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Universality class and exact phase boundary in the superradiant phase transition
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The Dicke model and the Rabi model can undergo phase transitions from the normal phase to the superradiant
phase at the same boundary, which can be accurately determined using some approximated approaches. The un-
derlying mechanism for this coincidence is still unclear, and the universality class of these two models is elusive.
Here we prove this phase transition exactly using the path-integral approach based on the faithful Schwinger
fermion representation, and give a unified phase boundary condition for these models. We demonstrate that at
the phase boundary, the fluctuation of the bosonic field is vanished, thus, it can be treated as a classical field,
based on which a much simplified method to determine the phase boundary is developed. This explains why
the approximated theories by treating the operators as classical variables can yield the exact boundary. We use
this method to study several similar spin and boson models, showing its much wider applicability than the
previously used approaches. Our results demonstrate that these phase transitions belong to the same universality
by the classical Landau theory of phase transition from a more general way, which can be confirmed using the
platforms in the recent experiments.
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I. INTRODUCTION

The Dicke model has been studied for more than half a
century [1–4]. This model considers the coupling between
N identical atoms (or two-level systems) with a bosonic field,
which can be written as

H = ωb†b +
N∑

i=1

�

2
σ z

i + g√
N

σ x
i (b + b†). (1)

Here b is the annihilation operator for the bosonic field,
σ x

i , σ z
i are the Pauli operators for the ith atom, and N is

the total number of atoms. This model undergoes a phase
transition from a normal phase to a superradiant phase at
g2

c = �ω
4 coth β�

2 [5–7], where β = 1/kBT with kB as the
Boltzmann constant and T is the temperature. The phase
transition can be obtained from the Holstein-Primakoff (HP)
method [8,9] and semiclassical method [10,11] in which nega-
tive or complex eigenvalues mark the ground-state instability.
It is challenging to be realized with atoms in radiation-plus-
matter field due to not only the required large density, but also
the no-go theorem [12–15]. However, it can be realized with
ultracold atoms [16–22], driven-dissipative quantum simula-
tors [23,24], spin-orbit coupled condensates in a trap [25], and
electron gases in a cavity [26].

Recently, the phase transition with only one atom has at-
tracted widespread attention [27–32]. When N = 1, Eq. (1) is
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reduced to the exact solvable quantum Rabi model [33–35]. A
great effort has been devoted in experiments trying to push the
light-matter interaction strength g from the strong-coupling
regime (with g larger than the dissipation rate) [36–38] to
the ultrastrong coupling (g ∼ 0.1�) [39–42] and even the
deep strong-coupling regimes [43]. This model has broad
application in cold atoms [44], trapped ions [45–49], quantum
dots [50], cavity QED [51,52], and superconducting circuits
[41,53]. It plays as a testing ground for strong-coupling
physics. Meanwhile, the calculation of its full spectra with
the help of integrability is also of general interest [54]. It
was shown [27,29] that the phase transition is realized when
ω
�

→ 0 at gc. In Ref. [29], the critical exponent ν = 1/2 is the
same as that from the Landau theory of phase transition. The
universal dynamics is also formulated using the Kibble-Zurek
mechanism, which was established based on second-order
phase transitions [55,56].

The phase transition in the Rabi model can be obtained
using the simplest perturbation theory and the effective
Hamiltonian approach by some truncation at T = 0 [27,29].
However, it is surprising that whereas approximations are in-
volved in various approaches, the predicted critical boundary
is shown to be exact. This should not be regarded as some
kind of coincidence [57,58], which is an unsolved puzzle in
theory. We unveil the underlying origin based on the path-
integral approach with Schwinger fermion representation. We
demonstrate that the phase transitions in the above two models
belong to the same universality class by the Landau theory
of phase transitions from which the previous conclusions,

2469-9926/2021/104(5)/053308(9) 053308-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1055-7147
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053308&domain=pdf&date_stamp=2021-11-09
https://doi.org/10.1103/PhysRevA.104.053308


