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Optical lattice for a tripodlike atomic level structure
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Standard optical potentials use an off-resonant laser standing-wave-induced ac Stark shift. In a recent devel-
opment [Łącki et al., Phys. Rev. Lett. 117, 233001 (2016)] a three-level scheme in a � configuration coupled
coherently by resonant laser fields was introduced, leading to an effective lattice with subwavelength potential
peaks. Here, as an extension of that work, a four-level atomic setup in the tripod configuration is used to create
spin- 1

2 -like two-dimensional dark space with one-dimensional motion and the presence of external gauge fields.
Most interestingly for possible applications, the lifetime for a dark subspace motion is up to two orders of
magnitude longer than for a similar � system. The model is quite flexible, leading to lattices with significant
nearest, next-nearest, or next-to-next-nearest hopping amplitudes J1, J2, and J3 offering intriguing possibilities
to study, e.g., frustrated systems. The characteristic Wannier functions lead also to a type of intersite interaction
not realizable in typical optical lattices.

DOI: 10.1103/PhysRevA.104.053312

I. INTRODUCTION

Optical potentials using a Stark shift induced by far-
detuned laser standing waves have enabled implementation
of discrete lattice models [1] linking ultracold atomic physics
with condensed matter physics or rather enriching the lat-
ter with bosonic systems such as the Bose-Hubbard model.
The experimental demonstration of a quantum phase transi-
tion between the superfluid and Mott insulating phases [2]
was followed by intensive investigations in different, more
complex schemes [3–5] involving spinor lattice gases, long-
range interactions, disordered systems, or an implementation
of topological insulators.

Standing-wave optical potentials have proved to be very
versatile, allowing one to create, typically with the ap-
plication of additional Raman lasers, interesting coupling
between sites, e.g., leading to the construction of artificial
gauge fields or spin-orbit coupling as reviewed in [5]. The
atomic ground-state sublevels could serve as an additional
synthetic dimension [6–8], allowing, e.g., the extension of
Hall physics to four dimensions [9]. Still, the standing-wave
optical potential has some drawbacks. The typical cos2(kLx)
spatial dependence (with kL being the laser light wave vec-
tor) leads to the dominance of nearest-neighbor tunneling
over hops involving separated sites. Similarly, on-site inter-
actions dominate over intersite terms, making investigations
of interaction-related physics for spinless fermions in optical
lattices difficult.

Recently, an alternative scheme for creating optical poten-
tials has been proposed [10,11]. It relies on a resonant dipole
coupling of three atomic levels with the position-dependent
Rabi frequencies involving a common atomic excited state.
This differs from the standard approach where two-photon
resonant lasers are far detuned from a single-photon transition
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[12,13]. The resulting � system is characterized by a position-
dependent dark state. The dynamics of atoms constrained to
the dark state is that of a particle moving in the presence
of a scalar potential which features evenly spaced subwave-
length peaks. Early 171Yb experiments [14,15] confirmed the
expected band structure, but the system lifetimes were, disap-
pointingly, at least one order of magnitude lower than for ac
Stark potentials.

In this work we present the tripod system [16,17], with
four resonantly coupled levels, which is an interesting ex-
tension of the � system. It features two degenerate dark
states implementing spin- 1

2 -like physics providing at the
same time a possible realization of spin-orbit coupling in a
one-dimensional lattice supplementing the existing schemes
[18,19]. In Sec. II we adapt the derivation of the � system
dark-state description to the tripod scheme. In Sec. III we de-
tail the resulting periodic spin- 1

2 -like model for the movement
of the particle in the gauge field and discuss the Bloch theory
including lifetime computation of the dark-state bands. The
tight-binding description of atoms populating low-lying bands
is discussed in Sec. IV. As it turns out, the model leads, in
a natural way, to a quite peculiar extended Hubbard model
with significant hopping not only to the nearest-neighbor
(NN) sites but also to the next-nearest neighbors (NNNs) and
to next-to-next-nearest neighbors (NNNNs). Such a highly
interesting and unusual property is due to the shape of the
Wannier basis functions corresponding to the nonstandard
lattice experienced by the atoms. This opens up the possibility
of frustration-related studies in the model. A summary is given
and future perspectives involving the study of interacting par-
ticles are discussed in Sec. V.

II. HAMILTONIAN

We consider a gas of ultracold atoms whose motion is
restricted to one dimension, for example, by a strong external
optical potential of the form V (y, z) = maω

2(y2 + z2)/2. The
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atoms populate three ground-state configuration atomic states
|g1〉, |g2〉, and |g3〉 that are coupled to an excited state |e〉.
The dipole coupling of each of |gi〉 to |e〉 is characterized by
a Rabi frequency �i(x). The wavelength of the three lasers is
assumed to be equal to λL. In a rotating frame, after neglect-
ing rapidly oscillating terms, the Hamiltonian of the system
considered reads

H = − h̄2

2ma

∂2

∂x2
+ Ha(x), (1)

where ma is the atomic mass and

Ha(x) =

⎛
⎜⎜⎜⎝

−� − i�e
2 �∗

1(x) �∗
2(x) �∗

3(x)

�1(x) 0 0 0

�2(x) 0 0 0

�3(x) 0 0 0

⎞
⎟⎟⎟⎠. (2)

Here � is a possible common detuning of all three lasers
and �e is spontaneous emission rate of the excited state. We
consider Rabi frequencies of the form

�1(x) = �1 sin(kLx),

�2(x) = �2 sin(kLx + a), (3)

�3(x) = �3,

where kL = 2π/λL. The λL periodicity defines a natural en-
ergy scale: the recoil energy equal to ER = h̄2k2

L/2ma.
The matrix Ha(x) in Eq. (2), for �e �= 0, is non-Hermitian.

