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Extended Hubbard models have proven to bear novel phases of matter, but their experimental realization
remains challenging. In this work we propose to use bosonic quantum gases dressed with molecular bound
states in Rydberg interaction potentials for the observation of these quantum states. We study the molecular
Rabi coupling with respect to the effective principal quantum number and trapping frequency of the ground-state
atoms for various molecular potentials of rubidium and potassium, and the hereby resulting dressed interaction
strength. Additionally, we propose a two-color excitation scheme which significantly increases the dressed
interaction and cancels otherwise-limiting ac Stark shifts. We study the various equilibrium phases of the
corresponding extended Bose-Hubbard model by means of the cluster Gutzwiller approach and perform time
evolution simulations via the Lindblad master equation. We find a supersolid phase by slowly ramping the
molecular Rabi coupling of an initially prepared superfluid and discuss the role of dissipation.
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I. INTRODUCTION

In recent years, the strong interactions of Rydberg atoms
were discovered as a fruitful platform to engineer extended-
range interactions in optical lattices and tweezers [1–3].
Rydberg dressing—the admixing of the interactions to the
ground state by off-resonant coupling to a Rydberg state—
provides a way to increase the experimental timescales
beyond the typical lifetime of the Rydberg states [4]. Theo-
retical studies of Rydberg-dressed quantum gases have shown
rich equilibrium phase diagrams comprising quantum phases
such as Mott insulating, superfluid, and density-wave phases,
and even supersolids—quantum phases simultaneously ex-
hibiting frictionless flow of superfluids and broken lattice
translational symmetry of crystalline structures [5–11].

Unfortunately, admixed scattering rates limit the accessi-
ble timescales [1,12], especially since measured lifetimes of
Rydberg-dressed atomic clouds were observed to be signifi-
cantly below the single-particle lifetime [13]. The collective
character of the observed loss rates was found to depend
on the Rabi frequency and the detuning. It is suspected to
be induced by black-body transitions to neighboring Ryd-
berg states, possibly followed by an on-resonant excitation
avalanche, and can be reduced by working with lower den-
sities [1,4,14,15]. Furthermore, the ac Stark shift induced by
the coupling laser requires unreasonably high tunneling rates
[16,17], especially perpendicular to the propagation direction
of the excitation laser. Due to these difficulties, there exists
so far only one recent publication realizing Rydberg-dressed
interactions in the itinerant regime [18].

A recent theoretical study has proposed to dress to the
minima and maxima of Rydberg interaction potentials [19].
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Coupling to such potential curves induces a distance-specific
interaction with tunable strength and an increased dressing
quality—the ratio of dressed interaction and decoherence
(assuming the absence of collective losses). In this study
we complete the description of the coupling to these poten-
tials by including macrodimer states—molecular bound states
within the wells of these interaction potentials [20–25]—
and propose a coupling scheme which enhances the admixed
interaction.

This work is divided in two main sections: First, we study
the scaling properties of the dressed interaction, the dressing
quality, and the ac Stark shift with the help of the ALKALI RYD-
BERG CALCULATOR [26] and PAIR INTERACTION [27] packages
and compare these scaling laws to the ones obtained from
conventional Rydberg dressing schemes. We propose a two-
color dressing scheme with which the dressing quality can
be optimized while the ac Stark shift vanishes. Furthermore,
it allows us to increase the otherwise weak absolute interac-
tion strength. We find a substantial ratio between the dressed
interaction and scattering rate, which is promising for opti-
cal lattice experiments. We then investigate the equilibrium
phases of the corresponding extended Bose-Hubbard Hamil-
tonian. We obtain spatially modulated equilibrium ground
states. We show that slowly ramping up the coupling of an
initial superfluid state to the macrodimer state leads to a bro-
ken translational symmetry. If the tunability of the presented
scheme provides a regime where collective losses are absent
such that experimental loss rates approach the single-particle
and macrodimer loss limit, spatial ordering is shown to be
achievable on experimental timescales.