ZHUANG, GENG, LUO, GUO, AND GONG PHYSICAL REVIEW A 104, 053308 (2021)

such as the critical exponent and Kibble-Zurek dynamics in
consistency with the mean-field theory will become straight-
forward. The unified boundary condition we want to prove is
given by

ωc = (ηg)2

�
tanh

β�

2
,

ω

N�
→ 0. (2)

Physically, it means a classical phase transition since the
quantization of the bosonic field is vanishing. The parameter
η in both models accounts for the effect of the rotating-wave
approximation in which η = 1 for the presence of it and η = 2
for its absence. At this point, the fluctuation of the bosonic
field is negligible, based on which we derive a much simpler
method to study the phase transition in some similar models
with interaction between boson fields and atoms, showing that
the same phase transition can happen in models with non-
identical atoms, Hubbard interaction, and nonlinearity, all of
which belong to the Landau paradigm of phase transition. This
method is demonstrated to have much broader applicability
than the previous approximated approaches.

II. THEORETICAL METHOD

We implement Eq. (1) using the path-integral approach de-
veloped by Popov [59–62] in which the spins are represented
by the Schwinger fermions [63,64],

σ+
i = σ x

i + iσ y
i

2
= α

†
i βi, σ z

i = α
†
i αi − β

†
i βi. (3)

Here αi and βi are fermion operators, and the number of
fermions

∑
i α

†
i αi + β

†
i βi = NF is constrained by the number

of spins NF = N . This is a faithful representation since the
Hilbert spaces in these two theories are the same. In the few-
spin models, we can directly verify that the partition function
of the Hamiltonian in these two representations is exactly the
same. This is different from the approximated HP method in
which the spin and boson have different Hilbert spaces. The
partition function reads as

Z = Tr exp(−βH) = iN Tr exp
(
−βHF − iπ

2
NF

)
, (4)

where NF is the constraint defined above. In this new repre-
sentation, we can take the constraint into account and write
the partition function in terms of these fermions as following:

Z = iN
∫

DᾱDαDβ̄ Dβ Db̄Db e−S, (5)

where S = ∫
(b̄ ∂

∂τ
b + ∑N

i=1 ᾱi
∂
∂τ

αi + β̄i
∂
∂τ

βi + H)dτ . We
first make a rotating-wave approximation to Eq. (1), which
corresponds to the Jaynes-Cummings model. Via the fermion
coherent representation we have

H = ωb̄b +
∑

i

�

2
(ᾱiαi − β̄iβi ) + g√

N
(ᾱiβib

+ β̄iαib̄) + iπ

2β
NF . (6)

The trace in Eq. (4) is carried out over different NF spaces of
H in which only the state with NF = N is physical, whereas
all the other modes are canceled exactly [60,61]. We solve

the above model based on Fourier transformation b(τ ) =∑
n bneiωnτ and ψi(τ ) = ∑

q ψi(q)eiωqτ , with ψi for fields
αi and βi, where ωn = 2nπ/β, ωq = (2q + 1)π/β (n, q ∈
Z) are Matsubara frequencies for bosons and fermions.
The total action is decoupled into two parts S = S0 + Sint,
where S0 = ∑

k,q ψ̄k (q)G−1
0 (q)ψk (q) with ψk (q) = [αk (q),

βk (q)]T , and

G0(q) =
(
G+

q 0
0 G−

q

)
, G±

q = 1

β
(
iωq + i π

2β
± �

2

) . (7)

The interaction term can be written as Sint =∑
k

∑
q,q′ ψ̄k (q)
(q − q′)ψk (q′), where


(q − q′) = gβ√
N

(
0 bq−q′

b̄q′−q 0

)
. (8)

We see that for the fermion fields, the interacting term is
in a quadratic form; whereas for the bosonic field by treating
the fermion field as a Grassmannian constant, the interacting
term is just a linear displacement of the bosonic field. We take
advantage of this feature and integrate out of the fermion fields
ψi, leaving only the bosonic field in the following form Z =∫
Db̄Db e−Seff [b̄,b], where

