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Statistical properties of the momentum occupation numbers of the Tonks-Girardeau gas
in a harmonic trap
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We compute the fluctuations of the number of bosons with a given momentum for the Tonks-Girardeau gas
at zero and finite temperature in a harmonic trap. We show that correlations between opposite momentum states
p, which is an important fingerprint of long-range order in weakly interacting Bose systems, are suppressed.
Nontrivial correlations, including negative correlations, are observed for momenta smaller than or of the order
of the inverse radius of the gas. The full distribution of the number of bosons with momentum p exhibits
an interesting crossover from a nontrivial distribution at zero momentum to an exponential distribution. The
distribution of the quasicondensate occupation is also studied. The experimental relevance of our findings for
recent cold-atom experiments is discussed.
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I. INTRODUCTION

The Tonks-Girardeau gas is a very peculiar state of matter
made of one-dimensional bosons with infinite local repul-
sion [1–3]. If it was considered a toy model for theoretical
physicists for a long period of time, it is now an established
playground for the study of strongly correlated quantum
physics [4–6] and is an important system to benchmark results
of quantum simulators since it is an exactly solvable model. It
has many aspects in common with the gas of free fermions,
as far as the observables which depend only on the diagonal
elements of the density matrix, such as density-density corre-
lations, are concerned. However, this is no longer the case for
quantities which depend on the off-diagonal elements of the
density matrix [3]. One of them is the momentum distribution,
namely, the average number of bosons carrying a momentum
p, which is routinely measured in ultracold atom experi-
ments. This observable has been used, for instance, to probe
Bose-Einstein condensation in weakly interacting quantum
gases [7,8], to measure quantum depletion due to interactions
[9–11], and to observe the superfluid-to-Mott-insulator tran-
sition [12] and is also very sensitive to interactions [2,13,14]
and many-body symmetries of the wave function [15,16].

Beyond the knowledge of the average values, correla-
tions between different momentum occupation numbers and
their fluctuations shed light on many interesting phenomena.
For example, perfect correlations between opposite momenta
were predicted by Bogoliubov theory in weakly interact-
ing systems [9] and were identified to be a hallmark of
Bose-Einstein condensation [17,18]. Among other things, cor-
relations in momentum space have been shown to be useful
for analyzing phenomena such as the dynamical Casimir ef-
fect [19], Hawking radiation [20–24], and the escape from
a barrier [25]. In this paper, we study the fluctuations of the
momentum occupation number n̂p in a gas of one-dimensional

bosons in the Tonks-Girardeau limit at zero and finite temper-
ature in a harmonic trap. This fills the gap left by previous
works in the weakly interacting regime [17,26], in the hydro-
dynamic regime (low energy) with arbitrary interaction but
in the absence of a trap [27–29], and in the Tonks regime at
zero temperature on a ring [30,31]. In addition, we discuss the
statistical distribution of the number of particles in the lowest
natural orbital of the system (quasicondensate state) beyond
the results for the average value obtained in Refs. [32,33].

This article is organized as follows. We start by presenting
the model in Sec. II and explaining the general formalism to
compute the correlations. Section III is then devoted to the
calculation of the second moment 〈n̂2

p〉 and the correlations
〈n̂pn̂q〉 of the momentum occupation number. In Sec. IV, we
determine the moments 〈n̂k

p〉 for all integer k and reconstruct
the full counting statistics (FCS) of n̂p. In Sec. V, we discuss
the probability distribution of the fundamental natural orbital.
Finite temperature and experimental considerations are dis-
cussed in Sec. VI, and our main conclusions are summarized
in Sec. VII. Natural extensions of this work are sketched, and
we mention some perspectives for future studies. In addition,
several technical details are given in Appendixes A–E.

II. MODEL

We consider a gas of N identical bosons of mass m confined
in a one-dimensional harmonic trap of frequency ω at zero
temperature. The Hamiltonian of the system reads

H =
N∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

)
+ g

∑
i< j

δ(xi − x j ), (1)

where xi is the position of the ith bosonic particle, g =
−2h̄2/(ma1D), with a1D being the effective one-dimensional
scattering length [34]. In this article, we will focus on the
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Tonks-Girardeau limit where g is sent to infinity. In this
regime, the ground state is constructed by filling all single-
particle orbitals up to the Fermi energy EF = h̄ωN while
preserving the bosonic statistics as described below. This is
the so-called regime of fermionization where all physical
observables which depend only on density or density corre-
lations are similar to the ones of a perfect gas of fermions
[1,35]. At zero temperature, the many-body wave function of
the gas is given by

ψ ({xi}) = N
N∏

k=1

e−(xk/a0 )2/2
∏

1� j�k�N

|x j − xk|, (2)

with a0 = √
h̄/mω being the oscillator length and N =

1/

√
aN

0 N!
∏N−1

m=0 2−m
√

πm!. In the large-N limit, the density
profile takes the form of a semicircle for both bosons and
fermions,

n(x) =
√

2N

(πa0)2

√√√√√1 −
(

x√
2Na2

0

)2

, (3)

and defines the radius of the cloud R = √
2Na0, which will be

a very important parameter in this study.
Quantum statistics enters into play whenever off-diagonal

elements of the density matrix are involved in an observable.
The one-particle density matrix itself, defined as

ρ1(x, x′) = 〈�̂†(x)�̂(x′)〉 =
∫

ψ∗(X ) ψ (X ′) dx2 · · · dxN ,

(4)
where �̂(x) is the bosonic field operator, X = (x, x2, . . . , xN ),
and X ′ = (x′, x2, . . . , xN ), is indeed very sensitive to quantum
statistics and quantum fluctuations. It has been used, for in-
stance, to construct the phase diagram of a one-dimensional
gas in a harmonic trap [36]. In the Tonks-Girardeau regime,
its off-diagonal part decays algebraically as |x − x′|−1/2 and
therefore prohibits Bose-Einstein condensation since long-
range order is not possible in the thermodynamic limit. Its
Fourier transform, which gives the momentum distribution, is
a commonly used observable that gives the average number of
bosons with momentum p