It is diagonalized by finding a biorthogonal set of right and
left eigenvectors. When using bra-ket notation, the bra vec-
tor always refers to a proper left eigenvector, a part of the
biorthogonal set. There exist two linearly independent right
eigenvectors |D1(x)〉 and |D2(x)〉 corresponding to energy
E (x) = 0, two dark states. They are of the form

|Di(x)〉 =
3∑

n=1

ui,n|gi〉, �(x) ⊥ ui (4)

and are not affected by value of � or �e.
The Hamiltonian matrix (2) has also two (right) bright

states |B±(x)〉 with energies

E±(x) = −�̃/2 ±
√

(�̃/2)2 + ‖�(x)‖2, (5)

where �̃ = � + i�/2. These states read

|B±(x)〉 = N±(x)

(
E±(x)|e〉 +

3∑
i=1

�i(x)|gi〉
)

, (6)

where

N±(x) = 1√
[E±(x)]2 + ‖�‖2

,

‖�‖ =
√

|�1(x)|2 + |�2(x)|2 + |�3(x)|2 (7)

are the normalization factors. The left eigenvectors, which
together with (6) form a biorthonormal set, are given by

〈B±(x)| = N±(x)

(
E±(x)〈e| +

3∑
i=1

�∗
i (x)〈gi|

)
. (8)

FIG. 1. Diagonal energies of bright channels E+(x) > 0 and
E−(x) < 0 for �1:�2:�3 = 5000:2000:500. For a ∈ {0, π/2} the
E+(x) has a minimum for x = 0.

For �e �= 0 the states |B±(x)〉 undergo a spontaneous emis-
sion with a rate comparable to that of an excited state |e〉.
In this work we are interested in the case when atoms pop-
ulate primarily the stable channels |D1(x)〉 and D2(x)〉 and
the energy scale set by �i dominates the kinetic energy of
atoms. This also ensures that a phenomenological description
of losses from largely unpopulated |e〉 via i�e is justified,
�e 	 ‖�‖.1

The gap �E between the dark- and the bright-state chan-
nels, for � = 0, is given by min E+(x). For a = 0 we have
�E = |�3|. For a > 0 the gap �E increases until a = π/2,
where �E = min{

√
�2

3 + �2
2 ,

√
�2

3 + �2
1}. The dependence

of E± on x for a few selected values of a is shown in Fig. 1.
It is worth stressing that we focus on noninteracting bosons

or the physics of ultracold spinless fermions, where direct
collisions are suppressed. If this were not the case one may
wonder whether the collision of two atoms in the dark state
may not lead to one particle in each bright state as E+(x) +
E−(x) = −�̃. We leave this question open for the interacting
case study; here we mention that the process may be sup-
pressed by taking a sufficient detuning � still in the limit
� � ‖�‖.

The Hamiltonian (1) may be addressed using a Born-
Oppenheimer type of transformation [10,16] applying

B(x) = {|D1(x)〉, |D2(x)〉, |B+(x)〉, |B−(x)〉} (9)

as a position-dependent basis. Writing an arbitrary wave func-
tion in this basis as

|ψ (x)〉 = d1(x)|D1(x)〉 + d2(x)|D2(x)〉
+ b−(x)|B−(x)〉 + b+(x)|B+(x)〉 (10)

yields the Hamiltonian matrix

HB = [P − A(x)]2

2ma
+ diag[0, 0, E+(x), E−(x)] (11)

1In general, the more complete treatment of losses would be by the
Lindblad master equation approach.

053312-2



OPTICAL LATTICE FOR A TRIPODLIKE ATOMIC LEVEL … PHYSICAL REVIEW A 104, 053312 (2021)

or

HB = 1

2ma
[P2 − 2A(x)P + �(x)]

+ diag[0, 0, E+(x), E−(x)]. (12)

The HB now acts on vectors of the form

ψ (x) ≡

⎛
⎜⎜⎜⎝

d1(x)

d2(x)

b+(x)

b−(x)

⎞
⎟⎟⎟⎠. (13)

The operator P = −ih̄∂x ⊗ 14. The A(x) is given by

AMN (x) = ih̄〈M(x)|∂x|N (x)〉, M(x), N (x) ∈ B(x) (14)

and

�(x) = A(x)2 + ih̄∂xA(x). (15)

A. Dark-state subspace

The large diagonal terms E−(x) and E+(x) in Eq. (12) allow
for the separation of the dark-state physics in the Hamiltonian
(12) by the following dark-state projection:

H2 = QHBQ, Q = |D1(x)〉〈D1(x)| + |D2(x)〉〈D2(x)|.
(16)

This will be evident from the upcoming numerical analysis.
The states |D1(x)〉 and |D2(x)〉 are energy degenerate and

thus not uniquely defined. Different choices of basis lead to an
equivalent description of the model. We favor those leading
to simple, well-behaved, and intuitive potentials A(x). We
consider only λL-periodic |Di(x)〉. We also opt to work with
|Di(x)〉 with real coefficients, which automatically implies
A11(x) = A22(x) = 0.

Let us take

|D1(x)〉 ∝ |ξ 〉 × �(x) (17)

and

|D2(x)〉 ∝ |D1(x)〉 × �(x). (18)

This ensures their mutual orthogonality and by Eq. (4) such
vectors are indeed dark. The vector |ξ 〉 cannot be parallel to
�(x) but otherwise can be arbitrary. We choose

|ξ 〉 = �1|g1〉 + �2|g2〉. (19)

We will later discuss the advantages of the above choice
for |ξ 〉, namely, good analytic properties in the limit a → 0.
Using Eq. (19) we find

|D1(x)〉 = N1(x)

⎛
⎜⎝

�2�3

−�1�3

�1�2[sin(a + kLx) − sin(kLx)]

⎞
⎟⎠ (20)

and

|D2(x)〉 = N2(x)

⎛
⎜⎝

�1
[
�2

2 f (kLx) + �2
3

]
�2

[
�2

1 f (π/2 + kLx − a/2) + �2
3

]
−�3

[
�2

2 sin(a+kLx) + �2
1 sin(kLx)

]
⎞
⎟⎠,

(21)

where

f (y) = sin(a + y)[sin(a + y) − sin(y)]. (22)

When a = 0 the state |D1(x)〉 becomes position independent

|D1(x)〉 = �2√
�2

1 + �2
2

|g1〉 − �1√
�2

1 + �2
2

|g2〉 (23)

and

D2(x) = N2(x)
[
�1�3|g1〉 + �2�3|g2〉

− (
�2

1 + �2
2

)
sin(kLx)|g3〉

]
. (24)

The latter can be written as

|D2(x)〉 = 1√
�2

p + �2
c

[�p|a〉 − �c sin(kLx)|g3〉], (25)

where |a〉 = cos β|g1〉 + sin β|g2〉, tan β = �2/�1, �c =√
�2

1 + �2
2 , and �p = �3. The above form is formally iden-

tical to the form of a single dark state in the � system
configuration [10].