Seff [b̄, b] =
∑

n

β(iωn + ω)b̄nbn − N tr ln G−1, (9)

with G−1 = G−1
0 + 
. The previous literature tries to solve

the above model from the saddle-point solution of Seff [59–62]
and its fluctuation around this point. We choose a different
strategy by expanding the solution to infinite orders via Taylor
expansion of the bosonic field. In the second term of Seff ,
we utilize −tr ln G−1 = −tr ln G−1

0 + tr
∑

m�1
1

2m (G0
)2m,
which can be represented by the following Feynman dia-
grams:

(10)

In these diagrams, the bosonic field can be written as

V (2m)
{ni} =

∑
{ni}

χ
(2m)
{ni} bn1 b̄n2 bn3 b̄n4 · · · bn2m−1 b̄k2m (11)
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for k2m = ∑2m−1
i=1 (−1)i+1ni in which the Matsubara summa-

tion of ωq is performed. The leading term yields

S(2)
eff =

∑
n

(
iωn + ω − g2

iωn + �
tanh

β�

2

)
|bn|2. (12)

The real part of S(2)
eff , which should be positive for all modes for

the normal phase, has been used to determine the superradiant
phase transition in the Dicke model [59–62]. It is given by the
mode b0 by Eq. (2) with η = 1. However, whether the phase
transition occurs or not also depends critically on the higher-
order terms [65]. For example, the next leading term in Seff is
χ

(4)
0 |b0|4, where

χ
(4)
0 = g4β

2N�3

(
2 tanh

β�

2
− β� sech2 β�

2

)
� gβ

N

( g

�

)3
.

(13)

We see that χ
(4)
0 is always a positive number (for the stability

of the ground state), which is bounded from above by some
universal scaling law as a function of g/�. We expect the
same feature for all the other higher terms, although they
will be complex valued for nonzero {ni} after performance
of the Matsubara summation of frequencies ωq. This action
obviously can not yield exact phase transition.

To this end, we need to calculate the upper bound of

∣∣χ (2m)
{ni}

∣∣ =
∣∣∣∣∣
∑

q

(gβ )2m

mNm−1
G+

q G−
q−n1

G+
q−n1+n2

· · ·G−
k2m

∣∣∣∣∣
�

∑
q

(gβ )2m

mNm−1
|G+

q ||G−
q−n1

||G+
q−n1+n2

| · · · |G−
k2m

|. (14)

We noted that the non-negative-valued elements |G±
q−n| are

elements of the sets �± = {|G±
q ||q ∈ Z}, and the above some

is nothing but just the product of all these elements from this
set upon some kind of permutation. From the two theorems
in Appendix B which are based on the rearrange inequality
(see the last chapter of Ref. [66] by Hardy et al.), we have an
estimation of the upper bound for β� � 1 as

∣∣χ (2m)
{ni}

∣∣ � βg

2mNm−1
√

π

(
2g

�

)2m−1
�(m − 1/2)

�(m)
. (15)

The right-hand side is just χ
(2m)
0 . This inequality is the

major basis of this paper. When m = 2, it reduces to
Eq. (12). We have confirmed this upper bound numerically in
Appendix A in which the different {ni}’s will approach the
same upper bound. We see that the phase transition can
happen only when all these terms are vanished, which can
be reached by either N → ∞ as discussed in the Dicke
model; and g/� → 0 as discussed in the Rabi model. We
can also combine these two limits into a unified one using
g2/(�2N ) → 0. By the critical boundary at g2 	 ω�, we
naturally have ω/(�N ) → 0, yielding the second condition
of Eq. (2).

