
Tr[G0(k)MF (−q)G0(k − q)MF (q)], (17)

where k = (k,iωn) and q = (q,iνn), with νn = n 2π
β

, n ∈ Z
being the bosonic Matsubara frequency. As � and α cannot
coexist, the fluctuations δ� and δα in Eq. (17) are decoupled,
which for � = 0 takes the form of (see the Appendix for more
details)

SF = β
∑

q

�qδ�̄qδ�q + β

2

∑
n

(δᾱn δαn)G−1
α

(
δαn

δᾱn

)
.

(18)
Here �q = ∑

k,s
1−n f (Ek,s )−n f (Ek−q,s )

iνn−ξk−ξk−q
− V

U describes the familiar
spectrum of the pair fluctuation [55], and

G−1
α =

(
K1 K2

K2 K1

)
, (19)
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FIG. 3. Evolution of the excitation energy Eex/EF vs the atom-
light coupling strength g/EF for two typical interaction parameters:
(a) −1/askF = −1 and (b) −1/askF = 1. Here, ωc/EF = ωa/EF =
1. There are three branches: one is of photon-type (blue dash-dotted)
and two are of matter-type (green solid and red dashed).

K1 = −iνn + ωc − g2

N

∑
k,s

sω2
a tanh

( βEk,s

2

)
2�

(
ν2

n + 4�2
) , (20)

K2 = −g2

N

∑
k,s

sω2
a

2�
(
ν2

n + 4�2
) tanh

(
βEk,s

2

)
(21)

is the fluctuated Green function of the light field, with the pole
of Gα giving the excitation energy. For α = 0, we can also
derive the corresponding fluctuation action and the resultant
excitation spectrum (see the Appendix for explicit expres-
sions).

In this paper, we are interested in the unique excitations of
the light field, which carry the information of the underlying
many-body ground states not captured in the mean-field level
and can be measured via the cavity transmission spectrum
[57,58]. In Fig. 3, we plot the excitation spectrum Eex as a
function of atom-light coupling g for two typical scattering
lengths. In general, there are three branches of Eex contributed
by the photon fluctuation via three types of excitations: one
is of photon-type by simply creating or annihilating a single
photon (∼ωc, blue dashed-dotted line), and the other two
are of matter-type by annihilating an ↓-atom and creating an
↑-atom (∼ωa, green solid line) and vice versa (∼ − ωa, red
dashed line), which are decoupled for g = 0. With the increase
of g, such excitations couple to each other with the energy Eex

of each branch been corrected by the atom-light coupling.
Below the superradiant threshold gc, one can see that the

excitation spectrum is weakly dependent on g for a SF state
[Fig. 3(a) with (−askF )−1 = −1] while it is considerably
modified by g for a NG [Fig. 3(b) with (−askF )−1 = 1].
Above gc, the excitations in the deep SR regime exhibit sim-
ilar behaviors for both cases except around the critical point
gc, where the excitation energy Eex exhibits a discontinuous
jump for all branches across the SF-SR transition. In contrast
for a NG, the single-photon excitation energy decreases with
g continuously, and becomes zero at the superradiance transi-
tion point [see the blue dashed-dotted line in Fig. 3(b)]. We
emphasize that the unique dependency of the excitation spec-
trum on relevant parameters in different phases can not only
signal the (first-order) phase transitions, but it can also carry

-0.5 0 0.5 1

0.8

1.2

FIG. 4. The SR critical coupling strength gc/EF as a function of
(−askF )−1 for decay rate κ = 0 (red dashed), 0.5 (green dot-dashed),
and 1 (blue solid). Here, ωa = 0 and ωc/EF = 1.

the important information of each phase, which is beyond the
mean-field theory and can be accessible in experiment.

IV. DISCUSSION AND CONCLUSION

So far, we have discussed the results of equilibrium states
without decay. For a realistic cavity realization of the single-
mode light field [53], one needs to take into account the loss
of the cavity field due to the leakage, which can generally be
captured by the master equation ∂tρ = −i[Ĥ, ρ] + κ (2α̂ρα̂ −
α̂α̂†ρ − ρα̂†α̂) on the density matrix ρ, with κ being the
decay rate. Instead, a nonequilibrium steady state can be ex-
pected [28], which is achieved by writing

i∂tα = (ωc − iκ )α + g√
N

(R + R∗) (22)

with α ≡ 〈α̂〉 and R ≡ ∑
k〈ĉ†

k↑ĉk↓〉. For a steady state, ∂tα =
0 and we have

α = − g(R + R∗)√
N (ωc − iκ )

. (23)

Solving the above Eq. (23) together with Eqs. (11) and
(13) self-consistently, we can obtain the steady-state phase
diagram, as shown in Fig. 4. Compared to the (equilibrium)
case without decay (κ = 0), we find that the critical atom-light
coupling strength gc increases with κ , with a global shift of the
phase boundary. This becomes transparent in the limit of weak
interaction, where gc can be derived explicitly as

gc/EF =
√

ω2
c + κ2

ωc

4EF

ω2
a + 12μ2

. (24)

For κ = 0, it recovers the dissipationless result given by
Eq. (16).