II. MACRODIMER DRESSING AND MODEL

Rydberg dressing close to the Rydberg resonance has
been shown to induce van der Waals interactions to pairs
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FIG. 1. (a) Schematic of single-color and two-color coupling scheme for the realization of the macrodimer dressing. While the
intermediate-state detuning �1C is approximately given by half of the energy shift of the potential U0 in the single-color scheme, the two-color
scheme benefits from the additional tunability. The potential well is further described by the position of the minimum Re, and its eigenstates
are approximately given by the vibrational states with vibrational quantum number ν and their corresponding vibrational wave function �ν (R).
The atoms in the electronic ground state are described by the initial relative wave function �g(R), which depends on the trapping frequency
νtrap. (b) Dressed interaction curve for the potential well Rb1 at n = 36 and a trapping frequency νtrap = 130 kHz. The blue dots represent
typical distances in an optical lattice with lattice constant alat = 532 nm. (c) Bosonic atoms trapped in a two-dimensional optical lattice with
lattice constant alat and tunneling with rate J . The dressing results in a distance-specific interaction with tunable spatial profile given by the
distance Re and strength V . (d) In this work we focus on three potential wells for 87Rb (upper diagram) and 39K (lower diagram), which arise
from avoided crossing energetically located between the asymptotic pair states |nP1/2nP1/2〉, |nP1/2nP3/2〉, and |nP3/2nP3/2〉 for n ∈ [25, 75]

of ground-state atoms, which saturate to a soft-core poten-
tial [1,28–32]. Given a single-photon transition with Rabi
coupling � = 〈e|Ĥ |g〉 and frequency detuning �, the soft-
core potential depth becomes V = �4/(2�)3, with admixture
PRyd = �2/(2�)2 of the Rydberg state to the ground state.
Alternatively, dressing with far-of-resonant avoided cross-
ings between different pair potentials, which occur at closer
distance [see Fig. 1(b)], also yields effective interatomic inter-
actions with modified scaling behaviors. The upper potential
well of these avoided crossings harbors a multitude of vibra-
tional bound states, which are coupled through a two-photon
transition via an intermediate state containing one bare Ry-
dberg state and one ground-state atom [see Fig. 1(a)]. In
the case of a single-color excitation scheme—one coupling
laser for both transitions with Rabi frequency � and the fre-
quency detuning �1C to the intermediate state—the effective
two-photon Rabi coupling to a molecular state with vibra-
tional quantum number ν after adiabatic elimination becomes
�̃1C

ν = α fν�2/�1C. The prefactor α describes the difference
between the single-particle Rabi frequency coupling |gg〉 to
the intermediate states |ge〉 and |eg〉, and the coupling between
the intermediate states and the molecular state, and depends
on the electronic structure of the molecular state. It can be
optimized through the polarization of the excitation light and
the quantization axis of the ground-state atoms relative to
the molecular orientation [33]. The Franck-Condon factor fν
is defined through the overlap integral between the initial

relative wave function �g(R) of the ground state [34] and the
vibrational wave function �ν (R) as fν = ∫

�∗
ν (R)�g(R)dR.

Here, we assume the asymptotic pair state decomposition to
vary little over distance R, which allows us to separate the
overlap of interatomic motion from the electronic coupling.
Within this dressing scheme, the intermediate-state detuning
�1C is set by the energy shift U0 of the potential well and
gets slightly modified by the chosen two-photon detuning δ as
2�1C = U0 + δ [see Fig. 1(a)]. Going to a two-color coupling
scheme—one coupling laser for the transition between the
intermediate and the molecular state with frequency � and
one weaker laser coupling the ground to the intermediate state
with frequency ε� (ε < 1)—allows for further tunability, as
the detuning �2C of the intermediate state becomes indepen-
dent of the shift U0. Within adiabatic elimination, the effective
coupling strength is then given by �̃2C

ν = αε fν�2/�2C.
The dressed interaction strength of a single vibrational

mode can be obtained from the Hamiltonian of the three-level
system with the two-body ground state, the intermediate state,
and the molecular state, and is given by Vν = h̄�̃2