At this point let us briefly comment on why |ξ 〉 =
�1|g1〉 + �2|g2〉 is a good choice for the vector that generates
|D1(x)〉 and |D2(x)〉 by Eqs. (17) and (18). Let us consider, for
example, |ξ 〉 = |g3〉. It leads to

|D1(x)〉 ∼ − �2 sin(kLx + a)|g1〉 + �1 sin kLx|g2〉, (26)

|D2(x)〉 ∼ �1�3 sin kLx|g1〉 + �2�3 sin(kLx + a)|g2〉
− [

�2
1 sin2 kLx + �2

2 sin2(kLx + a)
]|g3〉, (27)

which is apparently analytically simpler than the previous re-
sults (20) and (21). In fact, it gives simple analytic calculations
of coefficients of A(x) and A2(x) (see Appendix B). However,
the limit a → 0 agrees with Eq. (23) only up to a sign, namely,
both |g1〉 and |g2〉 components flip their signs when kLx = nπ ;
n is an integer making them only piecewise constant and, in
particular, discontinuous. For that reason, the derivatives in
the definition of A(x) [Eq. (14)] are ill-defined as a → 0.

B. Gauge potentials

Having chosen the dark-state basis |Di(x)〉 [Eqs. (20) and
(21)], one finds the gauge potential A(x) with Eq. (14). For
the dark-state projected Hamiltonian H2 one restricts A(x) and
A2(x) to the upper left 2 × 2 block. The coefficients Ai j (x) for
i, j < 3 clearly do not depend on the choice of the bright-state
phase, as evident from (14). The same holds for (A2)i j (x) [16]:

(A2)i j (x) = − h̄2
∑

M(x)∈B(x)

〈Di|M ′(x)〉〈M|D′
j (x)〉

= h̄2〈D′
i(x)|D′

j (x)〉. (28)

Let us first consider a special case of a = 0. With the
position-independent |D1(x)〉 and |D2(x)〉 given by (24), the
coefficients of 2×2 projections of A(x) and A2(x) included in
(16) are all zero except for the (A2)22(x), which is equal to

(A2)22(x) =
(

ε cos kLx

ε2 + sin2 kLx

)2

, (29)

053312-3
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with ε = �3/
√

�2
1 + �2

2 = �p/�c, in analogy to the � sys-
tem. The Hamiltonian H2 is then a direct sum of two
decoupled D1 and D2 channels. The Hamiltonian (12) for the
particle in the D1 channel is that of a freely moving particle

H = − h̄2

2m

d2

dx2
, (30)

with running-wave eigenfunctions of the form d1(x) =
exp(iqx). The Hamiltonian H2 for the particle in the D2 chan-
nel reduces to the movement in the scalar potential given by
(A2)22(x):

H = − h̄2

2m

d2

dx2
+ (A2)22(x). (31)

The above potential, given by (29), is precisely the sub-
wavelength comb potential which appears for the � system
construction [10]. It is shown in Fig. 2(a).

For a �= 0 the coefficients A12(x) and (A2)12(x) are nonzero
and the two channels D1 and D2 are coupled. Figure 2(b)
shows the spatial dependence of A(x) and A2(x) for a small
a = 0.05 value [for that a value, the (A2)22(x) resembles that
for a = 0]. The potentials change for a larger value of a as
shown in Figs. 2(c) and 2(d) for a = 0.435. The potentials
(A2)11 and (A2)22 are in the form of a comb, with (A2)22 being
much larger than (A2)11 [the remnant of vanishing (A2)11 in
the limiting case a = 0]. This is also evident from Fig. 2(e),
which shows the maximum height of (A2)11 and (A2)22 as a
function of a. All the above potentials are clearly λL/2 peri-
odic, implying that the dark-state-only model H2 has period
λL/2, half of the period of the full model H .

The potential shapes depend obviously on the choice of
the basis in the dark subspace. In Appendix A this issue is
discussed further.

III. BAND STRUCTURE

A. General considerations

We discuss the band structure of the full model (1). In
numerical calculations we work directly with the full Hamil-
tonian (1). The Born-Oppenheimer decomposition into dark
and bright states, and in particular Hamiltonian H2 in Eq. (16)
is instrumental for the interpretation of the results.

We look for the quasiperiodic Bloch eigenstates of the λL-
periodic model (1) directly in the |gi〉 and |e〉 basis:

Bq(x) = eiqx

(
3∑

i=1

bgi (x)|gi〉 + be(x)|e〉
)

(32)

≡ eiqx[bg1 (x), bg2 (x), bg3 (x), be(x)]T . (33)

The period of the Hamiltonian and the Bloch theory guarantee
that b∗(x) are λL-periodic functions and q is the quasimomen-
tum q ∈ BZ1 = [−π/λL, π/λL ), where BZ1 is the Brillouin
zone. Looking at Eq. (1) and the spatial dependence of �i, one
finds an extra parity symmetry: The coefficients bgi and be are
actually all λL/2 periodic or λL/2 antiperiodic, and if bg1 and
bg2 are λL/2 periodic then be and bg3 are λL/2 antiperiodic and
vice versa.

FIG. 2. Spatial dependence of elements of matrices A(x) and
A2(x) describing the couplings within the dark-state subspace for
�1:�2:�3 = 50:20:5. The value of the phase shift a is indicated in
each of the panels. (a) Limiting case of a = 0 for (A2)22(x) [see
also Eq. (29)]. (b) Coefficients A12(x), (A2)11, and (A2)12(x) for
a small but nonzero a = 0.05. The coefficient (A2)22(x) for this
a is similar to that in (a). (c) Coefficient (A2)22(x) for a larger
a = 0.435. (d) Smaller coefficients A12(x), (A2)11, and (A2)12(x). (e)
Dependence of the peak height of (A2)11(x) and (A2)22(x) on the
phase a.

