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Unified model of matter-wave-packet evolution and application to spatial
coherence of atom interferometers
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We present a model that unifies Gaussian wave-packet evolution with the so-called “time-dependent Thomas-
Fermi approximation” for a Bose-Einstein condensate (BEC) of strongly interacting atoms. The unified simple
intuitive formalism describes the stationary or time-dependent properties of single atoms, thermal clouds, or a
BEC over a wide range of interaction strengths, including intermediate interaction regimes or scenarios where
both interaction regimes coexist. Excellent agreement with precise numerical calculations (Gross-Pitaevskii
equations) is obtained. The model is particularly suitable for describing three-dimensional evolution in free
space or in time-dependent potentials for trapping, guiding, accelerating, focusing, or splitting matter waves in
interferometers. We present a unified theory of spatial coherence in matter-wave interferometers and find good
agreement between analytical expressions for the evolution of the coherence length of thermal atoms or a BEC
and precise numerical calculations. In addition to the insight provided by the model, it supplies a simple and
useful tool for the design and performance analysis of atom interferometers with many operational parameters,
where a precise numerical calculation might exhaust unrealistic calculational resources.
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I. INTRODUCTION

Matter-wave interferometry with ultracold atoms has be-
come a wide field of fundamental and applied research [1,2]
using various techniques for splitting, recombining, and prob-
ing the interferometric phase. Coherent spatial splitting of
initially trapped atoms uses light pulses (in Ramsey-Bordé [3],
Raman [4–7], or Bragg [8–12] configurations), potential bar-
riers of optical or magnetic fields [13–16], or state-dependent
magnetic forces [17–19]. Many of these interferometers use
free space propagation between splitting and recombination,
but in some implemented or proposed interferometers the
atoms propagate in guiding potentials [8,16,20–30]. In any of
these schemes the most crucial factor is coherence, namely,
maintaining and retrieving a well-defined phase difference
between the interferometer arms. It is therefore important to
precisely control not only the trajectories of the interferometer
arms but also the evolution of the atomic wave packet around
each trajectory.

Interferometry with a Bose-Einstein condensate (BEC) has
proven to be advantageous over using thermal atomic sources
[28]. However, in BEC interferometry atom-atom interac-
tions play a major role and may be crucial for determining
the coherence. In particular, these interactions determine the
wave-packet evolution and hence the size of the interference
pattern at the output of the interferometer and the overlap
between the two wave packets of the two arms. On the other
hand, these interactions are an important source of phase
diffusion due to number uncertainty [31–33]. Theoretical
studies of dynamical effects crucial for coherence require
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accurate and efficient calculation methods for the evolution
of atomic wave packets over long times and distances that
correctly reproduce the dependence of this evolution on atom-
atom interactions. For relatively small atomic densities such
dynamics can be approximated by Gaussian wave-packet evo-
lution that may provide an efficient tool for the examination
of system performance and optimization. On the other hand,
in the case of a dense BEC, such a calculation would re-
quire a numerical solution of the mean-field Gross-Pitaevskii
equation (GPE) [34]. In recent years efficient numerical tools
have made it possible to solve problems involving the time-
dependent GPE in three dimensions quickly enough to allow
the application of optimal control theory to optimize the ma-
nipulation of a BEC [35]. However, for many interferometric
scenarios it is still very costly in terms of computer time and
expertise or even impractical to solve the GPE in three dimen-
sions for the entire interferometric sequence, especially when
such a calculation needs to be iterated many times for the
purpose of design and stability analysis. For the common case
of a quadratic potential, an effective approximate solution for
the GPE is provided by the “time-dependent Thomas-Fermi
(TDTF) approximation” [36,37]. This method starts from the
static TF approximation [34] for a BEC in a harmonic trap,
where the atom-atom interaction energy is assumed to be
much larger than the kinetic energy, and extends it to the
time-dependent domain, in which a scaling approximation is
assumed for the atomic density profile.

A few analytical methods were derived to bridge between
the single-atom Gaussian wave-packet theory and the TF ap-
proximation for a large BEC [38–43]. These theories were
mainly applied to the static state of the atoms in a trap and
some were extended to specific time-dependent situations
[43], but none were employed for wave-packet propagation
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suitable for atom interferometry. More recently, a generaliza-
tion of the TDTF approximation for free space propagation to
arbitrary atom-atom interaction strength was proposed [44],
but failed to reproduce the coherence length of an expanding
BEC for a medium interaction strength.

Recently realized Stern-Gerlach interferometers
[17,18,45,46] are examples of processes that combine both
interaction regimes and therefore cannot be treated over their
whole sequence with previous theoretical approximations.
These interferometers start with a trapped BEC whose initial
properties and evolution after trap release are dominated
by relatively strong atom-atom interactions. The atomic
wave packet is then split and the resulting wave packets are
manipulated with magnetic gradient pulses that affect their
trajectory, size and phase. A critical stage in this sequence is
focusing along the main propagation axis into a minimal size
of about 0.2 μm and then expansion to a size that is about
three orders of magnitude larger to form interference patterns
with a periodicity on the order of tens of μm (see Ref. [45], in
particular Fig. 10). The dynamics at the focus is dominated by
position-momentum uncertainty, whose effect is not included
in the TDTF approximation. Only a theory that combines
both interaction regimes can describe this process. As a direct
GPE calculation is not straightforward in this case due to
the scale changes of a few orders of magnitude over time
and over the different dimensions, we have used the unified
wave-packet evolution model, whose derivation and details
are presented here.

The unified theory presented here not only allows the de-
scription of processes involving both interaction limits with
the same formalism, but also supplies accurate predictions
for the intermediate interaction regime, as we demonstrate by
comparing our results to a full numerical solution of the GPE.
In a way, this work follows some ideas presented in the work
by Jamison et al. [44], but the derivation here is more general
and includes evolution in the presence of external potentials,
including steady-state properties in a trap. For example, our
model reproduces accurately the properties of a quasi-1D
BEC in the dimensionality crossover regime and correctly ac-
counts for the dynamic transition of a BEC into the 1D regime
when it expands in a matter waveguide. Our model provides
correct analytical predictions for the coherence length of an
expanding BEC over all interaction regimes.

In this work we present only a few simple examples of
specific physical situations to demonstrate the validity of the
model. Utilizing the model for analyzing real physical re-
sults beyond the Stern-Gerlach interferometer is beyond the
scope of this paper, but we believe that new insights can be
gained by applying it to the analysis of experiments that were
analyzed previously by full GPE calculations (e.g., [47]) or
recent experiments with guided matter waves that have not
yet been thoroughly compared to theory (e.g., [48]), as well
as feasibility studies of guided interferometry that may benefit
from a more extensive theoretical treatment (e.g., [29,30]).

The structure of the paper is as follows. We present the
derivation of the model in Sec. II and then, in Sec. III, apply
it to simple scenarios: steady state of a BEC in a harmonic
trap, expansion of a BEC in free space or a waveguide, and
quick splitting into two traps. In Sec. IV we derive analytical
expressions for the contrast of an interferometer with a BEC

source or a thermal source upon imperfect recombination of
the two arms at the output port. This part extends the work
of Roura et al. [49], which in turn enhances the treatment of
this problem by Englert, Schwinger, and Scully [50–52] in the
context of what was termed “the Humpty-Dumpty effect” in a
Stern-Gerlach interferometer. Our unified approach that treats
a BEC and a thermal source on the same grounds provides
analytical expressions for the interferometric contrast that
make use of the notions of time-dependent coherence length
and momentum coherence width. In Sec. V we discuss the
conclusions and provide an outlook for future applications and
required improvements of the model.

II. EVOLUTION EQUATIONS

A wave packet is a coherent (pure) spatially confined state
of a single particle or a BEC where all the particles (atoms)
share the same single-particle wave function ψ (r, t ). Wave
packets can also be used to describe a statistical mixture
of many single-particle states. Here we derive the evolution
equations for the parameters of a single wave packet in a po-
tential that is smooth enough, as defined below. The major part
of the next subsection is quite similar to previous derivations
of the TDTF approximation, but it sets the ground for the
derivation of the unified model in Sec. II B.

A. Wave-packet evolution

We start with the time-dependent GPE for a BEC with N
particles (N � 1) in an external potential V (r, t )

ih̄
∂ψ

∂t
= ĤMF(t, ψ )ψ, (1)

where the mean-field effective Hamiltonian is

ĤMF(t, ψ ) = − h̄2

2m
∇2 + V (r, t ) + gηN |ψ |2. (2)

The mean-field atom-atom interaction potential is propor-
tional to the interaction strength g = 4π h̄2as/m (as being the
s-wave scattering length and m the atomic mass) and to the
fraction of atoms η(t ) in occupying the wave packet when part
of the total number N have been split into other wave packets
or lost. The GPE reduces to the linear Schrödinger equation if
there is no atom-atom scattering, for example, if there is only
a single atom (N → 0).

The problem can be separated into the evolution of the
wave-packet center R and the evolution relative to the center:

ψ (r, t ) = ei[P·(r−R)+S(t )]/h̄�(r − R, t ), (3)

where P = mṘ. By substituting Eq. (3) into Eq. (1) we ob-
tain Newton’s equations of motion for the center coordinates
Ṗ = mR̈ = −∇V (r)|r=R and the well-known expression for
the action S(t ) as an integral over the Lagrangian

S =
∫ t

0
dt ′

[
1

2m
P(t ′)2 − V (R(t ′), t ′)

]
. (4)

The equation for �(r − R) in the frame of reference moving
with the center coordinates R(t ) becomes

ih̄
∂�

∂t
= [HMF (t,�) − V (R) − (r − R) · ∇V (R)]�, (5)
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such that the zeroth- and first-order terms in the expansion
of V (r, t ) around r = R are eliminated from the Hamiltonian
HMF in the moving frame. In this frame we approximate the
potential as quadratic (the next order in the Taylor expansion
around r = R):

Vc(r − R, t ) ≈ 1

2

∑
j

Q j (t )(r j − Rj )
2, (6)

where j = x, y, z. For simplicity we assume within the scope
of this paper that the potential axes coincides with the coordi-
nates x, y, z and does not change during the evolution. A more
general case of rotating axes is discussed in the context of the
TDTF approximation [37]). From here on we transform into
the frame moving with R so that R → 0.