ν/4δν for
δν � �ν . For both coupling schemes, through a combination
of the larger detuning δν to higher vibrational modes and
the decreasing Franck-Condon factors fν , the contribution V0

of the lowest vibrational state dominates the full interaction
V = ∑

ν Vν (see Appendix A). We obtain a tunable interaction
between particles at the specific distance Re matching the
avoided crossing [see Fig. 1(b)].
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FIG. 2. (a), (b) Franck-Condon factor f0 vs effective principal quantum number n∗ for fixed trapping frequency νtrap (a) and vs trapping
frequency νtrap for fixed principal quantum number n = 35 (b). For all macrodimer potentials we find a linear growth of the Franck-Condon
factor for increasing effective principal quantum numbers f0 ∝ n∗ which scales with the trapping frequency as f0 ∝ ν

1/4
trap. The gray area denotes

the typical range of trapping frequencies in the itinerant regime. (c)–(f) For the following plots we use the potential well Rb1 at n = 35, a
Rabi frequency � = 2π × 3 MHz, and the optimum detuning δ = α f0� unless mentioned otherwise. For the studied interaction potential of
rubidium, we choose typical values for the electronic coefficient α = 0.5 [33] and a Rydberg decay rate γ = 25 ms-1 [35]. (c), (d) Single-color
ac Stark shift U 1C

ac (r = 0) vs δ (c) and two-color ac Stark shift U 2C
ac (r = 0) vs �1C (d) at the beam center r = 0. Away from the beam center,

the differential light shift induced by the ac Stark shift between neighboring lattice sites [circle markers in inset of (c)] is significant in the
single-color scheme. In the two-color scheme, the additional tunability gained through the independent intermediate-state detuning �2C and
coupling strength ε� allows us to suppress the total ac Stark effect. (e), (f) The dressing quality (e) for various Franck-Condon factors f0 and
the dressed interaction (f) vs coupling strength assuming single-particle and macrodimer losses. The dressing quality is independent of the
coupling between the ground and intermediate state, while the interaction profits from smaller detunings.

A. Scaling properties and tunability

In this section we study the dependence of the Franck-
Condon factor f0 of the lowest vibrational bound state on
the choice of potential curves, the effective principal quantum
number n∗ [36,37], and the on-site trapping frequency νtrap

for a given atom species in order to determine whether strong
dressed interactions are attainable. Furthermore, we discuss
the ac Stark shift Uac and the dressing quality |V |/� with
respect to the chosen dressing scheme. We focus on three po-
tential wells energetically located between the fine-structure
split states composed of |e〉 ≡ |nP1/2〉 and |e′〉 ≡ |nP3/2〉 [see
Fig. 1(c)] for potassium (39K) and rubidium (87Rb). Among
alkali atoms, these species show the clearest evidence of bind-
ing potentials within the fine structure. Further macrodimer
potentials can be found in the energy regime between dif-
ferent principal and orbital quantum numbers. Additionally,
macrodimer potentials can be induced through an external
electric field, as shown for cesium [22–25]. Promising candi-
dates for macrodimer-dressing schemes may also be strontium
and ytterbium, since these possess metastable states with
larger spatial overlap with Rydberg states, which provides

enhanced coupling strengths significantly exceeding those ob-
tained with alkali atoms [17,38–41].

We first vary the effective principal quantum number n∗ ∈
[25, 75] and study the scaling of the potential well position
Re, the potential well depth De, the shift U0, the vibrational
spacing �ν , and the Franck-Condon factor f0. By fitting a
power law, we confirm the relations Re ∝ (n∗)8/3 and De ∝
(n∗)−3 + ε(n∗)−4, found in another study [20]. Additionally,
we obtain the power law of the energy shift U0 ∝ (n∗)−3 and
the spacing �ν ∝ (n∗)−3(see Appendix B).