〈n̂p〉 = 〈â†
pâp〉 =

∫∫
e−ip(x−x′ )/h̄ρ1(x, x′) dx dx′, (5)

where âp = ∫
dx eipx/h̄�̂(x) is the annihilation operator of a

particle with momentum p. In a harmonic trap, it has been
calculated [33,37,38], measured [4,39], and shown to display
the following features. The peak at small momenta shrinks
due to interactions, and a tail develops (this is actually true
for any value of the interaction parameter and not only those
in the Tonks-Girardeau limit). This tail decays algebraically
as C p−4, with C being Tan’s contact [40], for momenta larger
than the Fermi momentum pF = h̄πn(0). In this article, we
will treat these two regimes differently and refer to them as the
hydrodynamic regime (p < pF ) and the Tan regime (p > pF ).

III. CORRELATIONS IN MOMENTUM SPACE

As discussed before, the momentum distribution provides
important information about quantum statistics and quantum
fluctuations. However, it does not provide precise information
about the correlations between particles, which are the subject
of this article. We therefore turn now to the description of the
fluctuations of n̂p, the number operator of particles with mo-
mentum p, and the correlations between different momenta.
We then define the following quantity:

Gp,q = 〈n̂pn̂q〉/〈n̂p〉〈n̂q〉 − 1. (6)

Its diagonal part is simply the signal-to-noise ratio squared,
while the off-diagonal part describes correlations between dif-
ferent momentum occupation numbers. It gives information
about the joint probability to detect atoms with momentum p
and q. If these atoms are not correlated, this quantity is simply
zero.

In order to calculate the fluctuations of np, we need the
two-body density matrix, defined as

ρ2(x, u; y,w) = 〈�̂†(x)�̂†(u)�̂(y)�̂(w)〉. (7)

Using the definition of the number operator n̂p given before
and standard bosonic commutation relations, we have

〈n̂pn̂q〉 =
∫

ei p(y−x)
h̄ ei q(w−u)

h̄ ρ2 dx dy du dw

+ δp,q〈n̂p〉. (8)

The last term in (8) is known as the shot-noise term. In the
large-N limit, it is negligible compared to the first contribution
and will be omitted in this work.

A. Hydrodynamic regime

We start the discussion with the low-momentum regime. In
that case, the one-dimensional Bose gas can be described by a
low-energy theory known as the harmonic-fluid approach [41]
or Luttinger-liquid theory [2]. In the presence of a harmonic
trap, it is possible to compute the one-body density matrix at
zero temperature with various methods [32,33,36,42–45]:

ρ1(x, y) = G(3/2)√
2π

n(x)
1
4 n(y)

1
4

|x − y| 1
2

, (9)

where the average density n(x) = 〈�̂†(x)�̂(x)〉 is given by
the semicircle law (3) and G is the Barnes function [46].
However, the precise value of the constant is not needed
for the calculation of Gp,q. Surprisingly, the form of the
density matrix is exactly the one of a uniform system
with the replacement of the density by a local density.
The power-law decay of correlations is the same, for in-
stance. Of course, this formula will be valid only for
long distances or small momentum, which is why this sec-
tion will be restricted to momenta smaller than the Fermi
momentum.

Since the harmonic-fluid theory is Gaussian, it is
possible to compute the higher-order density matrix
using Wick’s theorem, which in this case reads
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FIG. 1. Left: density plot of the second-order correlations Gq,p = 〈n̂pn̂q〉/〈n̂p〉〈n̂q〉 − 1 of the Tonks gas at zero temperature in a harmonic
trap. Momenta p and q are expressed in terms of the inverse of the radius R of the gas. Dashed lines are guides to the eye and correspond
to equal momenta (p = q, black) and opposite momenta (p = −q, white). Right: Cut of the momentum occupation number correlations Gq,p

along the lines p = q (blue triangles), q = 0 (black dots), and p = −q (red circles). The red shaded area emphasizes the region where Gp,−p is
negative.

[47]

〈�̂†(x1) · · · �̂†(xn) �̂(x′
1) · · · �̂(x′

n)〉

=
∏

i, j〈�̂†(xi )�̂(x′
j )〉∏

i< j〈�̂†(xi )�̂(x j )〉
∏

i< j〈�̂†(x′
i )�̂(x′

j )〉
, (10)

where �̂(xi ) is the bosonic field operator. We compute numer-
ically the average number and the variance of the number of
bosons with a given momentum p with this prescription using
a Metropolis algorithm. The average 〈np〉 is found to be in
agreement with already known results [32,33].

Figure 1 shows the results for Gp,q as a function of p and q.
Correlations between occupation numbers are mainly present
on the diagonal p = q, as already observed in the absence of
a trap [27,30,31]. In particular, along the antidiagonal (p =
−q), perfect correlations between atoms that are typical of
Bogoliubov excitations in the weakly interacting regime are
strongly suppressed, as already discussed in previous works
[17,26,31]. The precise behavior of Gp,q is shown in Fig. 1
with cuts of this function along the diagonal, the antidiag-
onal (p = −q), and correlations with the zero-momentum
state. Similar results for homogeneous systems in ring and
box geometries can be found in Appendix A for compari-
son. At very small momentum, the statistics of n̂p is clearly
subexponential, with Gp,p < 1 (〈n̂2

p〉 < 2〈n̂p〉2), and tends to
an exponential statistics for pR > 6, which corresponds to the

standard bunching effect of noninteracting bosonic particles.
This will be corroborated by the study of the FCS of n̂p in the
next section.