Under the quadratic condition (6) we can make the scaling
ansatz [36]

�(r, t ) = χ
(

x
σ1

,
y
σ2

, z
σ3

)
√

σ1σ2σ3
exp

(
i

2

∑
j

α j r
2
j + iϕ

)
, (7)

where σ1, σ2, σ3 are time-dependent parameters representing
the size of the wave packet along the three Cartesian axes, and
α j and ϕ are functions of the size parameters (see below), such
that α j can be regarded as a momentum chirp α j = ∂k j/∂r j

and ϕ(t ) is a global phase of the wave packet. The function
χ (u, v,w) is assumed to be normalized,∫

du
∫

dv

∫
dw |χ (u, v,w)|2 = 1, (8)

and can also be chosen to satisfy∫
du

∫
dv

∫
dw u2|χ (u, v,w)|2 = 1, (9)

and the same for v2 or w2 replacing u2 in the integral. Equa-
tions (8) and (9) ensure that the wave function �(r, t ) is
normalized and that at any time

σ j (t ) =
√∫

d3r r2
j |�(r, t )|2 (10)

are the sizes of the wave packet in the three Cartesian direc-
tions.

The scaling ansatz (7) was first used in the context of
evolution of a BEC by Castin and Dum [36] and then by
many authors (see Refs. [37,49] and references therein). The
scaling approach was originally derived for a wave function
satisfying the Thomas-Fermi (TF) approximation and was
termed “the time-dependent Thomas-Fermi method.” In this
case the normalized function χ (u, v,w) is given by

χT F (ρ) ==
√

15

8π × 73/2

(
1 − ρ2

7

)1/2

ρ2<7

, (11)

for ρ2 ≡ u2 + v2 + w2. For this inverted parabolic function,
which represents the TF approximation for the ground state
of a BEC with strong interactions in a harmonic trap, it
was shown that the shape is conserved during evolution in
a quadratic potential with time-dependent harmonic frequen-
cies. On the other hand, one may note that the scaling ansatz is
the exact solution for the evolution of a Gaussian wave packet

in a quadratic potential in the absence of atom-atom interac-
tions, as shown explicitly below. In this case the function χ is

χG(ρ) = (2π )−3/2e−ρ2/4. (12)

However, the scaling assumption is not satisfied in the in-
termediate regime between these two limits. For example,
consider a BEC in a tight trap, whose ground-state wave
function satisfies the TF approximation and has an inverted
parabolic shape χT F . If the trapping potential is reduced adi-
abatically the BEC wave function is expected to become the
ground state of a dilute BEC with weak interactions, and its
shape will become more like a Gaussian χG. Although in
general the scaling assumption is not strictly accurate, we
show in this work that the wave-packet sizes and hence some
important properties of the wave packet can be continuously
followed through the intermediate range between the two
limits through an equation of motion that combines both of
them. We therefore keep the specific shape of the wave packet
implicit, leaving room for the option that χ may change in
time while continuously satisfying Eqs. (8) and (9). We focus
on the global properties of the wave packet that follow from
the sizes σ j .

B. Derivation of the equations of motion

By substituting the ansatz (7) into the left-hand side of
Eq. (1) and into the kinetic term in Eq. (2) we obtain

i�̇

�
= −

∑
j

(
i

σ̇ j

2σ j
+ ir j σ̇ j

σ 2
j

∂ jχ

χ
+ α̇ j

2
r2

j

)
− ϕ̇, (13)

− h̄

2m

∇2�

�

= − h̄

2m

∑
j

[
1

σ 2
j

∂2
j χ

χ
+ 2iα jr j

σ j

∂ jχ

χ
+ iα j − α2

j r
2
j

]
, (14)

where ∂ j denotes differentiation with respect to the dimen-
sionless argument r j/σ j of the function χ . By equating the
terms proportional to r j∂ jχ in the two equations we obtain
for the momentum chirp

α j (t ) = m

h̄

σ̇ j

σ j
, (15)

where the relative expansion rate σ̇ j/σ j along each axis may
be interpreted as a chirp of the local velocity ∂v j/∂r j along
the wave packet. In the original time-dependent TF theory
[36] the kinetic terms ∂2

j χ are neglected. In Ref. [44] it was
suggested to replace these terms by the second derivatives
of the ground-state wave function calculated by solving the
steady-state GPE. Here we find it more useful to approximate
these terms by

−∂2
j χ

χ
≈ 1

2

(
1 − 1

2

r2
j

σ 2
j

)
. (16)

This relation is exact if χ = χG is a Gaussian and becomes
less accurate with increasing interaction strength, where χ →
χT F . On the other hand, with increasing interaction this term
becomes less dominant or even negligible with respect to the
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interaction term. We approximate the interaction term in the
GPE as in the original time-dependent TF approximation,

ηgN |�|2 ≈ ηgN
χT F |2
σ1σ2σ3

≡ μint

(
1 − 1

7

∑
j

r2
j

σ 2
j

)
, (17)

where χT F (x/σ1, y/σ2, z/σ3) is given in Eq. (11) and the last
term is zero whenever it is not positive, while μint can be
interpreted as the interaction chemical potential. By collecting
the terms proportional to r2

j we obtain

σ̈ j = h̄2

4m2

(
1

σ 3
j

+ ηβasN

σ jσ1σ2σ3

)
− Qj

m
σ j, (18)

where β = 60/75/2 = 0.4628 psee discussion of an improved
value around Eq. (32) below].

Equation (18) is the main result of this section. The first
term on the right-hand side does not exist in the TDTF model
and represents an effective repulsive force due to momentum-
position uncertainty. The second term is the mean-field
repulsive force due to atom-atom interactions, and the third
term is due to the external harmonic force (if Qj/m = ω2

j > 0)
or antiharmonic force (if Qj < 0). In the absence of interac-
tions asN → 0, where the wave-packet envelope is a Gaussian
function, Eq. (16) is exact, and hence Eq. (18) is also exact. In
the opposite limit of strong interactions the first term becomes
negligible, and Eq. (18) reduces to a form equivalent to the
equation for the scaling factors in the TDTF approximation.

Equation (18) can be viewed as a classical equation of
motion

mσ̈ = −∂U (σ)

∂σ
, (19)

where the potential is given by

U (σ) =
3∑

j=1

(
h̄2

8mσ 2
j

+ 1

2
Qjσ

2
j

)
+ h̄2

4m

ηβasN

σ1σ2σ3
.′ (20)

Here the first term is the “quantum potential” due to the
uncertainty principle, the second term is due to the external
potential, and the last term is the mean-field interaction chem-
ical potential μint [see Eq. (17)].

If the initial wave-packet sizes σ j (0) are the steady-state
solution (σ̈ j = 0) of Eq. (18) with η = 1 and Qj/m = ω2

j , then
we can write an equivalent equation for the scaling factors

λ j (t ) ≡ σ j (t )

σ j (0)
, (21)

λ̈ j = ν2
j

λ3
j

+ η
ω2

j − ν2
j

λ jλ1λ2λ3
− Qj

m
λ j, (22)

where

ν j = h̄

2mσ j (0)2
. (23)

Equation (22) generalizes the scaling equations of the TDTF
model to the case where the initial kinetic energy is not neg-
ligible and the atomic fraction η may vary. It reduces to the
TDTF model if ν j → 0 and η = 1.

Let us note that in the absence of interactions, asN → 0,
the wave-packet model with Eq. (18) can be further extended

to a complete set of wave functions: the Gaussian Hermite
functions

χn(u, v,w) = χG(u, v,w)Hn1 (u)Hn2 (v)Hn3 (w), (24)

where Hn are Hermite polynomials of order n. The derivation
of Eq. (18) is completely valid for this family of functions
in the absence of interactions, except that in Eq. (16) 1 −
r2

j /2σ 2
j → 2n j + 1 − r2

j /2σ 2
j . This additional term does not

affect Eq. (18), and the scaling ansatz is accurate for each
of these functions. However, while σ j represents the width of
the Gaussian part χG, the actual size of the Gaussian-Hermite
wave packet is 〈r2

j 〉n j = σ 2
j (2n j + 1). This determines the

phase ϕn1,n2,n3 of each Gaussian-Hermite wave packet, such
that in a noninteracting system the evolution of an arbitrary
wave function can be calculated by expanding it in Gaussian-
Hermite basis functions with a common size vector σ =
(σ1, σ2, σ3). The state at any time is then exactly given by a
superposition with the same initial coefficients and the ansatz
(7) with corresponding phases calculated from the solution of
Eq. (18). In the following we also use the Gaussian-Hermite
set to describe the evolution of thermal clouds whose initial
state can be described as a mixture of such states.

The phase ϕ in Eq. (7) is obtained by collecting the remain-
ing terms in Eqs. (13) and (14), which do not depend on the
coordinates, together with the coordinate independent part of
the interaction term in Eq. (2). We then find

ϕ̇ = −1

h̄

[
μint (t ) +

∑
j

h̄2

2mσ 2
j

(
n j + 1

2

)]
, (25)

where μint is defined in Eq. (17). The first term in Eq. (25)
represents the mean-field effective interaction chemical po-
tential [see Eq. (17) and (20)], and the second term represents
the internal kinetic energy at the wave-packet center, with n j

corresponding to the mode numbers if the wave packet is a
Gaussian-Hermite function as in Eq. (24) and n j = 0 for a
regular BEC.

To conclude this section, let us describe briefly the recipe
for calculating wave-packet evolution in an interferometric
sequence with a time-dependent potential Vi(r, t ) in one of
the interferometer arms (denoted by the index i), provided
that the potential satisfies the smoothness conditions stated
after Eq. (2). One usually starts with the initial wave-packet
sizes obtained from the steady-state solution of Eq. (18) in
the trapping potential, as described in the next section. To
calculate the evolution in three dimensions one needs to solve
a set of first-order ordinary differential equations for a vector
of 12 components: six values of the wave-packet center po-
sition and velocity and six values of the wave-packet sizes
and their time derivatives, while the accumulating phase is
obtained by integrating Eq. (25) over time. At each point in
time one uses a quadratic expansion of the local potential
around the instantaneous solution for the coordinates R(t ) to
obtain Qj (t ). In parts of the sequence where the initial wave
packet is split one must take into account the reduction of
the number of particles in each arm by properly taking the
parameter η, as demonstrated below in Sec. III D.