For the numerical formulation of the eigenproblem for the
Hamiltonian (1), the Fourier series expansion of b∗(x) is used.
It puts the Hamiltonian H in a sparse matrix form, which is
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FIG. 3. Band structure of the model (1) for �1:�2:�3 = 50:20:5.
(a) Spectrum for �1 = 1000ER and a = 0.435. (b) Spectrum for
�1 = 5000ER and a = 0.435. (c) Dark-state-only limit of the band
structure for �1 = 5000ER and a = 0 (�e = 0). (d) Band structure
for �e = 1000ER and �1 = 5000ER. The black line within bands
shows the ReEα

q curves and the red region is given by the ReEα
q ±

50 ImEα
q curves, denoting q-dependent losses due to spontaneous

emission. For clarity, the bright-state eigenvalues have been removed
from this panel.

diagonalized using standard numerical packages.2 The dif-
ferent eigenvalues Eα

q are indexed by α for each value of
q ∈ BZ1.

Consider first the �e = 0 case; the corresponding band
structure obtained for some particular values of �i is depicted
in Fig. 3. When ‖�‖ dominates other energy scales, the full
spectrum contains energy levels that can be traced back to
E− bright states, E+ bright states, and dark states D1 and D2,
effectively described by Eq. (16).

Figure 3(a) shows the section of the band structure at
low energies above zero that feature a series of bands and
two nearly vertical lines of eigenvalues intersecting them. We
identify the bands with the dark subspace, as they can be
reproduced with identical Bloch bands computation for dark-
state-projected model H2. The vertical lines originate from E−
bright states and are modeled by the Hamiltonian

HB− = − h̄2

2ma

d2

dx2
+ E−(x). (34)

Energy levels that can be traced to E+(x) � 0 are absent in
the figure. This channel does not have any energy levels at
energies close to zero; however, its eigenstates can be coupled
to dark states off-resonantly.

2In this work we have used the standard SCIPY diagonalization
function EIGS.

The dark subspace bands have two values, which results
from the fact that the coefficients of A(x) and A2 as in (12)
are of period λL/2 and the Bloch theory applied to Fig. 3
assumes a twice larger lattice period of λL, the natural period
of Eq. (1). Complementary results from the H2 model could
be obtained from Bloch theory with lattice period λL/2 and
a larger Brillouin zone BZ2 = [−2π/λL, 2π/λL]. This would
yield dark-only Bloch eigenfunctions of the form

(BD)αq = eiqx
[
bD1 (x)|D1(x)〉 + bD2 (x)|D2(x)〉]

≡ eiqx
[
bD1 (x), bD2 (x)

]T
, (35)

where q ∈ BZ2 and b∗ are λL/2 periodic. We note that
the above vector, when reexpressed in |g1〉, |g2〉, |g3〉, and
|e〉, is only λL periodic just like |D1(x)〉 and |D2(x)〉. The
four-channel computation for large ‖�‖ yields a good ap-
proximation of the above. For quasimomenta q, q′ ∈ BZ2,
q ∈ BZ1, such that |q − q′| = 2π/λL, the λL-periodic Bloch
theory treatment of the full H ascribes them both to a single
q ∈ BZ1. Such folding has already appeared for a special case
of the � system (see [10]) and is not unique to the tripod
configuration; it is a simple consequence of the mismatch
between the dark-state lattice constant and the period of the
model.

Couplings due to A(x) between dark states and the resonant
E− states lead to small avoided crossings [clearly visible in
Fig. 3(a)]. Figure 3(b) illustrates the fact that for larger �i

the avoided crossings with the E− bright state get narrower,
indicating an even better isolation of the dark subspace. The
improving separation between the dark subspace and the E−
bright band with increasing �i is easily understood from the
model (16). The avoided crossings appear between low-lying
dark states and the highly excited E− with the same q ∈ BZ1.
Increasing ‖�‖ pushes the E− manifold towards more neg-
ative energies. As a result, for larger ‖�‖ the wave vector
describing freely moving E− with approximately zero energy
is more and more oscillating. This reduces the coupling to the
dark-state Bloch vector via A(x).

For a comparison we show also bands corresponding to the
a = 0 case in Fig. 3(c). Here the dark state |D1〉 is position
independent [see (23)], the spectrum is a sum of that of a
freely moving particle in channel D1 [see Fig. 3(c)] and a D2

particle sensing the presence of the potential (29). The two
spectra intersect with each other with no avoided crossings
forming between them. The bright-state line also does not
couple to position-independent D1 through A(x) [Eq. (14)].
The avoided crossing prominent in Fig. 3(c) is between B−
and D2 channel bands.

B. Dark band lifetime

Let us consider now the lifetime of different bands. When
�e �= 0, in the Hamiltonian (2), the energies E±(x) of the
bright-state channels (5) that appear in (11) and (12) are
complex, in particular, ImE±(x) = −�e/4 for � = 0. The
diagonalization of the model (2) focusing on the low-lying
dark-state band reveals a strong q dependence of ImEα

q [as
shown in Fig. 3(d)]. Here we assume �e = 1000ER and the
red shaded areas ImEα

q are multiplied by 50 to make them
more visible. The q dependence for the � system was already
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KUBALA, ZAKRZEWSKI, AND ŁĄCKI PHYSICAL REVIEW A 104, 053312 (2021)

FIG. 4. (a) The q-averaged decay rate �̄e for (�1 = 5000ER,

�2 = 2000ER, �3 = 500ER ) as a function of �e for the second band.
(b) Same as (a) as a function of ‖�‖ for the same relative ratios of �i

and �e = 1000ER. (c) Plot of �̄e as a function of a for �e = 1000ER

and two sets of �i = (5000ER, �2, 500ER ) for the first four bands.
Black (darker) lines correspond to �2 = 2000ER and red (lighter)
lines to �2 = 1000ER. The bands are depicted in order as solid,
dashed, dash-dotted, and dotted lines.

described in [10] and indirectly observed experimentally [14].
The total lifetime of the gas populating a certain band is
approximated by the inverse of the q-averaged decay rate

�̄e = − 2

vol(BZ1)

∫
q∈BZ1

ImEα
q dq. (36)

Figure 4(a) shows the numerically obtained dependence of
�̄e on �e for �1 = 5000ER, �2 = 2000ER, and �3 = 500ER.
Figure 4(b) shows the dependence on ‖�‖ assuming a fixed
ratio �1:�2:�3 = 50:20:5. Just like in the � system [10], one
observes that �̄e ∝ �e and ‖�‖−2.