The Franck-Condon factor f0 depends on the trapping fre-
quency νtrap of the potential well and the effective principal
quantum number n∗ and is bounded by 1. Variation of the
effective principal quantum numbers leads to a linear behav-
ior, i.e., f0 ∝ n∗ [see Fig. 2(a)]. For larger n∗ the potential
well becomes more shallow, leading to higher overlap with
the typically broader ground-state wave function. Varying the
trapping frequencies νtrap ∈ [10, 1000] kHz for fixed princi-
pal quantum number n = 35, we find a scaling law of the
Franck-Condon factor f0 ∝ ν

1/4
trap with increasing trapping fre-

quency νtrap [see Fig. 2(b)]. For trapping frequencies up to
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νtrap = 10 kHz—for which superfluid phases of rubidium
atoms trapped in an optical lattice can be found [34,42]—
we obtain Franck-Condon factors of f0 ∈ [0.15, 0.4] [see
Fig. 2(b), inset]. For a higher n∗ = 65 more suitable for
tweezer experiments [43–46], we find that the Franck-Condon
factor can reach the optimum value of f0 = 1 within the range
of accessible trapping frequencies and decrease as f0 ∝ ν

−1/4
trap

after the maximum (see Appendix B). Both characteristic
power laws result from the scaling of the width of the ground-
state wave function with the trapping frequency νtrap.

In order to access the itinerant regime, inhomogeneous
ac Stark shifts have to be lower than the hopping rate. The
Gaussian profile of the laser beam induces a site-dependent
shift rendering neighboring sites off-resonant. In the single-
color dressing scheme, the ac Stark shift is given by U 1C

ac (r) =
1
4�2(r)/�1C = 1

2�2(r)/(U0 + δ), with the distance r to the
beam center. Here, the intensity profile of the laser beam with
beam waist w leads to �(r) = �0exp(−r2/w2). For a typical
value of w = 20 μm and a lattice spacing of alat = 532 nm,
the differential light shift between neighboring sites becomes
substantial, especially further away from the center of the
beam [see Fig. 2(c)]. This inhibits coherent tunneling if the
hopping rate J is below the energy difference. Because this
problem mainly appears perpendicularly to the laser propa-
gation direction, coherent hopping is still available along one
dimension of the optical lattice [18].

In contrast to the single-color dressing scheme, the
two-color dressing scheme allows for additional tunabil-
ity of the total ac Stark shift. The shift is then given by
U 2C

ac (r) = 1
4�2(r)[ε2/�2C + 1/(U0 + δ − �2C)] and is tun-

able through the intermediate-state detuning �2C and both
coupling strengths [see Fig. 2(d)]. By appropriate choice of
the coupling to the intermediate state, the total ac Stark shift
cancels, such that tunneling along all dimensions of the optical
lattice becomes possible.

An additional motivation for the macrodimer dressing in-
stead of a conventional dressing comes from the dressing
quality |V |/�, the ratio between the dressed interaction V
and the decoherence rate �, which indicates timescales on
which coherent dynamics take place. Assuming only single-
atom loss, the ratio for the conventional Rydberg dressing is
|V |/�Ryd = �2/(2|�|γ ), with the Rydberg decay rate γ [19].
Its value can be optimized by increasing the Rabi coupling �,
though the dressing regime requires �/� 
 1 in order for the
Rydberg admixture to be small.

The situation is different for macrodimer-dressing
schemes. In the following we also include the vibrational
states into the description. The previously defined two-photon
coupling yields the optimal ratio |V |/� = α f0�/(2γ ), with
� = �Ryd + �mol obtained at δopt = α f0� for both the single-
and two-color dressing schemes (see Appendix C). This result
is consistent with [19] and is independent of �1C/�2C. At this
optimal detuning, the scattering rates at the intermediate state
and the molecular state are equal. For reasonable values of
the Rabi coupling and for typical scattering rates [35,47], the
dressing quality calculated without accounting for collective
losses is sufficiently large to observe coherent dynamics
[see Fig. 2(e)]. The strength of the dressed interaction,
however, strongly depends on the choice of the dressing
scheme. For the single-color scheme we obtain an interaction

strength V 1C = α2 f 2
0 �4/(4�2

1Cδ)
δopt= α f0�

3/(4�2
1C), which

is suppressed since the detuning �1C given by U0/2 takes
on large values. This forces one to decrease δ away from
the optimum to boost V towards experimental timescales
into a regime with smaller dressing quality. In contrast, the
independent intermediate-state detuning �2C in the two-color
scheme allows one to tune and increase the interaction
strength V 2C = α2ε2 f 2