Along the antidiagonal, anticorrelations for Gp,−p are visi-
ble for the trap in the range of p between 1 and 3 times 1/R.
Such correlations are totally absent in the case of interacting
bosons on a ring [27,31] but do exist in a box geometry, as
discussed in Appendix A. They have also been observed in
the weakly interacting regime in a box geometry [26] and
in a harmonic trap [17]. Moreover, we will see in the next
section that this effect is destroyed by temperature, which
leads us to assume that these negative correlations are due
to an interference effect. This is confirmed by the analytical
argument given in Appendix A.

B. High-momentum regime

In this regime, bosonization is no longer applicable, and
we have to resort to a more sophisticated small-distance ex-
pansion of the density matrix known as Lenard’s expansion
[13]. Along the lines of Ref. [31], we find that the occupation
numbers are uncorrelated and obey an exponential distribu-
tion. Lenard’s expansion expresses the n-body bosonic density
matrix in terms of the fermionic one. We give here the ex-
pansion of the two-body density matrix for the trap at zero
temperature; the expansion for the n-body density matrix in
the general case of finite temperature is given in Appendix B.
The bosonic one-particle density matrix reads

ρB(x, u; y,w) = sgn(u − x) sgn(w − y)
[
〈x, u|ρF |y,w〉 + (−2)

∫
J
〈x, u, x3|ρF |y,w, x3〉dx3 + · · ·

+ (−2)n

n!

∫
J
· · ·

∫
J
〈x, u, x3, . . . , xn|ρF |y,w, x3, . . . , xn〉

]
dx3 · · · dxn, (11)

where J is the interval [x, y] ∪ [u,w] and sgn is the sign function. The n-body fermionic density matrix reads [37,48]

〈x, u, x3, . . . , xn|ρF |y,w, x3, . . . , xn〉

=

∣∣∣∣∣∣∣∣∣∣

K (y, x) K (w, x) K (x3, x) · · · · · · K (xn, x)
K (y, u) K (w, u) K (x3, u) · · · · · · K (xn, u)
K (y, x3) K (w, x3)

√
2N · · · · · · K (xn, x3)

· · · · · · · · · · · · · · · · · ·
K (y, xn) K (w, xn) K (x3, xn) · · · · · · √

2N

∣∣∣∣∣∣∣∣∣∣
, (12)
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with the kernel

K (x, y) =
∑

ν1,...,νN


(−Eν )
N∑

l=1

uνl (x)uνl (y), (13)

where Eν = ∑N
l=1 ενl and 
 is the Heaviside function; uνl

are the eigenfunctions of the harmonic oscillator with energy
level ενl = (νl + 1/2)h̄ω. The first sum runs over all possible
sequences (ν1, ν2, . . . , νN ). In the thermodynamic limit and
to lowest order in 1/p, each determinant giving a relevant
contribution to the sum factorizes into dipoles. For example,
the term for n = 2, 〈x, u, x3, x4|ρF |y,w, x3, x4〉, reduces to
〈x, x3|ρF |y, x3〉 〈u, x4|ρF |w, x4〉 + (y ↔ w). When computing
〈n2

p〉, the main contribution will come from two configurations
of dipoles; the direct term corresponds to x close to y and u
close to w, and for the exchange term, which is exactly the
reverse, x is close to w, and y is close to u. For 〈n2

p〉 (but not
for 〈npnq〉 if q 	= p), the two terms are equal and will give
an overall contribution to 〈n2

p〉 which behaves as 1/p8, which
finally implies 〈n2

p〉 = 2〈np〉2 and Gp,p 
 1.
Repeating the argument for 〈nn

p〉, we obtain 〈nn
p〉 =

n!〈np〉n, and thus, the probability P(np) is exponential. The
argument can be carried out also for the calculation of the
correlations 〈npnq〉, but the exchange term is very small, and
to lowest order, there are no correlations between np and nq

for q 	= p. So far, we have focused on the main term. By
considering higher-order terms, we found that correlations
between np and nq do exist. A rough estimate of the cor-
relation Gp,q in the Tan contact’s regime yields an order of
magnitude p−4q−4(p−1 + q−1), which is extremely small and
out of reach of current experimental capabilities. Technical
details can be found in Appendix C.

IV. FULL COUNTING STATISTICS OF THE MOMENTUM
OCCUPATION NUMBER

We now turn to the discussion of the FCS of the occupation
numbers np. Using bosonization, we can compute numerically
the moments of np to arbitrary order and reconstruct the
distribution from them as explained in Appendix D. As in
the case of the homogeneous Tonks gas [31], we observe a
crossover from a nontrivial distribution [28,29,31,49] close to
zero momentum to an exponential distribution at intermediate
and large momenta. The results are presented in Fig. 2. Strong
correlations between low-momentum states appear once more
to affect the occupation number distribution, whereas at
larger momentum, correlations vanish and the distribution is
exponential.

Concerning the zero-momentum state, an important dis-
tinction from the homogeneous case has to be made. In
the trapped case, 〈n0〉 is proportional to N [33] and not to√

N [13,32]. This is related to the fact that any even orbital
of the harmonic oscillator has a nonzero overlap with the
p = 0 state. However, this has no relation to Bose-Einstein
condensation. The quasicondensate mode is defined in that
case as the eigenstate of the one-body density matrix with
the largest occupation number and is very different from the
zero-momentum state. This point will be discussed in the next
section.

 0

 0.5

 1

 0  1  2  3  4

10-2

10-1

100

 0  1  2  3  4

np/ np

P
ro

b
ab

il
it
y

d
en

si
ty

e−x

p = 0

pR = 1.5

pR = 6

FIG. 2. Probability densities of np/〈np〉 for different values of the
momentum p (expressed in terms of the inverse radius of the gas). As
the momentum is increased, the distribution tends to an exponential
(dashed black line). The inset shows the same data in logarithmic
scale.