In the following we compare some of these solutions with
exact numerical solutions of the GPE and derive analytical
solutions for some cases where this is possible.
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III. SIMPLE APPLICATIONS

In this section we present some simple applications of
the unified wave-packet evolution model that demonstrate
the range of its utility. By comparison with exact numerical
solutions of the GPE we show that the steady-state solution
of Eq. (18) provides an excellent approximation for the prop-
erties of a BEC over a wide range of atom-atom interaction
strength in a harmonic trap with arbitrary frequencies. In
particular, the solutions faithfully reproduce the properties of
a BEC in the crossover regime between a 3D and a quasi-
1D condensate. We derive general analytical expressions for
the expansion and collimation of an atomic cloud in free
space and a waveguide, where a unified model is essential
for describing the dynamical transition from 3D to quasi-1D.
Finally, we examine the effect of splitting a BEC into two
trapped wave packets with half the initial number of particles
in each. We compare the results of the unified model to an
exact GPE solution and to other approximations and demon-
strate the validity of the unified model.

A. BEC in a harmonic trap

The steady-state equations for a BEC in a harmonic trap
with frequencies ω j follow from Eq. (18) by setting σ̈ j = 0
and Qj = mω2

j . By defining the harmonic oscillator lengths
� j as

� j ≡
√

h̄

2mω j
, (26)

we can write the steady-state equations as

1

σ 4
j

+ βasN

σ 2
j σ1σ2σ3

= 1

�4
j

. (27)

In the limit of no interactions asN → 0 the equations are
uncoupled and the solution is readily given by σ j = � j . In the
limit of strong interactions (the TF limit) the first term on the
left-hand side is neglected, and we find

σ T F
j = �2

j√
7�̄

(
60asN

�̄

)1/5

= r j,max√
7

, (28)

where �̄ = (�1�2�3)1/3 and r j,max is the TF radius—the edge
of the TF wave function in each direction.

Before examining the solutions of Eq. (27) for intermediate
interaction strengths, let us briefly discuss the interaction en-
ergy and chemical potential of the ground state. The chemical
potential is μ = h̄ϕ̇, where ϕ̇ is given in Eq. (25), with ν j

defined in Eq. (23), n j = 0, and μint defined in Eq. (17) (for
η = 1). The chemical potential represents the energy of a
single particle in the presence of all other particles, such that
in the middle of the trap, where the harmonic potential is zero,
this energy consists of the kinetic energy and interaction en-
ergy. The average interaction energy is obtained by integration
over the atomic density approximated in Eq. (17)

Eint = gN
∫

d3r |�(r)|4 ≈ 4

7
μint, (29)

where the interaction chemical potential is found from
Eq. (27) for the ground state to be

μint = 7

2
mω2

jσ
2
j

[
1 −

(
� j

σ j

)4]
= 7β

32π

gN

σ1σ2σ3
. (30)

In the TF limit σ j � � j we can substitute the expression in
Eq. (28) for σ j and obtain the well-known result (e.g., [34])

μT F = h̄ω̄

(
15asN

8�̄

)2/5

, (31)

where ω̄ = (ω1ω2ω3)1/3.
For intermediate interaction strengths the wave-packet

sizes σ j are found self-consistently by a very easy numerical
solution of Eq. (27). By comparing these solutions and the
resulting values of the chemical potential to the results of a
numerical solution of the time-independent GPE we find a
fairly good agreement—less than ±5% error over most of the
range of parameters covering weak and strong interactions,
except for the estimated interaction energy Eint for very weak
interactions, where the deviation may reach up to 18% out
of a very small value. Nevertheless, the results presented
below are based on a simple procedure that improves the
accuracy of the approximation. This is done by releasing
the assumption that the interaction mean-field potential has
the 3D inverted parabolic shape of Eq. (17). In practice, when
the interactions are weak or if the aspect ratio between the
trap axes is large, the wave packet may become more similar
to a separable function χ (u, v,w) ≈ χ1(u)χ2(v)χ3(w), where
it may have a parabolic shape along one of the dimensions and
a shape closer to a Gaussian along other dimensions. In such
a case where each dimension is treated separately as a 1D
problem the normalization condition gives β1D = 6/53/2 =
0.5367, which is larger than the 3D value β3D = 60/75/2 =
0.4628 given after Eq. (18) by ∼16%. A simple procedure
that provides high accuracy uses interpolation between the
two values,

β(σ ) = β3D + (β1D − β3D)

〈
�2

j

σ 2
j

〉
max

, (32)

where 〈�2
j/σ

2
j 〉max is an average of the ratio over the two

indices j where it is maximal. If σ j � � j along at least
two axes then β ≈ β3D, whereas if σ j ∼ � j along two axes
then β ≈ β1D. The σ j-dependent value of β is used within
the self-consistent calculation of σ j in Eq. (27) and yields
more accurate solutions for σ j in the intermediate interaction
regime, allowing less than ±1% deviation from the GPE re-
sults for all the parameter ranges that were examined here.

As demonstrated in Figs. 1 and 2 for typical trap parame-
ters, the predictions of our unified model (UM) are in excellent
agreement with the numerical steady-state solutions of the
GPE over the whole range between the standard TF regime
(large atom number) and the weak interaction limit (small
atom number). Our approximation does not provide a predic-
tion about the exact shape of the wave function. In the inset of
Fig. 1(a) we present a comparison between the density profile
obtained from the GPE and the two limits of the wave-packet
density profile—a Gaussian and an inverted parabola, both
having the same widths σ j as defined in Eq. (10). Although
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FIG. 1. Steady-state solutions of the unified model (UM) for the
ground state of bosonic atoms in a harmonic trap. The UM (solid
lines) is compared to a numerical solution of GPE (circles) and
to standard TF approximation (dashed). The UM is shown to be
accurate (within ±1%) over the whole range of mean-field interac-
tion strengths (number of atoms N). (a) Wave function widths σx

(blue) and σ⊥ (red), in units of the perpendicular oscillator length
�⊥ = 0.763 μm, as a function of atom number for 87Rb atoms (mass
m = 1.44 × 10−25 kg, s-wave scattering length as = 5.29 nm) in a
cylindrically symmetric harmonic trap with frequencies ω‖ = 2π ×
40 Hz and ω⊥ = 2π × 100 Hz. Inset: probability density profiles
|�(x, 0, 0)|2 along the longitudinal trap axis: GPE result (solid)
compared to an inverted parabolic [Eq. (11), dashed] and Gaussian
(dotted) profile [satisfying Eq. (12)] having the same widths σ j . For
N = 100 (blue) the GPE profile is closer to the Gaussian, while
for N = 1000 (red) it is intermediate between the two approximate
profiles. (b) The chemical potential due to interaction μint and ki-
netic energy μkin = 1

2 h̄
∑

j ν j at the trap center. The total chemical
potential μtot = μint + μkin according to the UM shows excellent
agreement with GPE solution (circles for μtot and squares for μint =
7
4 gN〈|�|2〉). Inset: potential isosurface and definition of axes.

neither of the two limits of the density profile is close to
the accurate profile in the intermediate interaction regime, the
UM is still successful in providing an excellent prediction for
the basic properties of the wave function: size and energy.

FIG. 2. Steady-state solutions of the unified model (UM) for
the ground state of N bosonic atoms in an elongated trap (ωy =
ωz ≡ ω⊥ = 2π × 10 kHz, ωx = 2π × 40 Hz, other parameters as
in Fig. 1). (a) The longitudinal cloud width (in units of the single-
particle width �x = 1.2 μm) and (b) the ground-state chemical
potential (in units of the single-particle energy E0 = 1

2 h̄
∑

j ω j). The
UM (solid lines) agrees very well with results from a numerical
solution of the GPE (circles) over the entire range, while both agree
with the 1D TF approximation only for low atom numbers, where the
transverse wave function is the single-particle Gaussian ground state
in the transverse potential. This demonstrates the validity of the UM
in predicting the transition from 3D to 1D for a BEC in elongated
traps. The condensate approximation is valid throughout the range
shown at zero temperature since the γ factor for transition into the
Tonks-Girardeau regime is small. The 3D TF approximation is valid
only for N beyond the range shown.

These steady-state predictions are therefore a good starting
point for studying the time evolution of the wave packets in
interferometric situations, as demonstrated below.

An important application of the UM is the transition from
a 3D BEC to a quasi-1D Bose gas in an elongated trap
[53–55]. In the 1D limit the large energy splitting between
single-particle transverse eigenmodes of the potential allows
scattering only along the longitudinal direction, and hence
the atomic dynamics is limited to one dimension while the
wave function in the transverse direction is fixed at the lowest
eigenstate of the harmonic potential. The physics along the
longitudinal axis is then governed by an effective interac-
tion strength g1D = g/4π�2

⊥ = 2h̄ω⊥as [54]. As long as the
factor γ = 2mω⊥/h̄n, where n is the 1D atomic density, is
small (γ � 1), the condensate assumption for the many-body
ground state is valid (otherwise a Tonks-Girardeau gas is
formed [54,56]). As demonstrated in Fig. 2, the UM allows a
fairly accurate prediction of the BEC properties over a broad
range of parameters starting with a fully 1D BEC for low atom
numbers (weak interaction) through the transition to a 3D
BEC, where the interaction is strong enough to become dom-
inant in the transverse direction. We emphasize that, beyond
its simplicity, the main advantage of our unified model over
previous models used to predict the properties of the ground
state of a BEC (e.g., [55]) is that it allows a convenient and
natural integration between the steady-state prediction and
calculation of dynamic evolution in interferometric scenarios.
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B. Free expansion and collimation

The solution of Eq. (18) for a Gaussian wave packet in free
space (Qj = 0 and asN → 0) is

σ j (t ) = σ j (0)

√
1 +

(
h̄t

2mσ j (0)2

)2

, (33)

where t is the time elapsed since the wave packet was at its
minimum size σ j (0). This solution also applies to a Hermite-
Gaussian wave packet of the form of Eq. (24) with σ j being
the width of the Gaussian. It follows that the law of ex-
pansion in Eq. (33) also holds for a thermal cloud that is
initially a mixed state of Hermite-Gaussian states of a har-
monic trap with h̄/2mσ j (0)2 = ω j . The actual size σT j ≡
[
∫

d3r r2
j ρ(r)]1/2 in a given direction r̂ j of a thermal cloud

of temperature T in a trap or after expansion is related to the
Gaussian size of the wave packets as

σT j = √
2nT j + 1σ j, (34)

where nT j is the thermal occupation of the harmonic oscillator
levels, approximated by nT j ≈ kBT

h̄ω j
in the Boltzmann limit of

high temperature kBT � h̄ω j . After a long time of expan-
sion ω jt � 1 we reach the classical limit where σT j (t ) ≈√

kBT/mt where the cloud is isotropic and its size is inde-
pendent of the trap frequencies.