This estimation can also be applied to the full Dicke model.
In this case, the self-energy 
 should be changed accordingly
by setting its off-diagonal component bq−q′ to (bq−q′ + b̄q′−q)
in Eq. (8). However, the propagators G±

q are unchanged. Thus,

the estimation is still applicable. We have

S(2)
eff =

∑
n

(iωn + ω)b̄nbn − g2 tanh β�

2

iωn + �
(bn + b̄−n)2, (16)

which has the same symmetry— U(1) in the Jaynes-
Cummings model with η = 1 and Z2 in the Dicke and Rabi
models with η = 2—as the original Hamiltonian. The above
action with vanished higher-order terms yields the boundary
in Eq. (2).

The second requirement of Eq. (2) means that only the
leading term of S(2)

eff to be important. Thus, the phase transi-
tion is exact by even mean-field theory. This feature will not
be changed by other types of interactions. This conclusion
has some immediate consequences. By considering only the
mean-field term with relevant field b0, we only need to treat
the field as a classical variable. Let us assume b → b0 and
b† → b∗

0, then

H = ω|b0|2 + �

2

∑
i

σ z
i + g√

N

N∑
i

(σ †
i b0 + b∗

0σ
−
i ). (17)

The N two-level atoms are now independent. We can calculate
the free energy of the above model at finite tempera-
ture from Z = e−βF = Tr(e−βH), which yields F = ω|b0|2 −
N
β

ln[2 cosh(βE )] with E =
√

�2/4 + g2|b0|2/N . Around
b0 ∼ 0, we have

F = F0 + |b0|2
(

ω − g2 tanh β�

2

�

)
+

∑
n�2

F2n|b0|2n, (18)

where F0 = −N
β

ln(2 cosh β�

2 ). This result naturally yields
Eq. (2). Here b0 is a classical variable, thus, it forbids the
superposition of two different states for spontaneous symme-
try breaking. The higher-order terms F2n are ignored in the
previous literature for phase transition [27–30], which may
not be correct. When β� � 1, we have

F4 → g4

N�3
, F6 → − 2g6

N2�5
, F8 → 5g8

N3�7
. (19)

One may even find analytically for any β� that F2m =
(−1)m tanh( β�

2 ) g2m

Nm−1�2m−1
22m−1�(m−1/2)

2m
√

π�(m) , which is the same as
Eq. (14). The negative signs of the higher-order terms may
lead to failure of the Landau theory of second-order phase
transitions (e.g., see the first-order phase transitions by
Landau theory in Ref. [65]). This result confirms our previous
conclusion that the exact phase transition happens only when
F2n → 0 for all n � 2, leaving only the leading term S(2)

eff for
instability. In this sense, at the critical point, the fluctuation
of the bosonic field is negligible. This justifies why even the
simplest approximations in the previous literature can yield
the accurate phase boundary. It also means that the phase
transition is exactly described by the Landau theory with the
number of photon as 〈b†b〉 ∼ |g − gc|−ν , where ν = 1/2 is the
same as the mean-field theory [27,29,67–69].

III. APPLICATIONS

Our result is useful to understand the phase transitions
in the other models with spin and boson interactions for
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FIG. 1. Phase transitions for model (I) in (a) and model (III) in
(b) based on the exact diagonalization method at T = 0. In (a), N =
3, (g̃1, g̃2, g̃3) = (12, 1, 100), and (�̃1, �̃2, �̃3) = (9, 50, 110). Dif-
ferent lines are plotted with gi = √

λg̃i and �i = λ�̃i, which yield
ωc = 35.6 from Eq. (20). In (b), N = 1, κ = 0.5, g̃ = 12, and �̃ =
100 with ωc = 1.94 from Eq. (22) using λ defined in the same
way as (a).

second-order phase transition in which the HP method and
the effective Hamiltonian approaches are failed. We discuss
several models (I)–(III), which have been justified by the exact
numerical method with high accuracy (Fig. 1). This approach
applies to physics even at finite temperatures.

(I) Inhomogeneous interaction. This model reads as

H = ωb†b +
∑

i

�iσ
z
i +

∑
i

(
gi√
N

σ
†
i b + H.c.