For the zero-momentum occupation number, we obtain the

following numerical values for Fk = 〈nk
0〉

〈n0〉k :

F2 F3 F4 F5 F6 F7 F8

1.395 2.356 4.566 9.849 23.167 58.806 159.198

with 〈n0〉 
 0.62N , as already calculated in Refs. [32,33].
From this finite number of moments, we reconstruct the distri-
bution with a fairly good accuracy. Indeed, we have checked
the accuracy by using different reconstruction algorithms (see
Appendix D) and by comparing the results with known dis-
tributions such as the one for large momentum (exponential)
and the distribution of zero momentum in the ring geometry,
where it has been calculated exactly [31,50,51].

The result is presented in Fig. 2 along with the distribution
of finite-momentum occupation numbers. The precise shape
of the distribution is not very different from the homogeneous
case, as shown in Fig. 3, except that the value at zero is
smaller, meaning that the probability to find zero particles
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FIG. 3. Probability densities of the quasicondensate occupation
number nφ0/〈nφ0 〉 in the harmonic trap (thick blue line) and in
the ring geometry (red dashed line, from Ref. [31]) in the Tonks-
Girardeau regime at zero temperature. The inset shows the same data
in logarithmic scale.

053306-4



STATISTICAL PROPERTIES OF THE MOMENTUM … PHYSICAL REVIEW A 104, 053306 (2021)

with p = 0 is reduced. However, we insist on the fact that
the moments do not have the same scaling with the number
of particles N . The transition to an exponential distribution
occurs for momenta larger than a few times the inverse of the
cloud radius. This is expected since short-wavelength excita-
tions are not very sensitive to boundary effects and therefore
the homogeneous result is recovered [31]. Finally, at large
momenta where bosonization is not applicable, we showed in
the previous section that the distribution was exponential.

V. QUASICONDENSATE MODE

Although it is rather academic, we now raise the ques-
tion of the statistical properties of the occupation of the
quasicondensate mode. For a Tonks-Girardeau gas in a har-
monic trap, the quasicondensate mode is no longer the state
with zero momentum or the single-particle ground state, but
a rather complicated state which depends on interactions.
Following the so-called Penrose-Onsager criterion for Bose-
Einstein condensation in interacting systems, it is defined as
the eigenstate of the one-body density matrix with the largest
occupation number (see [32,33], for instance). The eigen-
modes φ j of the one-body density matrix with eigenvalue μ j

are defined as ∫
ρ1(x, y)φ j (y) dy = μ jφ j (x). (14)

Of course, there is no Bose-Einstein condensate in the Tonks-
Girardeau regime since the largest eigenvalue of the density
matrix is not proportional to the number of particles and is
not isolated from the other modes. Indeed, it is well known in
this regime that the average occupation of these modes scales
with

√
N and decays algebraically with j [32,33]. Therefore,

there is no macroscopically occupied single mode, namely, no
Bose-Einstein condensation. Still, we discuss here the FCS of
the quasicondensate at zero temperature out of curiosity.

Once the eigenmodes of the one-particle density matrix are
known, it is a simple quantum mechanics exercise to compute
the moments of the occupation numbers n̂φ j = â†

φ j
âφ j , with

âφ j =
∫

φ j (x)�̂(x) dx, (15)

following the same method as before. In particular, for the
quasicondensate mode, also called the fundamental orbital,
we can use bosonization to compute the correlations functions
of �̂ and �̂†. We solve Eq. (14) by discretization and numer-
ical diagonalization of the one-particle density matrix. The
occupation number of the fundamental orbital is denoted by
nφ0 . This yields the following results for the rescaled moments
Qk = 〈n̂k

φ0
〉/〈n̂φ0〉k:

Q2 Q3 Q4 Q5 Q6 Q7 Q8

1.372 2.279 4.333 9.159 21.129 52.75 139.94

with 〈n̂φ0〉 = 3.438
√

N (in perfect agreement with Ref. [32]).
We note in particular that 〈n̂2

φ0
〉 = 1.372〈n̂φ0〉2, which is below

the prediction for an exponential distribution by a factor of al-
most 2. Again, we reconstruct the full probability distribution
from the available moments and obtain the results in Fig. 3.
We compare our result to the one we obtained in [31] for
a ring geometry. In that case, the quasicondensate mode is

the zero-momentum state. Once rescaled by their respective
mean values, the distributions of nφ0/〈nφ0〉 are rather similar.
There is, however, a small tendency for condensation in a
trap geometry since the probability to observe zero particle
in the quasi-condensate is lower in that case than for a ring
geometry.

VI. EXPERIMENTAL CONSIDERATIONS

Up to now, we have considered the zero-temperature
physics of a Tonks-Girardeau gas in a harmonic trap in perfect
conditions. In this section, we discuss some experimental
issues for the detection of momentum occupation number
correlations such as the effects of finite temperature, the shot
noise, and the imperfection of the detection process. How-
ever, we emphasize that such measurements of correlations in
momentum space are now standard for several experimental
groups and have been done in the weakly interacting regime
in one dimension [17] and for arbitrary interaction in three
dimensions [18,52].

A. Effect of finite temperature

According to the phase diagram of the one-dimensional
gas in a harmonic trap [36], increasing the temperature will
destroy the Tonks-Girardeau state and bring the system into a
classical gas phase. This will be governed by phase fluctua-
tions which lead to an exponential decay of the off-diagonal
part of the one-body density matrix instead of an alge-
braic one. As a consequence, momentum correlations will be
strongly affected by finite temperature.