0 �4/(4�2
2Cδ)

δopt= αε2 f0�
3/(4�2

2C).
Within the dressing condition ε�/�2C 
 1, we are now able
to achieve large values [see Fig. 2(f)] at the optimum detuning
δopt.

Combining the scalings of the Franck-Condon factor f0 ∝
n∗ and the single-photon coupling strength � ∝ (n∗)−3/2 [48],
we obtain the dressed interaction V ∝ (n∗)−4 for both dress-
ing schemes, which implies strong dressed interactions for
smaller n∗. On the other hand, decay rates decrease with
higher quantum numbers as the radiative and the black-body
lifetime given by their scattering rates �rad ∝ 1/(n∗)3 and
�BBR ∝ 1/(n∗)2 increase [35,49,50]. At low (high) values of
n∗ for which spontaneous (black-body-induced) transitions
dominate the effective lifetime, the scaling of the dressing
quality becomes |V |/� ∝ (n∗)−1 (|V |/� ∝ (n∗)−2).

We again want to emphasize that Rydberg induced losses
were found to be significantly above the expected single-
particle losses and density dependent [4,13–15]. Since these
loss signatures were found to be weaker further detuned from
the Rydberg resonance, we expect that our tunable scheme
will also be able to find a regime where collective losses
are smaller. In the following, we use the obtained results to
study Rydberg macrodimer dressing for a two-dimensional
optical lattice in the optimized parameter regime. We discuss
the corresponding equilibrium phase diagram and the possible
preparation of itinerant states of such a system with respect to
the dressed interaction V and scattering at the bare Rydberg
state and macrodimer state with scattering rates �Ryd and �mol.

B. Hamiltonian and methods

The single-species extended Bose-Hubbard model realized
by our dressing scheme reads

Ĥ = − J
∑
〈i j〉

(b̂†
i b̂ j + b̂†

j b̂i ) + U

2

∑
i

b̂†
i b̂†

i b̂ib̂i

− μ
∑

i

b̂†
i b̂i +

∑
i j

Vi j b̂
†
i b̂†

j b̂ib̂ j, (1)

with the hopping rate J , the on-site interaction U , the chemical
potential μ, and the dressed interaction strength Vi j , which is
nonvanishing only at distances close to the molecular bond
length. Due to the Gaussian envelope of the coupling laser,
Vi j is also spatially dependent, which we neglect in the sub-
sequent calculations. The interaction appears between two
particles at sites i and j separated by distance Re and can
be written as Vi j = V δRi j ,Re , where δi, j is the Kronecker delta
and Ri j is the distance between sites i and j. In the follow-
ing we focus on molecular potentials for principal quantum
numbers of roughly n = 30 (n = 36). With a typical lattice
spacing of alat = 532 nm of an optical square lattice, Vi j

peaks at interatomic distances of Re = alat (Re = √
2alat),
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corresponding to nearest-neighbor NN (next-nearest neighbor
NNN) interactions, for both rubidium and potassium (see
Fig. 6 in Appendix B). The corresponding long-range inter-
action term of the Hamiltonian (1) becomes V

∑
〈i j〉 b̂†

i b̂†
j b̂ib̂ j

(V
∑

〈〈i j〉〉 b̂†
i b̂†

j b̂ib̂ j). Both specific models have been inves-
tigated in numerous studies and predict spatially ordered
ground states for a suitable choice of the model parameters
[51–54].