)
(20)

for nonidentical atoms interacting with a common field. The
dynamics in this model has been studied in Refs. [70–72]. The
phase transition happens at

ωc = 1

N

N∑
i=1

g2
i

�i
tanh

β�i

2
,

1

N

∑
i

ω

�i
→ 0. (21)

This expression is inconsistent with the result in Ref. [73] with
inhomogeneous interaction. We confirm this phase transition
in Fig. 1(a) in which a divergence of 〈b†b〉 is expected from
S(2)

eff across the phase boundary due to the vanished higher-
order terms [67].

(II) Antirotating term and Hubbard interaction. In this case,
we consider the anisotropic interaction of the form of (g1σ

+
i +

g2σi )b/
√

N + H.c. and Hubbard interaction of Un(n − 1)
with n = b†b. It is frequently termed as the anisotropic Rabi
model when g1 
= g2 [74]. In this case we find the energy-level
spacing mediated by this term is

√
�2/4 + |g1b0 + g2b∗

0|2/N ,
which preserves the Z2 symmetry. The Hubbard term U
is unimportant for the phase transition. We have the phase
transition at

ωc = (g1 + g2)2

�
tanh

β�

2
,

ω

N�
→ 0. (22)

This condition has been shown in literature [27,29], and it can
be obtained much more straightforward in this paper. Thus,
we have η = 2 in Eq. (2) when all gi = g.

(III) Nonlinearity effect. It is inevitable that the higher-
order correction by the bosonic field can slightly modify
the energy-level spacing of the atoms [24]. We mimic this
effect using the model H = ωb†b + ∑

i(�/2 + κb†b)σ z
i +

g/
√

N
∑

i(b
†σi + H.c.) where the term κ maybe introduced

via the higher-order perturbation theory. This model cannot
be solved by the HP method for the reason of nonlinear inter-
action. We find the phase transition happens at

ωc = g2 + κN�

�
tanh

β�

2
,

ω

N�
→ 0. (23)

We confirm this phase transition in Fig. 1(b). This result will
have some interesting predictions. When κ is independent of
N , it is relevant, and the phase transition is forbidden in the
thermodynamic limit. When κ = κ0/N , which is most likely
to happen since the bosonic field is proportional to 1/

√
N , we

find that this phase transition is still presented. However, when
κ ∝ κ0/Nγ , where γ > 1, this nonlinear effect is irrelevant in
the thermodynamic limit, which will not influence the phase
boundary. Thus, γ = 1 is marginal. This result means that
the Dicke phase transition can still happen even taking the
nonlinear correction into account.

IV. CONCLUSION

To conclude, this paper is stimulated by the coincident
phase boundary in the Dicke and quantum Rabi models, which
is exact although derived by some approximated approaches.
We explore the underlying origin using the path-integral ap-
proach and give a unified boundary condition for these two
models at which the fluctuation of the bosonic field is van-
ished. In this limit, we can treat the bosonic field as a classical
variable, which has much broader applicability than all the
above approximated approaches in the determination of phase
boundaries in some of the spin and boson interacting models.
All these phase transitions belong to the classical Landau
theory of phase transition, thus, the critical exponent and the
associated universal dynamics should be the same as that from
the mean-field theory, which can be confirmed using cold
atoms, trapped ions, and superconducting circuits.
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APPENDIX A: ESTIMATION OF THE UPPER BOUND

The effective action of the Dicke model can be written as

Seff =
∑

n

(iωn + ω)|bn|2 − ln det G. (A1)

Taylor series expansion of the second term is

− ln det G = N

{
− tr ln G−1

0 + 1

2
tr(G0
G0
)

+1

4
tr(G0
G0
G0
G0
) + · · ·

}
, (A2)

where G−1 = G−1
0 + 
 with 
 being the self-energy. Accord-

ing to the Feynman rules given in the main text and for the
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leading term we have

N

2
tr(G0
G0
)