We start by discussing the low-momentum regime. In that
case, we explain in Appendix E that the one-particle density
matrix develops an exponential decay over a length scale T ,
the thermal length (not to be confused with the de Broglie
wavelength), which is proportional to the Fermi velocity in
the center of the trap divided by the temperature. The crucial
parameter is therefore the ratio of this length with respect to
the cloud radius R. We show that it is given by

T /R = h̄ω

kBT
= 1

N

EF

kBT
, (16)

with EF = Nh̄ω being the Fermi energy of the gas. In addi-
tion, the density profile is also modified by temperature since
particles are now allowed to occupy energy orbitals higher
than the ones below Fermi energy. Again, all the details are
given in Appendix E.

The main conclusion is that, as long as kBT � EF (typ-
ically by a factor of 10), the density profile is not really
affected. However, the momentum correlations are governed
by T /R. If T > R, the zero-temperature result is preserved.
But as soon as T becomes smaller than the radius of the
cloud, the situation is drastically modified. The results for
T = R and T = 0.1 R at kBT = 0.1EF (T is monitored by
the number of bosons N) are displayed in Fig. 4. In the
latter case (T = 0.1 R), all the features discussed so far are
washed out, in particular the negative correlations in Gp,−p.
The diagonal part Gp,−p quickly reaches the classical pre-
diction of bunching of noninteracting bosons (Gp,p = 1), and
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correlations between different momenta vanish. This is what
is expected for a classical gas.

In the high-momentum regime, a finite-temperature
Lenard’s expansion shows that dipole correlations are lost; for
large p, Gp,p 
 1, and Gp,−p 
 0. Technical details are given
in Appendix B.

Concerning the probability distribution P(np), we expect
all of them to converge to an exponential distribution in the
large-temperature limit. Since this is already the case for mo-
menta larger than 6/R, we discuss here the most interesting
one, which is the zero-momentum number distribution. We
have calculated the moments of n̂0 at finite temperature with
the help of the finite-temperature version of the one-body
density matrix. Figure 5 shows the results for T = R and
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Nh̄ω/kB being the Fermi temperature, with T = R for the red curve
and T = 0.1R for the gray curve. As the thermal length is decreased,
the distribution tends to an exponential (dashed black line). The inset
shows the same data in logarithmic scale.

T = 0.1R at kBT = 0.1EF . Clearly, the distribution evolves
rapidly to an exponential distribution.

In conclusion, in order to observe nontrivial correlations
between momentum occupation numbers, it is mandatory to
keep the thermal length of the order of the radius of the cloud
and to keep kBT � EF . This means that kBT must be smaller
than or of the order of h̄ω, which might be difficult to reach in
current experiments.

B. Shot noise and detector efficiency

From the beginning, we have neglected the shot-noise
contribution in (8), arguing that, in the large-N limit, its con-
tribution is negligible. This is supported by the fact that 〈n̂k

p〉 ∼
Nk ; therefore, its contribution is of the order of 1/N with
respect to the main contribution coming from ρk . However,
it is very simple to include its contribution in the final result.
First, it affects only the diagonal part of Gp,q, and since 〈n̂p〉
is known for the Tonks-Girardeau gas (see [37], for instance),
it can be easily added if necessary (in the small-N regime, for
instance). Concerning the FCS, this correction might be im-
portant only in the large-momentum limit, where the value of
〈n̂p〉 can be small and therefore 〈n̂p〉 could possibly dominate
〈n̂p〉2. In that case, it is sufficient to replace the exponential
distribution of np with a Bose-Einstein distribution

p(np) = 1

(〈n̂p〉 + 1)

( 〈n̂p〉
〈n̂p〉 + 1

)np

. (17)

One remaining important problem is the detection effi-
ciency. Even if single-atom detection is improving quickly
nowadays, typical experiments in the continuum can detect
single atoms with at most an efficiency of the order of 50%.
In that respect, taking the histogram of np over many runs
will not correspond to the predicted distribution. Such a low
efficiency will convolute the quantum noise and lead to an
exponential distribution. To solve this problem, it is customary
to measure the normalized moments Gp,q and 〈nk

p〉/〈np〉k in
order to get rid of the small efficiency in the spirit of the
measurement of the coherence function in quantum optics.

VII. CONCLUSION AND PERSPECTIVES

In this work, we have proposed a scheme to compute
the quantum fluctuations of the number of particles np with
momentum p at zero and finite temperature for the Tonks-
Girardeau gas in a harmonic trap.

The correlations between occupation numbers Gp,q =
〈n̂pn̂q〉/〈n̂p〉〈n̂q〉 − 1 are always positive for p = q and show
standard bunching for p larger than a few 1/R. In contrast,
momentum occupation numbers with smaller p show nontriv-
ial correlations. For opposite momentum states, q = −p, they
are positive for very small momentum but become negative in
the range of p between R−1 and 3R−1. This is at variance with
a homogeneous gas on a ring, where all correlations Gp,−p

are always positive. This phenomenon stems from the effect
of boundaries on coherences. For larger p, these opposite
momentum correlations eventually vanish very quickly, in
contrast to the weakly interacting case, where they remain per-
fect due to condensate depletion by Bogoliubov quasiparticle
pair creation.
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The probability distribution p(np) of the number of bosons
in a momentum state p is shown to have a quasi-Gaussian
shape at low momentum (p smaller than or of the order of
the inverse radius of the gas 1/R) and is exponential at larger
momentum. Finite temperature causes the probability distri-
bution for np to evolve towards an exponential distribution.