In the case of a cylindrically symmetric BEC for which
σy = σz = σ⊥ � ωx the first two terms on the right-hand side
of Eq. (18) scale like σ−3

⊥ and σx varies fairly slowly. Then
over a timescale where σx ≡ σ‖ is almost constant the solution
for σ⊥ has the same form as Eq. (33), with h̄2/4m2σ j (0)4

multiplied by 1 + βasN/σ‖. The same expansion law holds
for a cloud of noninteracting atoms or a BEC initially in an
elongated trap,

σ j (t ) = σ j (0)
√

1 + ω2
j t

2 (35)

when the atoms are released abruptly from the trap at t = 0.
This generalizes the TDTF result [36] obtained for a BEC
in the TF regime. Note that Eq. (35) with σ j (0) and ω j as
arbitrary parameters can serve as a general solution of Eq. (18)
in free space for any given initial conditions σ j (ta), σ̇ j (ta) at an
arbitrary time ta, in the case of no interactions or the transverse
directions of an elongated BEC. This law of expansion (or
focusing, if t < 0) is therefore useful in many cases beyond
the case of abrupt release from a trap, as demonstrated below.

A common practice in matter-wave interferometers is the
so-called “delta-kick collimation” [11,57], in which after trap
release and some time Te of expansion a pulse of duration Tc

of harmonic potential (frequency ωc) is applied in a specific
direction ẑ (or more than one direction). After this pulse the
expansion is stopped and the cloud size is steady, as if it was
released from a shallow trap holding a wide cloud. In the limit
of a strong and short pulse the collimation imprints a phase
φ(z) = − m

2h̄ω2
c Tcz2 that is designed to cancel the quadratic

phase 1
2αzz2 due to expansion. If the expansion along x obeys

Eq. (35), then αz = (m/h̄)ω2
0Te/(1 + ω2

0T 2
e ), where ω0 is the

initial trap frequency along ẑ. The pulse duration required for
collimation should satisfy ω2

c Tc = ω2
0Te/(1 + ω2

0T 2
e ∼ 1/Te.

In Appendix A we calculate the exact required collimation

FIG. 3. BEC expansion in a waveguide. Comparison of a numer-
ical (solid curves) and an analytical (dashed) solution of the unified
wave-packet model for the longitudinal size (red curves, left axis)
and transverse size (blue curves, right axis) of a BEC expanding in a
waveguide. The numerical and analytical solutions for the transverse
size are almost indistinguishable, but both are qualitatively different
from the TDTF solution (dashed-dotted curves), which shrinks to
much less than the single-particle transverse ground-state size �⊥ =√

h̄/2mω⊥ (dotted line). The model assumes a BEC of 104 atoms
in a waveguide potential with ω⊥ = 2π × 100 Hz and initial trap
parameters as in Fig. 1. The analytical approximation for the longi-
tudinal size λx = σx/σx (0) uses Eq. (B9) with n = 1 (for simplicity
the accuracy can be improved significantly by using n = 1.1). The
analytical expression for the transverse size uses Eq. (B4) with σx

given by the analytical approximation and β = β3D for simplicity.

pulse duration in the more general case of a nonabrupt pulse
by using energy conservation during free expansion and dur-
ing the collimation pulse. We show that the general solution
of Eq. (18) in the above scenario where the repulsive term can
be written as ω2

0σ
4
0 /σ 3

z is given by

σz(t ) = σmin

√√√√1 +
[(

ω0σ
2
0

ωcσ
2
min

)2

− 1

]
sin2 ωct, (36)

where σmin is determined by the initial conditions just before
the harmonic pulse.

C. BEC expansion in a waveguide

The unified wave-packet model is particularly essential
in the field of guided interferometry with a BEC, where a
BEC that is initially describable within the TF approximation
expands in a waveguide. The expansion leads to a dynamical
transition from the 3D BEC into a quasi-1D geometry where
the atoms occupy dominantly the lowest energy transverse
mode of the waveguide. In Fig. 3 we present the dynamics of
the longitudinal and transverse sizes of the expanding BEC
that was calculated with the unified model (solid curves)
compared to an analytical approximation (dashed) derived
in Appendix B and numerical results of the TDTF (dashed-
dotted). When the longitudinal size of the expanding BEC
σx is of the same order as βasN (about 20 μm or six times
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the initial longitudinal size in this example) the transverse
kinetic force becomes dominant compared to the interaction
force, while the latter is too weak to hold the BEC against the
harmonic confinement potential. In this regime the TDTF fails
to describe the correct dynamics, while the unified model can
reproduce the correct behavior where the transverse size re-
laxes into the size of the lowest energy transverse mode. This
calculation has a particularly important implication on the rate
of phase diffusion when the BEC is split into a superposition
of counter propagating wave packets inside the guide, as the
rate of decoherence crucially depends on the atomic density.

D. Quick splitting into two traps

In the following example we examine the role of the atomic
fraction parameter η when a cloud of interacting atoms is split
into two clouds, each with roughly a half of the initial atom
number. The uncertainty of the atom fraction after coherent
splitting has an important role in the loss of coherence of
interacting atoms through phase diffusion, but this effect, in
the context of our model, will be discussed elsewhere. Here
we will examine other dynamical aspects of the change of
fraction during splitting.

Consider an interferometer in which an initially trapped
BEC is split into two parts that remain trapped, as in the
Sagnac interferometer proposed in Ref. [29]. Immediately
after the two wave packets separate, each of them contains
only N/2 particles that no longer satisfy the stationary GPE,
not only due to the motion of the trap centers, as analyzed
in Ref. [29], but also due to the change of the atom number in
each trap. If the trap frequencies do not change, then the cloud
first shrinks due to the reduced repulsive mean-field force, ini-
tiating breathing-mode oscillations around equilibrium values
σ

eq
j determined by the steady-state solution of Eq. (18) with

η = 1/2. As shown in the analysis of BEC expansion in a
waveguide (Appendix B), the transverse oscillation frequency
is twice the trap frequency if σ⊥ � σ‖. In a similar way we
can show that the oscillation frequency in the longitudinal
direction is a factor of

√
2 larger than the longitudinal trap

frequency.
Right after the splitting the interaction chemical potential

[Eq. (17)] decreases by a factor of 2 and hence the phase
variation in Eq. (25) slows down, but the shrinking of the sizes
and their oscillations tend to increase the phase variation and
compensate for the reduction due to the drop of the particle
number in each wave packet.

In Fig. 4 we show the wave-packet sizes and central phase
ϕ(t ) over one period of the transverse trap frequency, just
after an infinitely quick splitting, where η → 1/2 at t = 0. For
emphasizing the details, the phase ϕ is scaled by the phase
of the original wave packet ϕ0(t ) = −μtott/h̄ if no splitting
occurred. In the case of a large number of atoms, approaching
the TF limit, the initial phase reduces to about a half of
the original phase, but then, when the wave packet shrinks
and oscillates, the phase grows to a higher percentage of the
unsplit wave-packet phase. The calculation based on Eqs. (22)
and (25) agrees to less than about 1% accuracy with the result
of the GPE (dots) except at very short times (less than a tenth
of a period), where the total phase is a small fraction of a
radian. It follows that for long times relevant to interferometry

FIG. 4. Quick splitting into two separate traps: phase evolution
after a sudden reduction of the atom number in each single trap to
half the number before splitting—comparison between the unified
wave-packet model (solid lines) and numerical GPE results (dots).
Parameters before and after splitting are as in Fig. 1. The reduction of
the repulsive mean-field potential by a factor η = 1

2 causes breathing
oscillations of the BEC (top panel, N = 104 atoms). The phase at
the center of the wave packet ϕ(t ) (bottom panel) is shown scaled
by the phase of the original wave packet ϕ0(t ) = −μtott/h̄ if it had
not been split [μtot is chemical potential given in Fig. 1(b)]. The
wave-packet model agrees well with the numerical results except for
a small number of atoms at short times (less than 1 ms) where the
accumulated phase is much less than a radian.

the wave-packet model reproduces accurately the results of
the exact numerical solution.

IV. SPATIAL COHERENCE

In this section we use the unified wave-packet model in
the context of spatial coherence of interferometers with im-
perfect recombination of the two arms at the output port. We
first present a general discussion of the concept of coherence
length and then derive a more detailed theory of interfero-
metric contrast upon imperfect recombination in both position
and momentum. The unified wave-packet model enables pre-
dictions relevant to various interferometric configurations and
various atomic sources, specifically a BEC with an arbitrary
mean-field interaction strength.

A. Coherence length

Coherence length is a useful concept in interferometry. It is
often considered as an intrinsic property of the quantum parti-
cles or waves used in the interferometer that depends on their
preparation, but it can also evolve during the propagation, for
example, due to coupling to the environment. The coherence
length determines the contrast of the interferometric signal
in the presence of path length differences between its arms
but also determines the precision of interferometers designed
to measure path length differences. Here we discuss the co-
herence of matter-wave interferometers designed to measure
fields or forces by their effect on the relative phase between
two paths that have virtually the same length. In this kind
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of interferometers, which are used, for example, to measure
acceleration or rotation, it is important that the recombination
of the two arms at the output port is as accurate as possible.
Path length differences larger than the coherence length lead
to loss of contrast.