=
∑
n,q

(gβ )2g+
q g−

q−n|bn|2

= g2β2
∑
n,q

|bn|2
β2

(
iωq + i π

2β
+ �

2

)(
iωq−n + i π

2β
− �

2

)
= −

∑
n

g2β

iωn + �
tanh

β�

2
b̄nbn, (A3)

where ωq = (2q + 1)π/β, ωn = 2nπ/β are fermionic and
bosonic Matsubara frequencies, respectively. This term con-
tributes to the quadratic energy to the free energy, which
is exactly the same as that from the mean-field theory. The
superradiant phase happens when the coefficient of the b̄0b0

term becomes negative, yielding a phase transition described
by the Landau theory of phase transition. Following this route,
the next leading term is given by the fourth order,

1

2
N

(
g√
N

)4 ∑
q,n1,n2,n3

{
b(n1)b̄(n2)b(n3)b̄(n1 − n2 + n3)(

iωq + i π
2β

+ �
2

)(
iωq−n1 + i π

2β
− �

2

)(
iωq−n1+n2 + i π

2β
+ �

2

)(
iωq−n1+n2−n3 + i π

2β
− �

2

)
}

=
∑

n1,n2,n3,

χ4
{ni}bn1 b̄n2 bn3 b̄n1−n2+n3 , (A4)

where n1, n2, and n3 are arbitrary integers. By performing the Matsubara frequency summation of ωq = π (2n + 1)/β for
the fermion fields via the residue theorem (it may also be calculated directly with the aid of Mathematica for their excellent
convergence), we find

χ
(4)
{ni} = βg4 cot

(
1
4 (π − iβ�)

)
4N (ωn2−n3 )(iωn1 + �)(iωn2 + �)

+ β4g4 cot
(

1
4 (π + iβ�)

)
4N (ωn1−n2 )(iωn2 + �)(iωn3 + �)

+ βg4 cot
(

1
4 (π − iβ�)

)
4N (ωn2−n3 )(iωn2−n1−n3 − �)(iωn3 + �)

+ βg4 cot
(

1
4 (π + iβ�)

)
4N (ωn1−n3−n2 )(iωn1 + �)(ωn1−n2+n3 + �)

= βg4 tanh
(

β�

2

)
(2� + iωn1+n3 )

2N
(
� + iωn1−n2+n3

)∏3
j=1

(
� + iωn j

) . (A5)

This expression has salient features that it is a complicated expression with complex values. One can image that the expression
can become much more complicated in the higher-order terms, making the Matsubara frequency summation too complex to be
unrealistic. However, we observe that

|χ (4)
{ni}| � βg

N

( g

�

)3
tanh

(
β�

2

)
� βg

N

( g

�

)3
. (A6)

Especially, in the special case of n1 = n2 = n3 = 0, the coefficient can be calculated analytically,

χ
(4)
0 = gβ

2N

( g

�

)3
(

2 tanh
β�

2
− β� sech2 β�

2

)
, (A7)

which obviously satisfies the upper bound set in Eq. (A6). This result is stimulating because what we need to do is actually try
to estimate the upper bounds of these coefficients instead of their analytical forms. Following the Feynman diagram in the main
text, the coefficient of the 2mth order of the effective action is as follows:

χ
(2m)
{ni} =

∑
q

(gβ )2m

mNm−1
G+

q G−
q−n1

G+
q−n1+n2

· · ·G−
k2m

, (A8)

where k2m = q − n1 + n2 − n3 + n4 · · · − n2m−1. We find

∣∣χ (2m)
{ni}

∣∣ �
∑

q

g2m

mNm−1

1√(
ωq + π

2β

)2 + (
�
2

)2

1√(
ωq−n1 + π

2β

)2 + (
�
2

)2
· · · 1√(

ωq−n1+n2···−n2m−1 + π
2β

)2 + (
�
2

)2

� g2m

mNm−1

∑
q

1[(
ωq + π

2β

)2 + (
�
2

)2]m = ∣∣χ (2m)
0

∣∣. (A9)