Finally, we discussed the rather academic problem of the
distribution of the number of bosons in the fundamental natu-
ral orbital. The probability distribution of the quasicondensate
occupation was obtained numerically and resembles a trun-
cated Gaussian curve. The probability of having zero bosons
in the condensate is reduced compared to what happens with-
out the harmonic trap. The presence of a trap is thus conducive
to the formation of a quasicondensate. However, in contrast
to the two-dimensional case, no Bose-Einstein condensation
is possible, and the total number of bosons in the quasicon-
densate still behaves as

√
N , where N is the total number of

bosons in the trap.
Our work is relevant not only for cold-atom systems but

also for some magnetic systems because the Tonks-Girardeau
model is equivalent to the XXZ chain [3,53]. One possible ex-
tension of this work is the study of the Lieb-Liniger model at a
strong but finite repulsion strength [42,54–58]. The nonequi-
librium situation, such as the behavior after a quench, could
also be investigated. Coherences present in the density matrix,
i.e., off-diagonal elements, may play a role [59]. They are
usually neglected in the so-called generalized hydrodynamics
approach to the time evolution of integrable systems [60].
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APPENDIX A: CORRELATIONS IN THE HOMOGENEOUS
GAS: EFFECT OF BOUNDARY CONDITIONS

We briefly discuss the correlations between momentum oc-
cupation numbers for a homogeneous gas in a ring geometry
(periodic boundary conditions) and in a box geometry (open
boundary conditions). The procedure to compute Gp,q is the
same as for a harmonic trap, but the one-body density matrices
are different. They are given by the following expressions [3]:

ρR
1 (x, y) = A0ρ0

[
π

ρ0L sin[π |x − y|/L]

]1/2

, (A1)

and

ρB
1 (x, y) = B0ρ0

[
ρ−1

0

√
d (2x|2L)d (2y|2L)

d (x + y|2L)d (x − y|2L)

]1/2

, (A2)

with A0 and B0 being some constants that are not needed for
the computation of Gp,q, ρ0 is the average density, L is the
system size, and d (x|L) = L| sin(πx/L)|/π . In the thermo-
dynamic limit (L → ∞), d (x|L) → |x|, and we retrieve the
standard power-law correlations with an exponent of 1/2.

Figures 6 and 7 present similar features to those discussed
in the main text for the case of a Tonks-Girardeau gas in a har-
monic trap. The main difference is the negativity of Gp,−p for
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q = 0 (black dots), and p = −q (red circles) for a uniform Tonks-
Girardeau gas in a ring geometry (periodic boundary conditions).

pL (pR for the trap) of order unity. This effect is totally absent
in a ring geometry and therefore is related to boundary effects.
To confirm this, we use the following analytical argument.
Gp,−p is related to the Fourier transform of the two-particles
density matrix∫

dx1dx′
1dx2dx′

2ρ2(x1, x2; x′
1, x′

2)e−ip(x1−x′
1 )eip(x2−x′

2 ) (A3)

and is dominated by two contributions: the direct term, which
corresponds to x1 
 x′

1 and x2 
 x′
2, which is positive, and the

exchange term, which corresponds to x1 
 x′
2 and x2 
 x′

1.
The latter can be approximately cast into a term which is
proportional to the integral

∫ L

0

eip(x1−x′
1 )

|x1 − x′
1|1/2

dx′
1

∫ L

0

eip(x2−x′
2 )

|x2 − x′
2|1/2

dx′
2

×
∫ L

0

∫ L

0
n
(

xCM + xr

2

)
n
(

xCM − xr

2

)
e−2ipxr dxr dxCM,

(A4)
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where x1 (x2) and x′
1 (x′

2) are the coordinates of the charges
of the first (second) dipole. xCM is the center of mass of
the two dipoles, and xr is their relative distance. This term
can be negative and overcome the direct term. In a ring ge-
ometry, the density is constant, and this integral is always
null. This explains why Gp,−p is always positive in this case.
In a box potential, the overlap of the densities is maximal
when xr = L/2; therefore, the integral will be dominated by
the neighborhood of this point. The integrand exp[−2ipxr] is
maximally negative for 2pxr = π , namely, for p = π/L. This
is exactly the value observed in Fig. 7. In the harmonic trap,
the density profile n(x) extending from −R to R is, to a good
approximation, proportional to |1 − x2/R2|1/2 [see Eq. (3)].
Taking a crude estimate of the profile using the characteristic
function of the interval [−R, R], the situation is similar to a
box geometry of size L = 2R. This predicts a minimum Gp,−p

around pR = π/2 
 1.57, which is consistent with Fig. 1.
Similar arguments can be formulated for the oscillations in
G0,p (where there is no exchange term). Using the same pro-
cedure, it can be shown that the integrand is minimal for
p = 2kπ/L and maximal for p = (2k + 1)π/L, with k being
an integer. In a ring geometry, the exchange term is therefore
always negative, whereas it oscillates in a box geometry.

APPENDIX B: FINITE-TEMPERATURE
LENARD’S EXPANSION

In this Appendix, we derive the finite-temperature Lenard
expansion for the n-body density matrix for the trap. The only
formal difference from the zero-temperature case is that now,
the kernel K (x, y) has to be replaced by its finite-temperature
counterpart KT (x, y) = ∑

{νl }
∑N

l=1 fνl uνl (x)uνl (y), with fν
being the Fermi function at energy εν , fν = 1

eβεν +1 , and β =
1/(kBT ). The first sum runs over all possible sets {ν1, . . . , νN },
with all νl , l = 1 to N , being different from each other. For
simplicity, we consider the direct term in 〈n2

p〉. The term with
n = 2 in Eq. (11) involves determinants like

∣∣∣∣∣∣∣∣
KT (x, y) KT (u, y) KT (x1, y) KT (x2, y)
KT (x,w) KT (u,w) KT (x1,w) KT (x2,w)
KT (x, x1) KT (u, x1)

√
2N KT (x2, x1)