A good approximation for ImEα
q follows from the second-

order perturbation theory arguments. The imaginary contribu-
tion to the energy of the dark-state Bloch function (BD)αq (x) is

Im�Eα
q = −

∑
β

∑
σ∈±

�e

2

∣∣〈(BD)αq
∣∣Hc

∣∣Eβ
q,σ

〉∣∣2

[
Eα

q − Re(Eσ )βq
]2 + �2

e
4

, (37)

where Eβ
σ,q refer to bright-state eigenvectors in potentials

Eσ (x), σ ∈ ±, with the same quasimomentum q. The Hc in
(37) contains all the nondiagonal terms in the Hamiltonian
(16). For the vast majority of states indexed by β, the �2

e
term in the denominator may be neglected. Moreover, the
sum is dominated by bright states E−(x) with energy close
to max E−(x) ∝ ‖�‖ and bright states of E+(x) with energy
close to min E+(x) ∝ ‖�‖. This qualitatively explains the ob-
served dependence on �e and ‖�‖.

The coupling in the numerator of (37) depends on the A(x)
terms in (12). It is greatly increased if the coefficients of A
responsible for the coupling of the dark state to the bright

FIG. 5. Decomposition of Bloch states in BZ2 into |gi〉, where
solid, dashed, and dash-dotted lines correspond to i = 1, 2, 3, respec-
tively. Shown for (a) and (b) a = 0 and (c) and (d) a = 0.435 are
(a) and (c) the lowest bands and (b) and (d) the first-excited bands.
The inset in (b) shows the weak dependence of |gi〉 in this panel using
|g3〉 as an example.

states are sharply peaked and large, as it happens in the a → 0
limit, leading then to larger losses as shown in Fig. 4(c).
Already a = 0.435 offers an order of magnitude longer life-
time than the � system case, a = 0. We also note that the
ratio of �1:�2:�3 strongly affects the expected lifetime, par-
ticularly for large a. Figure 4(c) presents the simulated �̄e

for the first four bands for � = (5000ER, 2000ER, 500ER)
(black lines) and � = (5000ER, 1000ER, 500ER) (red lines).
Reducing the ratio �2:�3 from 4 to 2 results in an order of
magnitude shorter lifetime for large a ≈ π/2.

C. Spin decomposition of Bloch bands

Let us discuss the decomposition of Bloch eigenvectors
into atomic states |g1〉, |g2〉, |g3〉, and |e〉. We use again our ex-
emplary set of parameters � = (5000ER, 2000ER, 500ER) for
illustration, taking also �e = 0. Figure 5 shows the averages
ḡi = ∫ λL

0 |〈Bα
q |gi〉|2 for different quasimomenta within the first

two bands of the a = 0 and a = 0.435 systems.
For a = 0 the lowest “band” is actually a portion of the

parabolic energy dependence of a freely moving particle. It
forms a closed band as soon as a �= 0. The ḡi are in that case
constant and given by the constant coefficients of Eq. (23).
For the first-excited band, that is, the lowest band in the
D2 channel, the dependence on q is very small [Fig. 5(b)].
When a �= 0 is increased towards the final value a = 0.435
the well-defined bands are formed, as in Fig. 3(a). Different
parts of each band intersect other energy levels, experiencing
avoided crossings in different ways. For example, the D1 and
D2 channels at energy close to 1ER for q = 0 in Fig. 3(c)
experience transition through the avoided crossing before the
well-separated bands in Fig. 3(a) are formed. At the same
time the energy levels at q = ±π/λL ∈ BZ1 remain nearly
unaffected by other energy levels. This is the reason for the
observed strong dependence on q of decompositions ḡi in
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Figs. 5(c) and 5(d) for a = 0.435. Specifically, one can ob-
serve that decomposition into ḡi of the first-excited band for
q = 0 ∈ BZ2 resembles the decomposition of the D2 channel
in Fig. 5(b) and for q = ±2π/λL ∈ BZ2 that of D1 in Fig. 5(a).
At the same time the lowest band shows a strong dependence
of ḡi on q which however does not approximate D1 or D2 for
any q.

The variation of the overlap of Bloch vectors on |g1〉,
|g2〉, and |g3〉 within the same band is directly observable.
Consider a bosonic, noninteracting gas cooled down to the
least energetic state of the band. Denote the quasimomentum
of such a state by q0. If an extra potential Htilt = −Fx is
added (see [20]) to the Hamiltonian (1), then a steady drift of
the quasimomentum q(t ) = q0 + Ft/h̄ occurs, allowing one
to reach the desired value of q by controlling the application
time of Htilt. The value of FλL should be much smaller than
the energy gap to other bands, to prevent populating them.
The spin decomposition can be studied by turning off the
lasers responsible for Rabi frequencies �i and splitting the
atomic cloud in the |g1〉, |g2〉, and |g3〉 components by a
magnetic-field gradient. The response of the tripod system
to the gradient Htilt would form a coherent time-dependent
transfer of populations of atomic states |g1〉, |g2〉, and |g3〉,
a feature which is easily measurable.

IV. TIGHT-BINDING MODEL

A tight-binding model conveniently describes movement
of the particles populating a particular band. We describe first
the construction of the Wannier functions in analogy to the
textbook Wannier function calculation for a cosine-squared
optical lattice [21–23].

A. Construction of Wannier functions
in two-dimensional dark subspace

We start with the basis of all the dark-state Bloch functions
{(BD)αq : q ∈ BZ2} for a particular band α of H2. Then the
Wannier function can be expressed as

W α
n (x) = N

∫
q∈BZ2

(BD)αq (x)eiθq,n dq, (38)

where the index n denotes localization over the nth lattice site,
xn = x0 + nλL/2, and N ensures that

∫
R |W α

n (x)|2dx = 1. The
functional dependence of phases θq,n on q has to be chosen to
localize the W α

n . To find it, we adapt the method by Kivelson
[22]. The H2 Hamiltonian is considered under periodic bound-
ary conditions in a box of a sufficient total length L. This
discretizes the Brillouin zone BZ2 → [0, 2π/L, . . . , 4π/λL ).
We construct the L × L matrix

Mq,q′ = 〈
(BD)αq

∣∣e2π ix/L
∣∣(BD)αq′

〉
, q, q′ ∈ BZ2. (39)

Its eigenvalues are complex phases of the type
exp[(2π ixn)/L], which determines x0. The corresponding
eigenvector then defines the values of θq,n that localize W α

n
around the location xn. We have verified that the obtained
Wannier functions are exponentially localized around xn, as
expected for this procedure [22]. It is also worth noting that
by using this method Wannier functions can be computed
directly within λL-periodic Bloch theory (q ∈ BZ1) by

including both branches of a folded band while computing
the matrix elements of (39).