This is the major inequality used in the main text. The reasoning of the above inequality using the rearrangement theorem which
will be discussed shortly in Appendix B. Let us define

A(2m) =
∑

q

1[
ω′

q
2 + (

�
2

)2]m , (A10)
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where

ω′
q = ωq + π

2β
=

(
2q + 3

2

)
π

β
. (A11)

This expression exhibits an upper bound with a specific scaling law in the limit when β� → ∞ as that discussed in the main
text. By performing of binomial theorem expansion to A(2m), we find

A(2m) =
∑

q

1(
�
2

)2m+C1
m

(
�
2

)2(m−1)
ω′2

q +C2
m

(
�
2

)2(m−2)
ω′4

q +C3
m

(
�
2

)2(m−3)
ω′6

q +C4
m

(
�
2

)2(m−4)
ω′8

q +· · ·
<

∑
q

1(
�
2

)2m + m
(

�
2

)2(m−1)
ω′2

q

=
4m−1β tanh

(
β�

2
√

m

)
�2m−1

√
m

, (A12)

where {Ck
m}’s are the expansion coefficients. In the limit of

β� → ∞, only the leading term of ω′
q is dominated, yielding

lim
β�→∞

A(2m) <
β

�2m−1

4m−1

√
m

. (A13)

By comparing Eqs. (A13) and (A9) we can obtain

lim
β��1

∣∣χ (2m)
{ni}

∣∣ <
gβ

2m3/2Nm−1

(
2g

�

)2m−1

. (A14)

This bound naturally yields the same scaling as Eq. (A6) when
m = 2. However, it cannot be numerically correct due to the
neglecting the higher-order terms during the binomial theorem
expansion. To obtain a much better estimation of the upper
bound, we use the following identity:

Q(b, a) = (a)2m
∑

q

1

b + a2ω′2
q

=
a2m−1β tanh

(√
bβ
a

)
2
√

b

→ βa2m−1

2
√

b
, (A15)

where a = 2/�. Based on this identity, we find

A(2m) =
∑

q

a2m

(a2ω′2
q + 1)m

= 1

(−1)m−1(m − 1)!

∂m−1Q

∂bm−1

∣∣∣∣∣
b=1

→ βa2m−1

2(m − 1)!

F (m)

2m−1

= βa2m−1

(m − 1)!

F (m)

2m
, (A16)

where F (1) = 1 and F (m > 1) = 1 · 3 · 5 · · · (2m − 3). So
we have the supremum,

Sup

[
|χ (2m)

{ni} |
(

�

g

)2m−1]
= 2m−1gβ

m!Nm−1
F (m) (A17)

= 4m−1βg

mNm−1
√

π

�(m − 1/2)

�(m)
. (A18)

The right-hand side is nothing, but just the integration of q in
the whole R axis by replacing the summation to integration
in Eq. (A15) when 1/β� � 1. Based on this result, we can
obtain the analytical expression of χ2m

{ni} at β� → ∞ as

lim
β�→∞

|χ (2m)
{ni} | = βg

2mNm−1
√

π

(
2g

�

)2m−1
�(m − 1/2)

�(m)
.

(A19)

One can see that the above upper bound has the same scaling
law as Eq. (A14). Moreover, this new upper bound naturally
yields Eq. (A6) by setting to m = 2. We can even show that
the ratio between these two expressions is

√
π when m → ∞,

thus, Eq. (A14) overestimates the summation by a factor of√
π due to the truncation to the quadratic term. The upper

bound in Eq. (A19) is used in the main text. We have also
verified its correctness numerically by setting different {ni}’s
in Fig. 2, which agrees well with our calculation.

APPENDIX B: REARRANGEMENT INEQUALITIES

The estimation of the upper bound in Eq. (A9) is the most
essential mathematical trick used in this paper. We need to
following rearrangement inequality.