In Fig. 5, we plot the evolution of the excitation spectrum
across the SF-SR/NG-SR transition in the presence of a finite
κ . Compared to the case of κ = 0, an important consequence
brought about by the cavity decay is that due to the atom-
light coupling, all three branches become dissipated with a
complex energy. For the real parts of the energy [Figs. 5(a) and
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FIG. 5. The real part (a), (c) and the imaginary part (b), (d) of the
excitation energy Eex/EF as functions of g/EF for two interaction
parameters: (a), (b) −1/askF = 0 and (c), (d) −1/askF = 1. Here,
κ/EF = 1 and other parameters are the same as in Fig. 3.

5(c)], they show similar behaviors to that of κ = 0 (Fig. 3),
while for the imaginary part it approaches −κ/EF ∼ −1 in
the NG phase with small g or in the SR phase with large g, and
there is a considerable variation in the intermediate regime for
the photon-type branch [blue dash-dotted lines in Figs. 5(b)
and 5(d)]; on the other hand, for the two matter-type branches
[green solid and red dashed lines in Figs. 5(b) and 5(d)], the
imaginary parts vanish in the small/large g limit and become
significant in the intermediate regime.

We have focused above on the BCS-type pairing of the
Fermi gas. It is also possible to consider polarized superfluid
phases such as the Sarma phase [59] and the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [60,61] in this system.
However, on the mean-field level, such polarized superfluid
phases still arise from the singlet pairing induced by the

contact interaction, and thus they cannot coexist with the
superradiance as the BCS-type superfluid discussed above.
Moreover, since the Sarma state mainly appears at finite
temperature while the FFLO state appears in a very narrow
parameter regime in the phase diagram of a polarized Fermi
gas [62], their contributions to the zero-temperature phase
diagram are quite small, and are therefore neglected in this
work.

In experiment, we note that the strong coupling between
a Fermi gas and an optical cavity has been realized recently
[53], where the low-lying (ground-state) energy level and the
high-lying excited one of the 6Li atom is directly coupled to
an optical cavity mode. To realize the Dicke-type atom-light
coupling, one may also resort to the cavity-assisted Raman
transition between two hyperfine states [63]. The contact in-
teraction strength can be tuned by Feshbach resonance [64],
which enable us to address the whole phase diagram across the
BEC-BCS crossover. To detect the superradiance transition,
one can measure the photon number leaking from the cavity
[1], and/or the (fluctuated) excitation spectrum. The latter is
closely related to the optical absorption of the cavity [65], and
it can be obtained via the transmission spectrum [57,58].

In summary, we have investigated the ground-state phase
diagram and the excitation spectrum of an interacting Fermi
gas coupled to a single-mode light field homogeneously. The
competition between interatomic singlet pairing interaction
and atom-light coupling can lead to a first-order transition
between the SF and SR orders with a tricritical point in the
phase diagram. Due to the Fermi blocking, a finite atom-light
coupling strength is generally needed to induce the SR order
even for a vanishing atomic transition frequency, in contrast
to the Dicke transition of a bosonic or spin system. It would
also be interesting to find more exotic states like the uncon-
ventional superradiant superfluid with both SR and SF orders
simultaneously in this hybrid system, but this is beyond the
scope of this work, and we leave it for future studies.
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APPENDIX: DERIVATION OF THE FLUCTUATION SPECTRUM

To evaluate the fluctuation action Eq. (17), we write the Green’s function at the saddle point as

G0(k) = 1∏
s=±

(
ω2

n + E2
k,s

)
⎛
⎜⎝
G0,11 G0,12 0 G0,14

G0,21 G0,22 G0,23 0
0 G0,32 G0,33 G0,34

G0,41 0 G0,34 G0,44

⎞
⎟⎠, (A1)

where

G0,11 =
(

− iωn + ξk + ωa

2

)
[(−iωn − ξk )2 − �2] − |�0|2

(
− iωn − ξk − ωa

2

)
, (A2)

G0,22 =
(

− iωn + ξk − ωa

2

)
[(−iωn − ξk )2 − �2] − |�0|2

(
− iωn − ξk + ωa

2

)
, (A3)
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G0,33 =
(

− iωn + ξk − ωa

2

)
[(−iωn + ξk )2 − �2] − |�0|2

(
− iωn + ξk + ωa

2

)
, (A4)

G0,44 =
(

− iωn − ξk + ωa

2

)
[(−iωn + ξk )2 − �2] − |�0|2

(
− iωn + ξk − ωa

2

)
, (A5)

G0,12 = G∗
0,21 = g(ᾱ0 + α0)√

N

[( − iωn − ξ 2
k − �

)( − iωn − ξ 2
k + �

) + |�0|2
]
, (A6)