In an interferometer with a pure state input represented by
a well-defined wave function that evolves through the interfer-
ometer arms as ψ (r, t ) a path length difference gives rise to
a spatial displacement δx between the two arms at the output
port that limits the contrast by the overlap integral

C(δx) =
∫

d3r ψ∗(r − δx/2)ψ (r + δx/2), (37)

where it is assumed that all the other features of the wave
functions at the two arms are exactly the same except for the
displacement δx and the phase accumulated along the arms.
The coherence length lc(ξ̂)) for displacement along a specified
direction δx = δxξ̂ is defined as half the distance of separation
|δx|2 between the two wave-packet copies along the direction
of the unit vector ξ̂ such that the contrast drops by 1/e2,

C(2lcξ̂) = 1/e2. (38)

By Fourier transforming the wave function ψ (r) it is easy to
see that the autocorrelation function can be written as

C(δx) =
∫

d3k eik·δx|ψ (k)|2. (39)

In general, the input of the interferometer is a mixed state de-
scribed by a density matrix evolving in time like ρ(r, r′, t ) =∑

n Wnψn(r, t )ψ∗
n (r′, t ), where ψn are a set of orthogonal

wave functions and Wn are weights satisfying
∑

n Wn = 1. The
overlap integral at the output of the interferometer becomes

C(δx) =
∑

n

WnCn(δx) =
∫

d3k eik·δxρ(k, t ), (40)

where ρ(k) = ∑
n Wn|ψn(k)|2 is the probability of finding

the particle at the output momentum h̄k. Let us consider a
displacement along a certain axis ẑ and assume that the mo-
mentum probability distribution is approximately a Gaussian
ρ(kz ) ≡ ∫

dkx
∫

dky ρ(k) ∝ e−k2
z /2�k2

z . In this case the con-
trast for a displacement δz is C(δz) = e−�k2

z δz2/2 so that the
coherence length along ẑ is

lc(ẑ) = 1

�kz
= h̄

�pz
, (41)

inversely proportional to the momentum uncertainty �pz.
More generally imperfect recombination leading to reduc-

tion of the coherence may also be due to other distortions of
the output wave packets coming from the two arms relative
to each other, such as width and spatially dependent phase.
However, the most common one is momentum mismatch at
the output port. This kind of mismatch is usually negligi-
ble in common atom interferometers based on laser pulses,
which provide very accurate momentum kicks. Momentum
mismatch is important, for example, in Stern-Gerlach inter-
ferometers where the momentum kicks are tunable rather than
quantized. In analogy to the coherence length for position
mismatch we define a momentum coherence width wc for

momentum mismatch, which is approximated by

wc(ẑ) ≈ h̄

�z
, (42)

where �z is the position uncertainty of the atoms along ẑ at
the output port.

Here we develop a general theory that takes into account
both position and momentum mismatch, which is based on
our method of wave-packet evolution presented in Sec. II.
This theory will be relevant to noninteracting thermal atomic
clouds as well as BEC clouds with any strength of atom-atom
interaction, provided that the interactions during splitting and
recombination can be absorbed into parameters of the theory.

B. The overlap integral

The state at the output port of an interferometer with co-
herent input is a coherent superposition

ψ (r) = Aψa(r) + Bψb(r), (43)

where ψa and ψb are the spatial wave functions at the output
of arms a and b, respectively, including phases due to propa-
gation through the arms, while A and B (|A|2 + |B|2 = 1) are
the corresponding amplitudes. For simplicity we assume that
A = B = 1/

√
2, so that the detection probability at the output

port is

Pout = 1

2
[1 + C cos(δϕ)], (44)

where the contrast C and phase δϕ are, respectively, the abso-
lute value and phase of the overlap integral

Ce−iδϕ =
∫

d3r ψ∗
a (r)ψb(r). (45)

The overlap integral in Eq. (45) is invariant under any uni-
tary operation on both wave functions ψa and ψb, for example,
when the same potential is applied to both arms before reach-
ing the output port. Let Û (t, t0) be a unitary time-evolution
operator, such that ψa,b(r, t ) = Û (t, t0)ψa,b(r, t0). It follows
that

ψ∗
a (r, t )ψb(r, t ) = ψ∗

a (r, t0)Û †Ûψb(r, t0)

= ψ∗
a (r, t0)ψb(r, t0), (46)

so that the contrast and phase of the interference signal are
independent of the time of measurement or the time where
the output beam splitter is operated, as long as no differential
forces are applied on the two arms.

Let us now separate the center motion from the internal
wave-packet dynamics by expressing ψa and ψb in the form
of Eq. (3). We concentrate on the effect of center position
displacement δx ≡ Ra − Rb and momentum mismatch δP =
Pa − Pb between the two arms, while other degrees of free-
dom are taken to be the same. Under the assumptions of Sec. II
we take the two wave packets to have the form of Eq. (7) with
the same shape, size, and expansion rate. We set the origin of
the integration coordinates to be at R = 1

2 (Ra + Rb), so that
Ra,b = R ± δx/2 and Pa,b = P ± δP/2, and obtain

C =
∫

d3r e−iδK̃·r�̃σ

(
r − 1

2
δx

)
�̃σ

(
r + 1

2
δx

)
, (47)
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where

δK̃ j = δPj/h̄ − α jδx j (48)

is the interference wave vector, which is related to the
periodicity of a spatial fringe pattern that appears in interfer-
ometers of the double-slit type. The wave function �̃σ (r) =
χ ( x

σ1
,

y
σ2

, z
σ3

)/
√

σ1σ2σ3 is a normalized real function in which
the phase factors of �(r, t ) were takend out.

The interferometric phase is

δϕ = φa − φb − P · δx/h̄, (49)

with

φa,b = 1

h̄
Sa,b + ϕa,b. (50)

The phase accumulated along each interferometer arm (a or b)
includes the action along the trajectory and the internal wave-
packet phase [Eq. (25)] due to kinetic and interaction energy
relative to the wave-packet center. The last term in Eq. (49)
is often called “the separation phase” due to the separation
between the two end points of the trajectories [58]. Together
with this term the interferometric phase is invariant under free
evolution, as required by Eq. (46), since δS(t + τ ) − δS(t ) =
(P2

a − P2
b )τ/2m = P · δvτ is exactly canceled by the change

of the separation phase −P · δx over the time τ .
An expression for the contrast similar to Eq. (47) is already

given in Ref. [49]. Another expression that is suitable for
interferometers based on free space propagation is obtained
by utilizing the conservation law of Eq. (46) with the unitary
operator Û = eih̄p̂2τ/2m that propagates the wave packets back
to the time t − τ where they were at their minimal size (i.e.,
before expansion). We obtain the result of Schwinger, Scully,
and Englert [51]

C =
∫

d3r ψ∗
0

(
r − 1

2
δx̃

)
ψ0

(
r + 1

2
δx̃

)
e−iδP·r/h̄, (51)

where ψ0 is the wave function before expansion and δx̃ ≡
δx − δPτ/m is the final separation projected to the time be-
fore expansion. This expression is particularly useful because
it implies that the coherence length of freely expanding non-
interacting matter waves is conserved during propagation and
determined by the momentum uncertainty of the initial wave
packet before expansion.

C. Coherence of weakly interacting atoms

A Gaussian approximation for the wave function envelope
in Eq. (47) �̃(σr) ∝ exp[− 1

4

∑
j r2

j /σ
2
j ] yields C = ∏3

j=1 Cj ,
where

Cj = exp

[
− δx2

j

8σ 2
j

− 1

2
σ 2

j δK̃2
j

]

= exp

(
−δx2

j ζ
2
j

8σ 2
j

− σ 2
j δP2

j

2h̄2 + σ 2
j α j

h̄
δPjδx j

)
, (52)

where

ζ 2
j = 1 +

(
2m

h̄
σ j σ̇ j

)2

. (53)

For a Gaussian wave packet in free space it is easy to
see from Eq. (33) that ζ j (t ) = σ j (t )/σ j (0). For a pure
position mismatch (δP = 0) the contrast drops like Cj =
exp[−δx2

j /8σ j (0)2], such that the coherence length [de-
fined in Eq. (38)] is lc(r̂ j ) = 2σ j (0), as follows from
Eq. (51). For a pure momentum mismatch (δx = 0) at the
time of measurement, the contrast depends on the expan-
sion time te before measurement Cj = exp[− 1

2σ jt2
e δP2

j /h̄2] ∝
exp[−δP2

j t2
e /8m2σ j (0)2]. This corresponds to a te-dependent

momentum coherence width wc = h̄/σ j (te), while the coher-
ence length lc is independent of the expansion time in free
expansion where the momentum uncertainty is constant. It
follows from the conservation of the overlap integral and may
be verified explicitly that in the case of free expansion the
contrast in Eq. (52) can be written in a time-independent form

Cj = exp

[
− δx j (0)2

8σ j (0)2
− 1

2h̄2 σ j (0)2δP2
j

]
, (54)

where δx j (0) = δx j (t ) − 1
m δPjt is the position mismatch pro-

jected back to the time (t = 0) where the wave packet has a
minimal size σ j (0). While Eq. (54) repeats previous results
concerning freely expanding Gaussian wave packets, it is
equivalent to the more general form in Eq. (52), which is valid
for any evolution history before measurement, once we use the
projected free-expansion values of σ j (0) and t . These values
can be derived from the instantaneous values of σ j and σ̇ j

at the time of measurement, regardless of the real evolution
history:

σ j (0) = σ j (t )√
1 + (2mσ j σ̇ j/h̄)2

, t =
(

2mσ j (0)

h̄

)2

σ j (t )σ̇ j .

(55)

The result of Eq. (52) or its simplified version Eq. (54) can
be generalized beyond the minimal uncertainty wave-packet
case by using the law of conservation of the overlap integral
[Eq. (46)] Let us assume that the input of the interferometer is
a mixed state represented by a density matrix

ρ(r, r′) =
∑

n

Wnψn(r)ψ∗
n (r′), (56)

where ψn(r, t ) are a set of functions based on the Gaussian-
Hermite functions of Eq. (24) with common sizes σ j (t ) and
center coordinates due to the common history of evolution
through the interferometer. The contrast at the output port has
the general form

C =
∫

d3r e−iδK̃·r ρ̃σ

(
r − 1

2
δx, r + 1

2
δx

)
,

where

ρ̃σ (r, r′) =
∑

n

Wn�̃n,σ (r)�̃∗
n,σ (r′) (57)

is the density matrix in the frame moving with the atomic
clouds in the two arms. The functions �̃n,σ are eigenstates
of a harmonic Hamiltonian Ĥ = ∑

j Ĥ j with frequencies
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ν j = h̄/2mσ 2
j :

Ĥj (σ j ) = p̂2
j

2m
+ 1

2
mν2

j r̂2
j = h̄ν j

[(
σ j p̂ j

h̄

)2

+
(

r̂ j

2σ j

)2]
.