Theorem 1. (Rearrangement theorem). For two sequences
{ai}n

i=1 and {bi}n
i in nondecreasing order, that is, ai � ai+1 and

bi � bi+1 have the following inequalities:
n∑

i=1

an+1−ibi �
n∑

i=1

aσi bi �
n∑

i=1

aibi, (B1)

where σi is any permutation of {1, 2, 3, . . . , n}.
The proof of the above theorem can be found in most of

the textbooks about inequality using only elementary tech-
niques in mathematics. The above theorem is also true for
three sequences and even arbitrary number of sequences with
the following generalized rearrangement theorem for non-
negative valued sequences:

Theorem 2. (Generalized rearrangement theorem).
For non-negative valued sequences {al,i}n

i=1 for
l = 1, 2, . . . , k (k � 2) in nondecreasing order, that
0 � al,i � al,i+1 for all l’s and i’s, we have

n∑
i=1

k∏
l=1

a
σ

(l )
i

�
n∑

i=1

k∏
l=1

al,i, (B2)

where σ (l ) are permutations of {1–3, . . . , n}.
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FIG. 2. |χ (2m)
ni

|(�/g)m−1 for 2m = 4, 6, 8, and 10 for various {ni}’s. The horizon lines are the upper bound estimated by Eq. (A18). For
β = 1, g = 1, we have the upper bounds of |χ (2m)

ni
|(�/g)m−1 to be 1, 2, 5, and 14 for 2m = 4, 6, 8, and 10, respectively.

The systematic study of rearrangement inequalities has
been systematically studied in the final chapter of “Inequali-
ties” by Hardy et al. [66], which is correct both for the discrete
sequences and for the continuous sequences.

In the following, we only explain the above-generalized
theorem for k = 3 intuitively based on the concept of com-
bined sequence; whereas its generalization to arbitrary k
follows the same procedure. We only need to explain the case
with three short sequences as 0 � a1 � a2, 0 � b1 � b2, and
0 � c1 � c2. We denote these three sequences as a, b, and c,
respectively. We assume a′

i, b′
i being the possible permutation

of these sequences. We need to prove

a′
1b′

1c1 + a′
2b′

2c2 � a1b1c1 + a2b2c2. (B3)

We may have four different cases. (1) a′
1 = a1, a′

2 = a2 and
b′

1 = b1, b′
2 = b2; (2) a′

1 = a1, a′
2 = a2 and b′

1 = b2, b′
2 =

b1; (3) a′
1 = a2, a′

2 = a1 and b′
1 = b1, b′

2 = b2; (4) a′
1 =

a2, a′
2 = a1 and b′

1 = b2, b′
2 = b1. In the case of (1), the

equal sign of Eq. (B3) is achieved. In the case of (3), we
can combine the sequences of b and c into a new sequence
bc, satisfying 0 � b1c1 � b2c2, based on which Theorem 1

can be used to prove Eq. (B3) for the two new sequences
a and bc. For the case of (2), we can treat ac as a new
combined sequence for Eq. (B3). For the case of (4), we can
combine ab as a new sequence for the proof of Eq. (B3). We
see that the requirement of non-negative sequences naturally
keep the basic features of the combined sequences. The above
reasoning can be applied to much longer sequences for k = 3
and to the condition of arbitrary number k > 3.

With these two theorems, we next explain the trick used in
Eq. (A9). It is realized using two steps,

|Gq| = 1/[β
√

(ωq + π/2β )2 + (�/2)2], q ∈ Z. (B4)

We denote the set by non-negative valued |Gq| as �, via � =
{|Gq|, q ∈ Z}. Obviously, � is independent of ni. We find that
the Matsubara summation used in Eq. (A9) is nothing but the
product of all elements from the 2m sets of � upon some kind
of permutation (shifted by ni). The inequality naturally holds
using Theorem 2 for k = 2m. The numerical results in Fig. 2
confirm this result. Phase transition with only one atom has
attracted widespread attention [27–32].
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