For a single-channel problem with a periodic potential, one
can calculate a single Wannier function, e.g., W0(x), and then
use a discrete translation Wn(x) := W0(x − (xn − x0)) to com-
plete the basis. For the tripod system this is also a possibility,
but special care should be taken when applying translation to
W α

0 (x) given by Eq. (38) when expressed in the |gi〉 and |e〉
basis. Indeed, if we expand W α

n (x) in the |Di(x)〉 basis

W α
0 (x) = w1(x)|D1(x)〉 + w2(x)|D2(x)〉, (40)

then one can shift the wi(x) functions only and resum the
Wn(x) to obtain

W α
n (x) = w1(x − nλL/2)|D1(x)〉 + w2(x − nλL/2)|D2(x)〉.

(41)
Instead one might attempt to translate the entire W α

0 (x),
obtaining

w1(x − nλL/2)|D1(x − nλL/2)〉
+ w2(x − nλL/2)|D2(x − nλL/2)〉 �= W α

n (x). (42)

As |Di(x)〉 are only λL periodic, both approaches are not
equivalent for odd n. The former approach leading to (41) is
a proper one, as it corresponds to a shift of the coefficients of
the Wannier function by the Hamiltonian H2 lattice constant
for a single-valued band defined by H2 with a BZ of BZ2.
We have verified that for odd n, W α

n translated as in (42) is
not orthogonal to W α

0 (x). The properties of Wannier functions
are discussed further in Sec. IV D, after constructing the tight-
binding Hamiltonian description.

B. Hopping amplitudes

The Hamiltonian H2, restricted to band α when expressed
in the basis W α

n (x), transforms to

Hhopp,α = −
∑
n,m

Jαα
nm

(
âα

n

)†
âα

m + H.c., (43)

where

Jαα
nm = −

∫
dx

(
W α

n

)†
(x)H2(x)W α

m (x)

= − 1

vol(BZ2)

∫
BZ2

ei(m−n)qλL/2Eα
q dq. (44)

The second equality is true assuming that the global phase
factors of W α

n (x) are defined by (41). The hopping amplitudes
depend only on the distance between sites n and m so one can
simplify the notation by defining

Jα
|n−m| := Jαα

n,m. (45)

The hopping amplitudes (referred to simply as hoppings
later on) may be directly calculated from their definition
(44) using previously determined Wannier functions. Their
exponential tail requires, however, special care for accurate
determination of Jα

i , which is important, in particular, for
i > 1. However, the hoppings Jα

i can be read from the band
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energies, for q ∈ BZ2:

Eα
q = E0 − 2Jα

1 cos

(
qλL

2

)
− 2Jα

2 cos

(
2qλL

2

)
− · · · .

(46)

Calculation directly in the |gi〉 and |e〉 basis followed by
band unfolding suffices to determine Jα

i as well. As the Ji are
defined with respect to q ∈ BZ2, a mistake in the unfolding
of q ∈ BZ1 would lead to a sign flip of the Ji with an odd
i. The Bloch vectors obtained in the four-channel calculation
can be projected back onto the (|D1(x)〉, |D2(x)〉) space. The
quasiperiodicity of the coefficients

bDi

(
x + λL

2

)
= exp

(
iqλL

2

)
bDi (x), (47)

allows us to distinguish the two Bloch states q, q′ ∈ BZ2,
|q − q′| = 2π/λL, which correspond to the same point in BZ1.

Unfortunately, the band unfolding by assigning q′, q ∈ BZ2

is gauge dependent. Applying Eq. (47) uses a particular gauge
during projection on |Di(x)〉. As a result, when two eigenvec-
tors for a particular q ∈ BZ1 are being relabeled by q, q′ ∈
BZ2, |q − q′| = 2π/λL, the assignment of q, q′ is reverse for
Di as in Eqs. (20) and (21) and Di as in Eqs. (26) and (27).
This means that the dependence on q of the quasienergy Eα

q
present in Eq. (46) differs by a translation by 2π/λL and a sign
flip in Jn: Jα

n → Jα
n (−1)n. The ambiguity of signs of Jα

i is not
in conflict with the definition of Jα

i by means of the Wannier
functions (44). It is fully recovered when the Jα

n are computed
from Eq. (44) in both gauges.

We follow the gauge choice given by Eqs. (20) and (21)
and calculate the tunnelings for low-lying (and long-living)
bands. Again we discuss similar parameter values as before,
i.e., � = (5000, 2000, 500)ER. Consider first the lowest band
taking a form as in standard Bose-Hubbard (compare Fig. 3).
Not surprisingly |J2| 	 J1 for most of the values of the phase
shift parameter a; thus nearest-neighbor hopping dominates.
Interestingly, however, J1 changes sign when a is varied [com-
pare Fig. 6(a)], which allows for realization of frustration as
discussed in Sec. IV C.

In Figs. 6(b) and 6(c) we show the values of Jα
i as a

function of a for the first-excited, almost flat, band (compare
Fig. 3) that results in an unusual relation between J1 and
longer distance hopping amplitudes. For a < 0.2 or a > 0.45,
for this band, the amplitudes for long-distance hopping Ji

with i > 3 are non-negligible, indicating that the tight-binding
approach may not be the best choice in such a case. However,
for a ∈ [0.2, 0.45] only J1, J2, and J3 can be considered for
an accurate tight-binding model. The next-nearest hopping J2

is larger then the nearest-neighbor amplitude J1 and larger
than the next-to-next-nearest-neighbor amplitude J3. Only for
a ≈ 0.1 do J1 and J2 become comparable. Around a = 0.435
a special situation occurs as J1 ≈ 0. This is in agreement with
band structures in Fig. 3, where the second band seems to be
“single valued” at the scale of the figure.