(58)

Hence, applying a unitary operator Û = exp[−i
∑

j Ĥ jt j/h̄]
to these functions does not change the functions but only
creates a rotation of their center position and momentum in
phase space. The Hamiltonians (58) preserve the quadratic
form (σ j p j/h̄)2 + 1

4 (r j/σ j )2. By choosing appropriate param-
eters t j we can therefore perform a unitary transformation
equivalent to a phase space rotation

±δx j → 0, ±δK̃j → ±
√

δK̃2
j + 1

4
δx2

j /σ
4
j . (59)

We therefore obtain as a consequence of the conservation of
the overlap integral

C =
∫

d3r e
−i

∑
j r j

√
δK̃2

j + 1
4 δx2

j /σ
4
j ρσ (r), (60)

where ρσ (r) = ρ̃σ (r, r) is the normalized density of atoms in
the frame moving with the atomic cloud in each arm at the
time of measurement, while assuming that the density of the
two clouds is the same except for position and momentum
shifts.

Let us now assume that the atomic cloud density ρ(r) of
each of the arms at the output oprt of the interferometer can
be approximated by a Gaussian of widths �x j :

ρσ (r) ∝ exp

(
−1

2

∑
j

r2
j /�x2

j ]

)
. (61)

When this distribution is Fourier transformed to give the con-
trast in Eq. (40) we obtain

Cj ≈ exp

[
−�x2

j

(
δP2

j

2h̄2 + δx2
j ζ

2
j

8σ 4
j

− α j

h̄
δPjδx j

)]
, (62)

where ζ j is given in Eq. (53).
For a thermal cloud, where �x j = σ j

√
2〈n j〉 + 1 the co-

herence length is

lc(x̂ j ) = 2σ j

ζ j
√

2〈n j〉 + 1
= h̄

�p j
, (63)

where 〈n j〉 is the average occupation of the initial harmonic
oscillator states and �p j is the momentum uncertainty in the
direction r̂ j , given by

�p j =
√

2〈n j〉 + 1h̄

2σ j (0)
, (64)

where σ j (0) = σ j/ζ j is given explicitely in Eq. (55). In
particular, an atomic gas in thermal equilibrium with a
Boltzmann distribution in a harmonic trap of frequency
ω j (kBT � h̄ω j) has an occupation 〈n j〉T ≈ kBT/h̄ω j and
position-momentum uncertainties �x j = σ j (0)

√
2〈n j〉 + 1 ≈√

kBT/mω2
j and �p j = √

2〈n〉T + 1/2σ j (0) = √
mkBT . The

coherence length is then

lc(x̂ j ) ≈ h̄√
mkBT

(65)

and time-independent in free expansion. The momentum co-
herence width is simply given by

wc(x̂ j ) = h̄

σ j (te)
√

2〈n j〉T + 1
≈

√
m

kBT

h̄ω j√
1 + ω2

j t
2
e

, (66)

where te is the expansion time before measurement. While
this coherence width depends on the time of measurement, the
contrast C can be shown to be independent of time when the
time-dependent position mismatch δx, which grows linearly
with δP/m, is taken into account.

The coherence with respect to position mismatch or mo-
mentum mismatch can be improved by using gradual release
from the trap or δ-kick collimation as described in Sec. III B.
The effect of both procedures is to decrease the rate of ex-
pansion as if the cloud was released from a trap with a lower
harmonic frequency ω′

j � ω j with a larger projected minimal

cloud size σ
(0)
j . In this process the mean occupation num-

bers of the harmonic oscillator levels 〈n j〉 ≈ kBT/h̄ω j do not
change, while the effective frequency changes, so that the ef-
fective temperature decreases to T → T ′ = (ω′

j/ω j )T .In this
sense the δ-kick process is also called “cooling.” This leads to
the decrease of the kinetic energy and hence to the increase
of the coherence length, and at the same time it may lead
to the increase of the momentum coherence width for times
small enough such that ω jte � 1, with ω j being the effective
harmonic frequency of the beam projected to its minimal size.

D. Coherence length of a BEC

The expression in Eq. (52) for the contrast of an in-
terferometer with pure state input is exact for Gaussian
wave packets, but it may also serve as a good approxima-
tion for a non-Gaussian BEC once the wave-packet sizes
σ j at the time of measurement are calculated. For ex-
ample, a 3D inverted parabolic wave function [TF limit;
Eq. (47)] yields for a pure position displacement along the x
axis C(δx, δK̃ = 0) ≈ exp[−(δx/2ξT F,xσx )2/2] with ξT F,x =
0.8267, while for a pure momentum displacement C(δx =
0, δPx ) ≈ exp[−(ξT F,pσxδPx/h̄)2/2] with ξT F,p = 1.08. This
dependence, which is obtained by numerical integration and
Gaussian fit, is demonstrated in Fig. 5. Different results are
obtained for an expanding BEC with σ̇ �= 0, as shown below.
For an accurate estimation with arbitrary displacements one
must perform a direct numerical integration of Eq. (47).

For a freely expanding cylindrical BEC the expansion in
the transverse direction after turning off the trap is given
by Eq. (35) and hence ζ⊥(t ) =

√
1 + ω4

⊥t2/ν2
⊥ , where ν2

⊥ =
h̄/2mσperp(0)2. The coherence length lc(x̂⊥) = 2σ⊥(te)/ζ⊥(te)
becomes

lc(x̂⊥) = 2σ⊥(0)

√
1 + ω2

⊥t2

1 + [σ⊥(0)/�⊥]4ω2
⊥t2

, (67)

where �⊥ is the transverse harmonic oscillator length, as
defined in Eq. (26). The coherence length of a BEC is ini-
tially equal to the half width of the cloud size at 1/e2 of the
maximum, and then after expansion it drops by a factor of
[�⊥/σ⊥(0)]2 (at t � ω−1

⊥ and becomes smaller than the cloud
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FIG. 5. Contrast drop due to position displacement (a) or mo-
mentum displacement (b) of a BEC in the TF limit before expansion,
having an inverted parabolic density and flat phase. The solid curves
are obtained by a numerical integration, while the dashed curves are
Gaussian fits, resulting in ξT F,x = 0.8267 and ξT F,p = 1.08 (see text).

size 2�⊥ of a single atom in the trap,

lc(x̂⊥, t � ω−1
⊥ ) = 2�⊥

�⊥
σ⊥(0)

. (68)

This reduction of the coherence may be attributed to the in-
crease of momentum uncertainty when the interaction energy
turns into kinetic energy during expansion.

In Fig. 6 we show the coherence length of a BEC as a
function of expansion time for a typical trap [(ω‖, ω⊥) =
2π × (40, 100) Hz] with different atom numbers N : weak
interactions (N = 103), moderate interactions (N = 104), and
strong interactions (N = 105). The coherence length is in units
of the coherence length l0 of noninteracting atoms l0 = 2�⊥.
For interacting atoms the initial coherence length is larger
than l0, and then it drops to values that are lower than lc. The
analytical approximation in Eq. (67) agrees fairly well with
the numerical calculation based on a full solution of the GPE.
The relatively small discrepancies may be attributed to the
non-Gaussian shape of the BEC, as discussed above around
Fig. 5.

Note that a collimation procedure as discussed in Sec. III B
and in Sec. IV C in the context of a thermal cloud can be
used to increase the coherence length of a BEC as well. In
this case one should replace σ⊥(0) and ω⊥ in Eqs. (67) and
(68) with the values corresponding to the wave-packet size
after collimation and the effective harmonic frequency ω⊥ ∼
h̄/2mσ⊥(0)2 if the collimation process ends with an atomic
density where the interactions become negligible. Otherwise,
if interactions are important over the whole process, such
as in the case of a guided interferometer with a BEC, one
should calculate the evolution of the BEC sizes σ j over the
interferometer arms and then use Eq. (52) as a Gaussian ap-
proximation for the overlap integral, so that lc = 2σ j (t )/ζ j (t )
at the time of measurement.

FIG. 6. Transverse coherence length lc(x̂⊥) of a BEC as a func-
tion of free expansion time in units of the coherence length of
noninteracting atoms l0 = 2�⊥. The coherence length is defined as
half the length δx to which the wave packets of the two interferometer
arms at the output port are separated along the transverse direction
such that the interference contrast drops to 1/e2 [Eq. (38)]. It is
extracted from the fit of the contrast in Eq. (37) to a Gaussian
C(δx) = exp[−(δx/lc )2/2], where the wave packet ψ (r) is obtained
from a numerical solution of the GPE (symbols). The solid lines rep-
resent the approximation (67) with the value of σ⊥(0) calculated from
Eq. (27). Trap and BEC parameters are as in Fig. 1. Good agreement
between the predictions of the model and exact numerical results is
obtained for all interaction strength regimes. The discrepancies at
short times may be attributed to the non-Gaussian shape of the BEC,
as discussed in Fig. 5.