KT (x, x2) KT (u, x2) KT (x1, x2)
√

2N

∣∣∣∣∣∣∣∣
(B1)

since for all reasonable temperatures, KT (x, x) = √
2N . We

assume that we take the direct term y close to x and w close to
u; the two dipoles (x, y) and (u,w) are far apart. The intervals
are J1 = [x, y] and J2 = [u, w]. There are four ways to insert
x1 and x2 in intervals J1 and J2. Let us suppose first that
they are inserted in the same interval, J1, for example. Then,
KT (x1,w) < 1

π |x1−w| , and |x1 − w| is, in general, of the order

of
√

2N/n, with n = 2 here. In contrast, KT (x1, x) is of the
order of

√
N . More generally, if z1 and z2 do not belong to

the same dipole while z′
1 and z′

2 belong to the same dipole, the
ratio [KT (z1, z2)/KT (z′

1, z′
2)] will be of the order of 1/N and

can be neglected in the thermodynamic limit. Thus, if x1 and
x2 belong to the dipole (x, y), the determinant can be brought

into the form∣∣∣∣∣∣∣∣
KT (x, y) KT (x1, y) KT (x2, y) 0
KT (x, x1)

√
2N KT (x2, x1) 0

KT (x, x2) KT (x1, x2)
√

2N 0
0 0 0 KT (u,w)

∣∣∣∣∣∣∣∣
, (B2)

which factorizes into KT (u,w) times a function of the other
variables. Taking the Fourier transform with respect to (w −
u) will not give any power-law contribution in the Tan con-
tact’s regime because KT (u,w) is an analytic function of u and
w. Thus, points x1 and x2 must lie in two separate intervals,
i.e., x1 in J1 and x2 in J2 or the reverse. We now examine
these terms. Again taking into account the fact that the ratio
[KT (z1, z2)/KT (z′

1, z′
2)] will be of the order of 1/N when z1

and z2 belong to different dipoles while z′
1 and z′

2 lie in the
same dipole, in the thermodynamic limit, there is again a
factorization of the 4 × 4 determinants, and the correspond-
ing term in the perturbation series can be put into the form∫

J1
D1(x, y; x1) dx1

∫
J2

D1(u,w; x2) dx2, with

D1(x, y; x1) =
∣∣∣∣ KT (x, y) KT (x1, y)
KT (x, x1)

√
2N,

∣∣∣∣. (B3)

The contribution which gives the dominant term in the Tan
contact’s regime will take the form (−2)2

2! sgn(u − x)sgn(w −
y)

∫
J1

D1(x, y; x1) dx1
∫

J2
D1(u, v; x2) dx2. Thus, there is a

factorization into two distinct contributions. In the thermody-
namic limit and in the regime of the contact, to lowest order
in 1/p, the equality 〈n2

p〉 = 2 〈np〉2 holds.

APPENDIX C: CORRECTION TO Gp,q

IN THE CONTACT REGIME

We provide an estimate of the leading-order correction to
Gp,q in the contact regime. If the dipoles (x, y) and (u,w)
are not close to each other, there are nonzero terms which
are of the order of 1/N at least; their contribution to Gp,q is
zero in the thermodynamic limit. The main term will come
from the configurations where the dipoles (x, y) and (u,w)
are close to each other. Let us look at the direct term; x and
y are typically 1/p apart, whereas u and w are 1/q apart. We
take x = 0 for simplicity and q very close, but not equal, to
p. On integrating over u, the only region which will make
a contribution will be for u of the order of (1/p + 1/q);
otherwise, dipoles do not interact. Now, points x, y, u,w are
all within a range of 1/p, and we can no longer make the
simplifications mentioned in Appendix B. To get a nonzero
contribution, we need nonanalyticity [61] in the behavior of
ρB(x, u; y,w) as a function of the variables x, u, y, and w. In
Lenard’s expansion, Eq. (11), the term with n = 1 involves the
introduction of only one extra point, x1, and the computation
of a 3 × 3 determinant. However, this turns out not to be suf-
ficient because we need nonanalyticity in both y and (w − u).
Therefore, the first term in the expansion of ρB(x, u; y,w)
which will give a nonzero contribution to Gp,q will be the term
n = 2, and two extra points, x1 and x2, have to be introduced.
The resulting 4 × 4 determinants are zero as soon as, among
the variables y, w, x1, and x2, two of them are equal because
two lines of the determinant would be identical. Likewise, the
determinant is also zero if, among the variables u, x, x1, and
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x2, two of them are equal because two columns of the deter-
minant would be the same. Therefore, the determinants carry
a factor B, with B = (y − x)(x − x1)(y − x2)(w − x1)(w −
x2)(x1 − x2)u(u − x1)(u − x2)x1(x1 − x2)x2. Notice that the
dependence is in (x1 − x2)2. Upon integration over x1 and x2

in two intervals, J1 and J2, and subsequent integration over
y and (w − u), the overall factor goes as p−16. Integration
over u brings an extra factor 2/p, and dividing by 〈np〉〈nq〉
to obtain Gp,q gives a factor p8. Overall, Gp,q is proportional to
p−9 (provided p 	= q; otherwise, Gp,p = 1 due to the exchange
term). A generalization of the argument to q very different
from p leads to Gp,q being proportional to (p−1 + q−1)p−4q−4,
as stated in the main text.

APPENDIX D: PROBABILITY DENSITY
RECONSTRUCTION FROM A FINITE

NUMBER OF MOMENTS

Reconstructing the probability density from its moments
is an important and nontrivial mathematical problem [62–64].
We present here a simple method which is well suited to our
problem that does not suffer from mathematical pathologies.
Moreover, we have checked that this method is fully consis-
tent with other methods such as the maximum-entropy method
[65] and the method of orthogonal polynomials [66].