G0,14 = G∗
0,41 = �̄0

[(
− iωn + εk + ωa

2

)(
− iωn − εk + ωa

2

)
+ g2(ᾱ0 + α0)2

N

]
, (A7)

G0,23 = G∗
0,32 = −�̄0

[(
− iωn − εk − ωa

2

)(
− iωn + εk − ωa

2

)
+ g2(ᾱ0 + α0)2

N

]
, (A8)

G0,34 = G∗
0,43 = −g(ᾱ0 + α0)√

N

[( − iωn + ξ 2
k + �

)( − iωn + ξ 2
k − �

) + |�0|2
]
. (A9)

As � and α cannot coexist in the mean-field ground state, i.e., �0 = 0 or α0 = 0, this would simplify the calculations, and in
the following we present the results in those cases.

Case I: �0 = 0. In this case, the system can be a normal state (α = 0) or a SR state (α �= 0). We have

∑
k,q

1

4
Tr[G0(k)MF (−q)G0(k − q)MF (q)] =

∑
n

1

2
(δαn δαn)

(
Gᾱα Gᾱᾱ

Gαα Gαᾱ

)(
δαn

δᾱn

)
+

∑
q

G�δ�̄qδ�q, (A10)

where

Gᾱα = Gαᾱ = Gᾱᾱ = Gαα

= g2

N

∑
k,q

[G0,12(k)G0,12(k − q) + G0,11(k)G0,22(k − q) + G0,34(k)G0,34(k − q) + G0,33(k)G0,44(k − q)], (A11)

G� =
∑

k

[G0,12(k)G0,34(k − q) + G0,11(k)G0,44(k − q) + G0,22(k)G0,33(k − q) − G0,21(k)G0,34(k − q)]. (A12)

Substituting Eqs. (A2)–(A9) into the above equations (A11) and (A12) and performing the summation over the Matsubara
frequencies iωn, we obtain

1

β
Gᾱα = −g2

N

∑
k,s

sω2
a

2�
(
ν2

n + 4�2
) tanh

βEk,s

2
, (A13)

1

β
G� =

∑
k,s

1 − nF (Ek,s) − nF (Ek−q,s)

iνn − ξk − ξk−q
. (A14)

Here we have taken use of 1
β

∑
n

1
iωn−ε

= nF (ε) with the Fermi distribution function nF (ε) = 1
exp(βε)+1 . Putting the free terms of

the fluctuations together, we can derive the final form Eqs. (18)–(21) in the main text.
Case II: α0 = 0. In this case, the system can be a SF state (� �= 0) or a NG (� = 0). Similar to case I, we can derive the final

form of the fluctuation action Eq. (17), which is given by

SF = 1

2

[∑
n

(δαn δαn)

(
Gᾱα Gᾱᾱ

Gαα Gαᾱ

)(
δαn

δᾱn

)
+

∑
q

(δ�q δ�q)

(
G�̄� G�̄�̄

G�� G��̄

)(
δ�q

δ�̄q

)]
, (A15)

where Gᾱα = Gαᾱ = −iνn + ωc + Gᾱᾱ with

Gᾱᾱ = Gαα =
∑
k,s

−s

2
(
ν2

n + ω2
a

)
{

ωa tanh
βEk,s

2
+ 4E2

k,sξk(iνn + ωa) + 2ν2
nεk(ωa + sεk ) + ν2

nξk(iνn − 2sEk,s)

εk
(
ν2

n + 4E2
k,s

)
}

(A16)

and

G�̄� = G��̄ =
∑
k,s

{
�(k, k − q)nF (Ek,s)

εkϒk
+ �(k − q, k)nF (Ek−q,s)

εk−qϒk
+ Ak

2εkεk−q
[
(iνn + εk )2 − ε2

k−q

]
}

− U

V
, (A17)

G�̄�̄ = G�� = −
∑
k,s

�̄2
0

2ϒk

[(
ν2

n − ε2
k + ε2

k−q

)
nF (Ek,s)

εk
+

(
ν2

n + ε2
k − ε2

k−q

)
nF (Ek−q,s)

εk−q
− Bk

2εkεk−q

]
. (A18)
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Here ϒk = [ν2
n − (εk + εk−q)2][ν2

n − (εk − εk−q)2] and

�(k1, k2) = (
ε2

k1
+ iνnξk1

)(
ν2

n + ε2
k1

) + iνn
[
ε2

k2
(ξk1 − εk1 ) − 2ε2

k1
ξk2

] + ξkξk−q
(
ν2

n + ε2
k2

− ε2
k1

)
, (A19)

Ak = iνn(ξk−qεk + εk−qξk ) + (ξkξk−q − εkεk−q)(εk + εk−q) + 2εkεk−q(ξk − ξk−q), (A20)

Bk = εk−q(iνn − εk−q)2 + εk(iνn + εk )2 − εk−qε
2
k − εkε

2
k−q. (A21)

Numerically solving the pole of G, we obtain the excitation spectrum given in the main text.
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