V. CONCLUSIONS AND OUTLOOK

The unified wave-packet evolution theory presented here
provides an efficient tool for calculating the performance of
atomic interferometers based on trapped, guided, or freely
propagating atomic clouds. It is valid for atomic evolution in
a variety of static or time-dependent potentials for trapping,
guiding, or accelerating matter waves and for atom-atom in-
teractions ranging from negligible interactions (as for a single
atom or a dilute thermal cloud) to a strongly interacting BEC,
as long as the condensate approximation holds. This model
generalizes previous approaches that were valid for certain
ranges of interactions or potentials [37,44,49]. We demon-
strate the model with simple examples: a stationary BEC in a
cylindrical trap with a relatively low aspect ratio between the
trap axes or a very high aspect ratio with a transition between
a 3D and a quasi-1D BEC and dynamical evolution when
a trapped BEC is released into free space or a waveguide,
collimated, or split into two separate traps (Sec. III). While our
model coincides with well-established approximations and is
hence guaranteed to be valid in the weak and strong limits
of atom-atom interactions, we establish its validity in the
intermediate regime by comparing some of the numerical and
analytical calculations based on the unified model with direct
solutions of the GPE and obtain excellent agreement over the
whole range of atomic interactions.
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For the situations discussed in this work, we stress that
wave-packet dynamics could, in principle, be calculated by
direct numerical solution of the Schrödinger equation or the
GPE. However, in many practical cases that involve propa-
gation over long times and/or distances, a precise numerical
calculation is very difficult or impossible, especially if many
calculations are necessary in order to design, analyze, or opti-
mize the performance of the system under various conditions.
The present work offers an efficient tool that can cope with
such tasks and provide reliable results. In addition, this work
includes numerous analytical results that provide insight and
understanding of the underlying physics, which would not be
apparent from complex numerical calculations. Furthermore,
the numerical procedure needed to solve this model is very
simple and does not require expertise in numerics. Beyond
the solution of Newton’s equations for the center coordinates
of the wave packet, it involves the solution of ordinary dif-
ferential equations for six parameters: the wave-packet sizes
along the three cartesian directions and their time derivatives
[Eq. (18)]. This set of parameters provides all the necessary
information for predicting interferometric performance in var-
ious scenarios.

The theory of spatial coherence in Sec. IV generalizes the
theory of spin coherence of a Stern-Gerlach interferometer
[50–52] and the more recent theory of contrast in modern
atomic interferometers [49] to include the whole range of
atom-atom interactions. In particular, we analyze the contrast
of atomic interferometers in terms of coherence length and
show how the coherence length of a BEC changes during free
expansion due to the increase of momentum uncertainty. Our
theory provides an analytical prediction that reproduces the
coherence length of an expanding BEC, to a good precision
over the whole range of atom-atom interactions, a prediction
that was not completely successful in a previous work [44].

One novelty of this work that makes it most suitable for
treating various interferometric scenarios is that it includes
effects due to changing the number of atoms in a BEC wave
packet when an initial cloud is split into separate clouds, each
including a fraction of the total number of atoms. One of the
important consequences of the dependence of the evolution on
atom number is phase diffusion due to atom-atom interactions,
which arises from the number uncertainty after splitting. The
discussion of phase diffusion in time-dependent interferomet-
ric scenarios is expected to benefit greatly from our model and
will be discussed elsewhere.

The utility of the method presented in this work has already
been demonstrated in the analysis and optimization of the
phase stability of a spatial fringe Stern-Gerlach interferometer
[45], as discussed briefly in the introduction. The simple ex-
amples examined in Secs. III C and III D provide insight into
possible analyses of recent experimental results or proposals
involving interferometry in waveguides [48] or moving traps
[29], although a thorough analysis of these particular experi-
ments with the unified model is beyond the scope of this paper.

Finally, let us mention three possible extensions of the
wave-packet evolution theory, beyond the scope of this pa-
per, that would make it more general and effective. First, the
current theory is based on the assumption that a quadratic
expansion of the external potential around the wave-packet
center is sufficient to describe the evolution. One would like to

define quantitatively the range of validity of this assumption
and examine the negligible possible effects of higher-order
terms of the potential. Second, we have not considered rota-
tional effects when the axes of the time-dependent external
potential do not coincide with the axes of the initial trap.
This case could possibly be treated in a way similar to what
was presented in Ref. [37], and one would expect a synthesis
of that method with the present work. Third, we have not
provided an explicit form for the wave-packet envelope, which
was assumed to be an implicit interpolation between a Gaus-
sian and an inverted parabola. A more explicit approximation
for the envelope in the initial trap and its evolution could
possibly be worked out as an extension of the present work
and provide more details regarding properties of the wave
packet that were not discussed here.
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APPENDIX A: DETAILED COLLIMATION PROCESS

Consider a noninteracting atom cloud or an elongated
cylindrically symmetric BEC over a time duration where the
expansion along the longitudinal axis is negligible. Let us
define σ0 as the wave-packet width along the relevant axis at
the time of trap release, σe after free expansion and σ f after the
collimation pulse. During the collimation pulse of frequency
ωc the equation of motion for σ in the relevant direction is

σ̈ = ω2
0σ

4
0

σ 3
− ω2

cσ, (A1)

where the first term on the right-hand side is consistent with
the fact that in the original trap, where the size of the wave
packet is σ0, the wave packet is in steady state. This equation
of motion corresponds to a conserved energy

E = 1

2
m

(
σ̇ 2 + ω2

0σ
4
0

σ 2
+ ω2

cσ
2

)
. (A2)

The solution of the equation of motion is given by

σ (t ) = σmin

√
1 +

[
ω2

0

ω2
c

( σ0

σmin

)4
− 1

]
sin2(ωc(t − t0), (A3)

where the minimal size σmin and the time t0 are determined
by initial conditions. In the free space limit ωc → 0 we have
σmin = σ0, and the expression reduces to the simple free-space
solution σ (t ) = σ0

√
1 + ω2

0t2 . For a finite ωc the solution can
also be written as

σ (t ) = σmax

√
1 −

(
1 − σ 2

min

σ 2
max

)
cos2 ωc(t − t0), (A4)
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where σmax = ω0σ
2
0 /ωcσmin. In order to find the required du-

ration Tc of the collimation pulse we need to find the final
wave-packet size σ f = σmax and then calculate the time for
which σ (t ) = σe, where σe is the size of the wave packet at
the beginning of the pulse. We then find

Tc = 1

ωc

√√√√asin

(
1 − σ 2

e

σ 2
f

)
. (A5)

Let us now find the final size σ f . From conservation of energy
during the expansion time of duration Te we deduce that the
energy just before the beginning of the collimation pulse is
equal to the initial energy just after trap release E (t < Te) =
1
2 mω2

0σ
2
0 . The energy during the collimation pulse is then the

energy before it plus the harmonic potential energy, so that

E (t > Te) = 1

2
m

(
ω2

0σ
2
0 + ω2

cσ
2
e

)
. (A6)

In the end of the collimation pulse we wish to reach the max-
imal value of σ , where σ̇ = 0. Both σmin and σ f = σmax are
found by solving the quadratic equation for the conservation
of energy during the collimation pulse

ω2
0σ

2
0 + ω2

cσ
2
e = ω2

0σ
4
0 /σ 2 + ω2

cσ
2. (A7)

This has the solutions

σ 2
±

σ 2
e

= 1

2
(1 + ξ ) ± 1

2

√
(1 + ξ 2)2 − 4ξ 2/M2

e

≈ 1 + ξ 2
(
1 − M−2

e

)
, (A8)

where ξ = ω0σ0/ωcσe and Me = σe/σ0 =
√

1 + ω2
0T 2

e is the
“magnification” factor during expansion. The final wave-
packet size σ f ≡ σ+ can now be substituted in Eq. (A5), such
that if ξ � 1 we have

Tc ≈ ξ
√

1 − M−2
e

ωc
= ω2

0Te

ω2
c

(
1 + ω02T 2

e

) ≈ 1

ω2
c Te

, (A9)

where the last expression is valid when ω0Te � 1.

APPENDIX B: ANALYTICAL SOLUTION FOR BEC
EXPANSION IN A WAVEGUIDE

Let us consider the expansion of a BEC inside a waveg-
uide with transverse frequency ω⊥. The coupled equations of
motion can be written as

σ̈x = ω2
⊥�4

⊥βasN

σ 2
⊥σ 2

x

, (B1)

σ̈⊥ = ω2
⊥�_⊥4

σ 3
⊥

(
1 + β

asN

σx

)
− ω2

⊥σ⊥, (B2)

where �⊥ = √
h̄/2mω⊥ and we have neglected the position-

momentum uncertainty term in the equation for the longitu-
dinal size. If we assume that initially σx � σ⊥ and that the

initial transverse frequency of the trap is not much different
from the transverse frequency of the guide, then we expect
the dynamics of the BEC to be characterized by oscillations
of the transverse size σ⊥ on a timescale of the order of the
period of the transverse trap, while the expansion dynamics
in the longitudinal direction has a much longer timescale. Let
us therefore first examine the transverse dynamics while σx is
steady (“Born approximation”). The corresponding potential
for a given value of σx is

V⊥(σ⊥) = 1

2
mω2

⊥

[
�4

⊥
σ 2

⊥
(1 + βasN/σx ) + σ 2

⊥

]
. (B3)

This potential has a minimum at

σ
eq
⊥ = �⊥

(
1 + βasN

σx

)1/4

. (B4)

This value at the minimum of the potential is the equilibrium
point for the oscillations of σ⊥, whose frequency is obtained
from the curvature of the transverse potential at the equilib-
rium size, and can be easily shown to be

ωosc =
√

V ′′
⊥ (σ eq

⊥ )/m = 2ω⊥. (B5)

Next, we go on to the equation for the longitudinal size
and replace σ⊥ by its average over the timescale of change
of the longitudinal dynamics, which is assumed to be the
equilibrium value. We then obtain the equation

σ̈x = h̄ω⊥
2mσ 2

x

βasN√
1 + βasN/σx

. (B6)

This equation is equivalent to the evolution of a particle in a
potential given by the integral of the right-hand side, namely,

Vx(σx ) = h̄ω⊥
√

1 + βasN/σx. (B7)

From conservation of energy it follows that

1

2
mσ̇ 2

x = h̄ω⊥

[√
1 + βasN

σx(0)
−

√
1 + βasN

σx(t )

]

= 2mω2
⊥[σ eq

⊥ (0)2 − σ
eq
⊥ (t )2]. (B8)

Note that at long times, such that σx � βasN , the rate of
change of σx becomes constant σ̇x → 2ω⊥

√
σ

eq
⊥ (0)2 − �2

⊥ .
At very short times we have σx(t ) ∼ σx(0)[1 + at2], where
a = 1

2ω2
⊥�4

⊥βasN/σx(0)3(σ eq
⊥ )2. In order to approximate the

solution while satisfying the requirements in both limits we
propose the form

σx(t ) = σx(0)

(
1 + at2

[1 + (bt )n]1/n

)
, (B9)

where b = σx(0)a/σ̇x(∞) and n is a free parameter that can
be adjusted by a more complex investigation. In the demon-
stration of Fig. 3 we chose n = 1 for simplicity but find that
n = 1.1 can provide a much better approximation for the
numerical result.