Figure 6(d) shows a similar calculation of hopping ampli-
tudes for the excited band, but for the ratio of �1:�2:�3 =
50:40:5. The same configurations of amplitudes Ji occur in a
different range of the phase shift a parameter. The correspond-

FIG. 6. Different hopping amplitudes Jα
i as a function of a, the

relative phase difference between �1(x) and �2(x). (a) Ground band
α = 1 for �1:�2:�3 = 50:20:5. (b) Same systems as in (a) but in the
first-excited band α = 2. (c) Magnification of (b) with a narrower
range of a. (d) Analogous range of a but for �1:�2:�3 = 50:40:5.

ing interval for a is [0.1,0.22]. Its location and size depend
approximately linearly on the ratio �3:�2, as long as �2 <

�1 and �2/�3 � 1. When �2/�3 ≈ 1 the region of interest
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FIG. 7. Mapping of a 1D chain with NN, NNN, and NNNN
tunnelings into a tetrahedral linear compound with nearest-neighbor
tunnelings only. Along dashed blue lines J3 tunnelings occur, orange
lines correspond to J2, and black connections yield the nearest-
neighbor terms J1.

does not exist (naive interpolation puts it for a > π/2). When
�2 > �1 the roles of �1 and �2 are reversed.

C. Frustration

It is well known that a one-dimensional (1D) spin- 1
2 chain

with J1 (NN) and J2 (NNN) interactions may exhibit frus-
tration [24], a situation in which it is not easy to satisfy
energetic minimalization of all the possible bonds [25]. Such
a chain maps onto a nonpartite triangular ladder in which
for negative tunnelings J1 and J2 kinetic frustration occurs
([26] reviews the physics of periodically driven systems that
enable a change of sign of the tunneling matrix elements;
see also [27]). In our situation the sign of J1 (or any Ji for
odd i) can be inverted by a gauge transformation (reverting
to the sign of the every second Wannier function). It is thus
more interesting that for the lowest band J2 becomes negative
(antiferromagnetic). For most a values J1 dominates, making
frustration difficult to observe. However, since J1 changes sign
[around a = 0.275 for the chosen values of �i; see Fig. 6(a)] it
becomes small and comparable to J2 for nearby a values, lead-
ing to a quite standard frustrating system. Note that a change
of sign of J1 in triangular lattices was realized via periodic
lattice shaking (see [26,27] and references therein); here no
additional shaking is needed and frustrating conditions are
realized by changing the phase mismatch a.

The situation is equally interesting for the first-excited
band. Here (compare Fig. 6) both the NN J1 and NNNN J3

may change sign depending on the a value, while J2 remains
positive and large. Consider first the simplest situation when
we adjust a such that J3 vanishes. The system maps to a
triangular ladder with J2 positive and regardless of the sign of
J1 no frustration occurs. This is again a manifestation of the
fact that the change of sign of every second Wannier functions
is just a gauge transformation that changes the sign of J2i+1

leaving the physics unaltered.
In the presence of J3 the models becomes less obvious.

The mapping on the triangular ladder does not work anymore.
Instead, one can map a 1D chain into a three-dimensional
tetrahedral linear compound as depicted in Fig. 7. Such a
representation allows for a better visualization of the com-
petition between different hopping terms. Now it is easy to
see that if the signs of J1 and J3 are different, the system
will be frustrated as one cannot minimize energetically the
i, i + 1 and i, i + 3 bonds. On the other hand, in the interval
of a values where J1 and J3 are of the same sign, no kinetic
frustration occurs.

FIG. 8. Sums of amplitude moduli squared of all components e,
g1, g2, and g3 of Wannier functions for (a) and (c) the lowest band and
(b) and (d) the first-excited band and for �i = (5000, 2000, 500)ER

and (a) and (b) a = 0.435 and (c) and (d) a = 1.3. Gray dotted lines
depict the same Wannier functions but in an adjacent lattice site.
Orthogonality of heavily overlapping Wannier functions is possible
due to the interplay of phases of individual bare atomic components
components g1, g2, and g3.

D. Properties of Wannier functions

In light of highly nonstandard relations between J1, J2,
and J3 hopping amplitudes (Sec. IV B) it is instructive to
inspect spatial profiles of Wannier functions of the tripod
system. Again assume � = (5000ER, 2000ER, 500ER) as an
example. Figure 8 shows the total density ‖W α

n ‖2 for the
Wannier functions. Figures 8(a) and 8(c) show the Wannier
function for the lowest dark-state band for a = 0.435 and
a = 1.3, respectively. The notable feature is a nonvanishing
overlap of densities of neighboring Wannier functions (they
remain of course orthogonal to each other). For a large a
additional modulation shows, indicating poorer confinement
which corresponds well with large values of long-range hop-
ping Ji>3. For the first-excited band Figs. 8(b) and 8(d) show
again the a = 0.435 and a = 1.3 cases. The second band
shows Wannier functions that are bimodal and have a total
width of approximately λL. Despite that, the λL/2-displaced
Wannier functions are mutually orthogonal. This is possible
only because the Wannier functions can alter decomposition
into separate g1, g2, and g3 in a position-dependent way. When
calculating the inner product of W α

n and W α
n+1 the result is

zero only after the summation over σ ∈ g1, g2, g3. This is not
possible in a scalar Wannier function for a standard optical
potential.

Standard integrals describing two-particle interaction in
Hubbard-type models are often of the type

U =
∫

W̄n(x)W̄m(x′)V (x − x′)Wo(x′)Wp(x)dx dx′. (48)

For the first-excited band the Wannier functions Wn and Wn+1

significantly overlap, allowing the above integral to yield a
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large value of U even for non-on-site processes. This poten-
tially makes construction of discrete models with long-range
interaction much easier without the need to use, e.g., dipolar
interactions. This correlates well with with nonstandard rela-
tions between Jα

1 , Jα
2 , and Jα

3 , which allow also for long-range
hopping.

V. SUMMARY AND OUTLOOK

In this work a four-level system in tripod configuration
hosting two dark states was presented. The position depen-
dence of the dark state was set by the position dependence
of Rabi frequencies �i(x). This constraint creates periodic
gauge-field-like potentials that give rise to a band structure
with well-separated bands. In contrast to the conceptually
similar case of the three-level system in the � configuration,
the lifetime of the gas populating the bands can be substan-
tially increased. The controlling parameter is a, the phase
difference between two lasers implementing the �1 and �2

couplings. The band structure is characterized by highly non-
standard relations between hopping amplitudes and nearest-,
next-nearest-, next-to-next-nearest-neighbor lattice sites, al-
lowing for efficient long-range hopping. This is reflected in
the nonstandard shape of Wannier functions for the appropri-
ate bands that are supported at two neighboring unit cells.