The procedure is rather simple. We take an ansatz for the
probability distribution of the form

p(x, {ai}) =
M−1∑
i=0

aix
i g(x), (D1)

with M being the number of known moments and g(x) being
a suitable decaying function. In our case, g(x) has been taken
to be exp(−x) or exp(−x2) with similar accuracy. Then, we
formally compute the moments of this trial distribution,

〈xk〉 =
∫ ∞

0
xk p(x, {ai}). (D2)

The M coefficients of the polynomial are then the solutions of
the linear system of M equations 〈xk〉 = Mk , with Mk being
the moments of the target distribution.

APPENDIX E: ONE-PARTICLE DENSITY MATRIX AT
FINITE TEMPERATURE

We explain in this Appendix how to compute the correla-
tions at finite temperature in the hydrodynamic regime. We
use a local-density approximation and bosonization on the
one-particle density matrix and compare our formula to an
exact calculation with N = 10 bosons in the Tonks-Girardeau
limit. The higher-order density matrices are then computed
with Wick’s theorem (10).

Finite temperature will induce two important corrections
to the one-body density matrix. First, the density profile will
be modified and will evolve from the semicircle law at T = 0
to a Gaussian profile at high temperature. This modification
of the density profile is exactly the same as for a gas of free
fermions and has been shown to be accurately described by
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corresponding prediction of formula (E1). The Fermi temperature is
defined as kBTF = EF = Nh̄ω. The radius of the cloud at T = 0 is
R = √

2Na0.

the following formula [67]:

nT (x) = − 1

a0

√
N

√
kBT

2πNh̄ω

× Li1/2

(
− (e

Nh̄ω
kBT − 1) exp

[
−mω2x2

2kBT

])
, (E1)

where Li1/2 is the polylogarithm function [46]. However, this
correction is not important at low temperature (kT � 0.1EF ,
EF = Nh̄ω), as shown in Fig. 8. The most important correc-
tion is in the off-diagonal part of the density matrix, where
real-space correlations decay algebraically at zero temper-
ature but exponentially at finite temperature. This decay is
governed by the thermal length T , which is related to the
Fermi velocity. In the homogeneous case, the one-body den-
sity matrix is obtained by substituting the term 1/

√|x − y|
by [T sinh(π |x − y|/T )]−1/2, with T = h̄vF /kBT [68].
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However, in the presence of a trap, the Fermi velocity be-
comes inhomogeneous. As a first approximation, we take its
value at the center of the trap. Then, the one-body density
matrix takes the form

ρH
1,T = A [nT (x)nT (y)]1/4

[T sinh(π |x − y|/T )]1/2
, (E2)

with A being a constant that is not needed for the calculation
of Gp,q. In a harmonic trap, the Fermi velocity at the center is
given by vF = h̄πnT (0)/m. It therefore scales with

√
N and

not N as the Fermi energy does. Finite-temperature correc-
tions will be crucial when the thermal length becomes smaller
than the cloud radius R = √

2Na0. The ratio between these
two quantities is easily calculated and is given by Eq. (16)
of the main text. As N is increased, it is then possible to
completely destroy the phase coherence in the cloud while
keeping a zero-temperature density profile. The accuracy of
this simple formula is checked by comparing this prediction
to an exact calculation based on the method developed in [69],
with N = 10 bosons, as can be seen on Fig. 9.

[1] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[2] T. Giamarchi, Quantum Physics in One Dimension (Clarendon,

Oxford, 2004).
[3] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.

Rigol, Rev. Mod. Phys. 83, 1405 (2011).
[4] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I.

Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature
(London) 429, 277 (2004).

[5] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[6] T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. 95,
190406 (2005).

[7] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 (1995).

[8] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[9] N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).
[10] R. Lopes, C. Eigen, N. Navon, D. Clément, R. P. Smith, and Z.

Hadzibabic, Phys. Rev. Lett. 119, 190404 (2017).
[11] R. Chang, Q. Bouton, H. Cayla, C. Qu, A. Aspect, C. I.

Westbrook, and D. Clément, Phys. Rev. Lett. 117, 235303
(2016).

[12] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature (London) 415, 39 (2002).

[13] A. Lenard, J. Math. Phys. 5, 930 (1964); 7, 1268 (1966).
[14] A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper

Pairing in Condensed-Matter Systems (Oxford University Press,
Oxford, 2006).

[15] G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schäfer,
H. Hu, X.-J. Liu, J. Catani, C. Sias, M. Inguscio, and L. Fallani,
Nat. Phys. 10, 198 (2014).

[16] J. Decamp, J. Jünemann, M. Albert, M. Rizzi, A. Minguzzi, and
P. Vignolo, Phys. Rev. A 94, 053614 (2016).

[17] B. Fang, A. Johnson, T. Roscilde, and I. Bouchoule, Phys. Rev.
Lett. 116, 050402 (2016).

[18] A. Tenart, G. Hercé, J-P Bureik, A. Dareau, and D. Clément,
arXiv:2105.05664.

[19] J.-C. Jaskula, G. B. Partridge, M. Bonneau, R. Lopes, J.
Ruaudel, D. Boiron, and C. I. Westbrook, Phys. Rev. Lett. 109,
220401 (2012).

[20] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[21] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I.

Carusotto, Phys. Rev. A 78, 021603(R) (2008).
[22] A. Recati, N. Pavloff, and I. Carusotto, Phys. Rev. A 80, 043603

(2009).

[23] A. Fabbri and N. Pavloff, SciPost Phys. 4, 019 (2018).
[24] J. Ramón Muñoz de Nova, K. Golubkov, V. I. Kolobov, and

J. Steinhauer, Nature (London) 569, 688 (2019).
[25] J. Dobrzyniecki and T. Sowiński, Phys. Rev. A 99, 063608
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