053310-14



UNIFIED MODEL OF MATTER-WAVE-PACKET EVOLUTION … PHYSICAL REVIEW A 104, 053310 (2021)

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009).

[2] J.-F. Schaff, T. Langen, and J. Schmiedmayer, in Atom Interfer-
ometry, edited by G. M. Tino and M. A. Kasevich, Proceedings
of the International School of Physics “Enrico Fermi” Vol. 188
(IOS Press, 2014), pp. 1–87.

[3] C. Bordé, Phys. Lett. A 140, 1 (1989).
[4] M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
[5] T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev.

Lett. 78, 2046 (1997).
[6] B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A.

Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and
P. Bouyer, Phys. Rev. Lett. 97, 010402 (2006).

[7] X. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. R.
Müller, Optica 4, 1545 (2017)

[8] Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q.
Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal,
and S. Wu, Phys. Rev. Lett. 94, 090405 (2005).

[9] O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and C. A.
Sackett, Phys. Rev. A 74, 031601(R) (2006).

[10] J. H. T. Burke, B. Deissler, K. J. Hughes, and C. A. Sackett,
Phys. Rev. A 78, 023619 (2008).

[11] H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold,
D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul et al.,
Phys. Rev. Lett. 110, 093602 (2013).

[12] B. Plotkin-Swing, D. Gochnauer, K. E. McAlpine, E. S. Cooper,
A. O. Jamison, and S. Gupta, Phys. Rev. Lett. 121, 133201
(2018).

[13] Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard,
and A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).

[14] L. A. Collins, L. Pezzé, A. Smerzi, G. P. Berman, and A. R.
Bishop, Phys. Rev. A 71, 033628 (2005).

[15] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth,
S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nat.
Phys. 1, 57 (2005).

[16] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle,
D. E. Pritchard, M. Vengalattore, and M. Prentiss, Phys. Rev.
Lett. 98, 030407 (2007).

[17] S. Machluf, Y. Japha, and R. Folman, Nat. Commun. 4, 2424
(2013).

[18] Y. Margalit, Z. Zhou, S. Machluf, D. Rohrlich, Y. Japha, and R.
Folman, Science 349, 1205 (2015).

[19] O. Amit, Y. Margalit, O. Dobkowski, Z. Zhou, Y. Japha, M.
Zimmermann, M. A. Efremov, F. A. Narducci, E. M. Rasel,
W. P. Schleich, and R. Folman, Phys. Rev. Lett. 123, 083601
(2019).

[20] S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M.
Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).

[21] S. Wu, E. Su, and M. Prentiss, Phys. Rev. Lett. 99, 173201
(2007).

[22] Y. Japha, O. Arzouan, Y. Avishai, and R. Folman, Phys. Rev.
Lett. 99, 060402 (2007).

[23] P. M. Baker, J. A. Stickney, M. B. Squires, J. A. Scoville, E. J.
Carlson, W. R. Buchwald, and S. M. Miller, Phys. Rev. A 80,
063615 (2009).

[24] B. E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, and C. J.
Foot, Phys. Rev. A 83, 043408 (2011).

[25] A. Turpin, J. Polo, Yu. V. Loiko, J. Kuber, F. Schmaltz, T. K.
Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, Opt.
Express 23, 1638 (2015).

[26] P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, and W.
von Klitzing, New J. Phys. 18, 075014 (2016).

[27] S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V. Bolpasi,
G. Vasilakis, K. Poulios and W. von Klitzing, Nature (London)
570, 205 (2019).

[28] K. S. Hardman, C. C. N. Kuhn, G. D. McDonald, J. E. Debs,
S. Bennetts, J. D. Close, and N. P. Robins, Phys. Rev. A 89,
023626 (2014)

[29] R. Stevenson, M. R. Hush, T. Bishop, I. Lesanovsky, and T.
Fernholz, Phys. Rev. Lett. 115, 163001 (2015).

[30] E. R. Moan, R. A. Horne, T. Arpornthip, Z. Luo, A. J. Fallon,
S. J. Berl, and C. A. Sackett, Phys. Rev. Lett. 124, 120403
(2020)

[31] M. Lewenstein and L. You, Phys. Rev. Lett. 77, 3489
(1996).

[32] J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675 (1997);
A. J. Leggett and F. Sols, ibid. 81, 1344 (1998); J. Javanainen
and M. Wilkens, ibid. 81, 1345 (1998).

[33] Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997).
[34] F. Dalfovo, S. Giorgini, and L. P. Pitaevskii, Rev. Mod. Phys.

71, 463 (1999)
[35] J.-F. Mennemann, D. Matthes, R.-M. Weishäupl, and T. Langen,

New J. Phys. 17, 113027 (2015).
[36] Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).
[37] M. Meister, S. Arnold, D. Moll, M. Eckart, E. Kajari, M. A.

Efremov, R. Walser, and W. P. Schleich, Adv. At. Mol. Opt.
Phys. 66, 375 (2017).

[38] A. L. Fetter, J. Low Temp. Phys. 106, 643 (1997).
[39] A. L. Fetter and D. L. Feder, Phys. Rev. A 58, 3185

(1998).
[40] A. Muñoz Mateo and V. Delgado, Phys. Rev. A 74, 065602

(2006).
[41] A. Muñoz Mateo and V. Delgado, Phys. Rev. A 75, 063610

(2007).
[42] A. Muñoz Mateo and V. Delgado, Phys. Rev. A 77, 013617

(2008).
[43] A. Nicolin and R. Carretero-González, Physica A 387, 6032

(2008).
[44] A. O. Jamison, J. N. Kutz, and S. Gupta, Phys. Rev. A 84,

043643 (2011).
[45] Y. Margalit, Z. Zhou, S. Machluf, Y. Japha, S. Moukouri, and

R. Folman, New J. Phys. 21, 073040 (2019).
[46] M. Keil, S. Machluf, Y. Margalit, Zh. Zhou, O. Amit, O.

Dobkowski, Y. Japha, S. Moukouri, D. Rohrlich, Z. Binstock
et al., in Molecular Beams in Physics and Chemistry (Springer,
Cham, 2021), pp. 263–301.

[47] A. Fallon, R. H. Leonard, and C. A. Sackett, J. Phys. B 48,
205301 (2015).

[48] S. Pandey, H. Mas, G. Vasilakis, and W. von Klitzing, Phys.
Rev. Lett. 126, 170402 (2021)

[49] A. Roura, W. Zeller, and W. P. Schleich, New J. Phys. 16,
123012 (2014).

[50] B.-G. Englert, J. Schwinger, and M. O. Scully, Found. Phys. 18,
1045 (1988).

053310-15

https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1016/0375-9601(89)90535-5
https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/PhysRevLett.78.2046
https://doi.org/10.1103/PhysRevLett.97.010402
https://doi.org/10.1364/OPTICA.4.001545
https://doi.org/10.1103/PhysRevLett.94.090405
https://doi.org/10.1103/PhysRevA.74.031601
https://doi.org/10.1103/PhysRevA.78.023619
https://doi.org/10.1103/PhysRevLett.110.093602
https://doi.org/10.1103/PhysRevLett.121.133201
https://doi.org/10.1103/PhysRevLett.92.050405
https://doi.org/10.1103/PhysRevA.71.033628
https://doi.org/10.1038/nphys125
https://doi.org/10.1103/PhysRevLett.98.030407
https://doi.org/10.1038/ncomms3424
https://doi.org/10.1126/science.aac6498
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.95.143201
https://doi.org/10.1103/PhysRevLett.99.173201
https://doi.org/10.1103/PhysRevLett.99.060402
https://doi.org/10.1103/PhysRevA.80.063615
https://doi.org/10.1103/PhysRevA.83.043408
https://doi.org/10.1364/OE.23.001638
https://doi.org/10.1088/1367-2630/18/7/075014
https://doi.org/10.1038/s41586-019-1273-5
https://doi.org/10.1103/PhysRevA.89.023626
https://doi.org/10.1103/PhysRevLett.115.163001
https://doi.org/10.1103/PhysRevLett.124.120403
https://doi.org/10.1103/PhysRevLett.77.3489
https://doi.org/10.1103/PhysRevLett.78.4675
https://doi.org/10.1103/PhysRevLett.81.1344
https://doi.org/10.1103/PhysRevLett.81.1345
https://doi.org/10.1103/PhysRevA.55.4330
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1088/1367-2630/17/11/113027
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1016/bs.aamop.2017.03.006
https://doi.org/10.1007/BF02395929
https://doi.org/10.1103/PhysRevA.58.3185
https://doi.org/10.1103/PhysRevA.74.065602
https://doi.org/10.1103/PhysRevA.75.063610
https://doi.org/10.1103/PhysRevA.77.013617
https://doi.org/10.1016/j.physa.2008.06.055
https://doi.org/10.1103/PhysRevA.84.043643
https://doi.org/10.1088/1367-2630/ab2fdc
https://doi.org/10.1088/0953-4075/48/20/205301
https://doi.org/10.1103/PhysRevLett.126.170402
https://doi.org/10.1088/1367-2630/16/12/123012
https://doi.org/10.1007/BF01909939


Y. JAPHA PHYSICAL REVIEW A 104, 053310 (2021)

[51] J. Schwinger, M. O. Scully, and B.-G. Englert, Z. Phys. D 10,
135 (1988).

[52] M. O. Scully, B.-G. Englert, and J. Schwinger, Phys. Rev. A 40,
1775 (1989).

[53] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[54] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.

Rev. Lett. 85, 3745 (2000).
[55] F. Gerbier, Europhys. Lett. 66, 771 (2004).

[56] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[57] S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H.
Müntinga, E. Giese, N. Gaaloul, C. Schubert, C.
Lämmerzahl, W. Ertmer et al., Phys. Rev. Lett. 117, 203003
(2016).

[58] K. Bongs, R. Launay, and M. A. Kasevich, Appl. Phys. B 84,
599 (2006).

053310-16

https://doi.org/10.1007/BF01384847
https://doi.org/10.1103/PhysRevA.40.1775
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.85.3745
https://doi.org/10.1209/epl/i2004-10035-7
https://doi.org/10.1126/science.1100700
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1007/s00340-006-2397-5