Note added in proof. Recently, we became aware of a recent
work of Gvozdiovas et al. [28] that also considers a similar
tripod configuration for optical lattice creation. We believe
that our choice of parameters minimizes the population of
bright states (which makes such a lattice more stable than for
the choice in [28]).
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APPENDIX A: DIFFERENT GAUGE CHOICE

It is natural to ask how other choices of the dark-state
basis compare to the one discussed above. A general different
possible basis choice for the dark-state subspace is given by a
position-dependent two-dimensional unitary transformation

(|D1(x)〉, |D2(x)〉) → U2(x)(|D1(x)〉, |D2(x)〉), (A1)

by angle α(x). Such a transformation preserves the overall
Hamiltonian form with A(x) transformed as

A → U (x)AU †(x) − ih̄
∂U (x)

∂x
U †(x), (A2)

where U (x) is a four-dimensional extension of U2(x) in-
cluding the transformation of the bright states (by phase
factors). To preserve Aii = 0, i < 3, we can use U2(x) =
exp[iσyα(x)]. The extra freedom to pick α(x) unfortunately
does not allow for nullification of nondiagonal terms of A(x)
(see Appendix B).

Features such as the height and location of (A2)11 and
(A2)22 peaks and the spatial dependence of terms (A2)12 and

FIG. 9. Spatial dependence of elements of matrices A(x) and
A2(x), determined assuming the problematic dark-state definition
in Eqs. (26) and (27) for �1:�2:�3 = 50:20:5 and a = 0.435;
(a) A12(x), the only nonzero element of A as given by (A3); (b) el-
ements of A2(x), i.e., (A2)11, (A2)22, and (A2)12; and (c) dependence
of peak height in (A2)11 and (A2)22 on a and divergent behavior at
a → 0.

(A2)22 are strongly gauge dependent. To illustrate this we
consider an alternative gauge choice. Instead of using dark
states in Eqs. (20) and (21) we use Eqs. (26) and (27) as a
basis for determination of the potential A(x). Figure 9 shows
the gauge potentials in that case. Due to analytical simplicity
of Eqs. (26) and (27), one can work out the formulas for the
A(x). They are

A11(x) = A22(x) = 0,

A12(x) = −ikL
�1�2�3 sin a

�2
1(x)�2(x)

,

053312-10



OPTICAL LATTICE FOR A TRIPODLIKE ATOMIC LEVEL … PHYSICAL REVIEW A 104, 053312 (2021)

(A2)11(x) = k2
L

(
�1�2 sin a

�2
1(x)

)2

,

(A2)12(x) = −k2
L

�1�2�3χ (x) sin a

�2
1(x)�3

2(x)
,

(A2)22(x) = k2
L

[(
�1�2�3 sin a

�2
1(x)�2(x)

)2

+
(

�3χ (x)

�1(x)�2
2(x)

)2]
,

(A3)

where

2�2
1(x) = (

�2
1 + �2

2

) − C cos(2kLx + b),

�2
2(x) = �2

3 + �2
1(x),

2χ (x) = C sin(2kLx + b),

C =
√

�4
1 + �4

2 + 2�2
1�

2
2 cos 2a,

sin b = �2
2 sin 2a

C
. (A4)

In this case the gauge potentials differ qualitatively from
the ones in Fig. 2. First the potential maxima of (A2)11 and
(A2)22 coincide and (A2)22 is nearly zero far from potential
peaks. In the gauge choice defined by Eqs. (20) and (21)
the potential (A2)11 features a series of narrow peaks that are
located between the peaks of (A2)22, shifted by λL/4.

Another distinct feature of the choice in Eqs. (26) and
(27) is divergence of height of peaks of (A2)11 as a → 0 [see
Fig. 9(c)]. This is in stark contrast to the case of Fig. 2, where
(A2)11 → 0. This straightforwardly follows from Eq. (26).
This is because for x = 0 and x = −a the |D1(x)〉 is |g2〉 and
|g1〉, respectively. This implies rapid variation of |D1(x)〉 and
in turn divergent A2

11(x) [see Eq. (28)].

APPENDIX B: FAILURE TO ZERO A12

BY THE GAUGE TRANSFORMATION

Using the gauge freedom, one could hope to vanish all
elements of AKL in the dark subspace. Then the dark-subspace
Hamiltonian would simplify to

H = P2

2m
+ (A2)2×2

2m
. (B1)

We consider a system where �̃ = 0 and �i are real giving,
A11 = A22 = 0. We choose an arbitrary position-dependent

basis of d1(x) and d2(x). The convenient choice is

d1(x) = �̂ × �̂′

‖�̂′‖ ,

d2(x) = − �̂′

‖�̂′‖ , (B2)

where �̂ = �/‖�‖. The equation A12 = 0 implies

D′
1×� = 0,

D′
2×� = 0. (B3)

We see that there is still residual gauge freedom; we can rotate
the basis by any position-independent rotation matrix. This
freedom is well captured when we reformulate our problem.
We express Di as a position-dependent rotation of di:(

D1(x)

D2(x)

)
=

(
cos[α(x)] − sin[α(x)]

sin[α(x)] cos[α(x)]

)(
d1(x)

d2(x)

)
. (B4)

After some algebra, we can write the final equation for α(x):

α′(x) = �̂ · (�̂′ × �̂′′)
‖�̂′‖2

= det(�̂, �̂′, �̂′′)/‖�̂′‖2. (B5)

The solution is unique up to a constant, which reflects the
residual gauge freedom. In this gauge

A = ih̄√
2
‖�̂′‖

⎛
⎜⎜⎜⎝

0 0 sin α sin α

0 0 − cos α − cos α

− sin α cos α 0 0

− sin α cos α 0 0,

⎞
⎟⎟⎟⎠,

(B6)
and

A2 = h̄2‖�̂′‖2

⎛
⎜⎜⎜⎝

sin2 α − sin α cos α 0 0

− sin α cos α cos2 α 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎞
⎟⎟⎟⎠.

(B7)
There is however one problem: Although α′(x) is essentially
periodic for periodic �, the solution α(x) may not be, when∫

period dx α′(x) �= nπ , n ∈ Z,. Then, for �(x) = �(x + λ),
Eq. (B4) implies that D1(x) and D2(x) are aperiodic functions
of x. This aperiodicity translates back to the remaining terms
of A(x) via (B6), which makes it impossible to directly apply
Bloch theory.
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