The extended Bose-Hubbard model 1 is valid within the
single-band approximation. This requires that the system is
sufficiently cold and interactions weak enough such that tran-
sitions to higher bands are prohibited. For typical values of
the lattice depth V0 ∈ [5, 20] ER with the recoil energy ER =
h̄2π2/(2a2

latm) of atoms with mass m, the band gap Egap is
usually in the order of magnitude of several recoil energies,
i.e., Egap = 2

√
V0ER [55]. For a lattice spacing of alat = 532

nm and rubidium (87Rb), the corresponding recoil energy
ER ≈ 2π × 3 kHz leads to a band gap around Egap/2π ∈
[5, 30] kHz. As the tunable parameters of the Hamiltonian (1)
are typically below a kilohertz, we expect them to be much
smaller than the band gap, i.e., Egap � J,U,V .

We first investigate the equilibrium phase diagram by per-
forming numerical simulations with the variational cluster
Gutzwiller approach (CGA) [56–63]. Within this method the
system is described by a lattice of clusters with each cluster
embedded in a self-consistent mean field, hereby factorizing
the wave function of the full system into cluster wave func-
tions as

|〉 =
∏
C

|〉C, (2)

which satisfies the newly defined cluster Schrödinger equa-
tion ĤC|〉C = EC|〉C with Ĥ = ∑

C ĤC . The single-cluster
Hamiltonian ĤC itself can be written as

ĤC = −J
∑

〈i j〉∈C
(b̂†

i b̂ j + b̂†
j b̂i ) + U

2

∑
i∈C

b̂†
i b̂†

i b̂ib̂i

− μ
∑
i∈C

b̂†
i b̂i + V

∑
i j∈C

b̂†
i b̂†

j b̂ib̂ jδRi j ,Re

− J
∑
i∈∂C

(b̂†
i ϕi + b̂iϕ

∗
i ) + V

∑
i∈∂C

b̂†
i b̂iηi + E (ϕ, η), (3)

with C denoting the set of sites within a cluster, ∂C the sites
on the border, and E (ϕ, η) an offset energy resulting from the
cluster mean-field approximation. The site-dependent mean
fields ϕi and ηi are determined by the neighboring cluster
wave functions. Finding the ground state of the system re-
quires a self-consistent iterative procedure which involves
solving of the cluster Schrödinger equation and calculation of
the surrounding mean fields until convergence.

Compared to the single-site Gutzwiller mean-field approx-
imation, nonlocal quantum fluctuations are included up to
a certain degree dependent on the cluster size in the CGA.
Numerous theoretical studies have shown that the negligence
of quantum fluctuations might affect phase boundaries or even
lead to inaccurate predictions of quantum states [64–66]. We
therefore choose the CGA and use sufficiently big cluster sizes
in order to capture quantum fluctuations (for a discussion of
the cluster size see Appendix D).

Furthermore, we study the effect of dissipation and de-
phasing with the cluster Gutzwiller Lindblad master equation
(CGLE), a CGA version of the master equation in Lindblad
form. We define the cluster density operator ρ̂C = |〉C〈|C
for which the CGLE reads

d ρ̂C
dt

= − i

h̄
[ĤC, ρ̂C] + L(ρ̂C ), (4)

with the Lindblad superoperator L(·) = ∑
k[L̂k (·)L̂†

k −
1
2 {L̂†

k L̂k, (·)}], which describes nonunitary processes
of the system. We consider both single-particle loss
L̂Ryd = ∑

i

√
�Rydb̂i and macrodimer loss L̂mol =∑

i j

√
�molb̂ib̂ jδRi j ,Re with the previously discussed scattering

rates �Ryd and �mol. Given an initial state density operator
we are able to compute the time evolution via the CGLE
and identify possible phase transitions through calculation of
local observables.

III. EQUILIBRIUM STATES AND TIME
EVOLUTION SIMULATIONS

We first investigate the equilibrium ground-state phase di-
agram for realistic values of the on-site interaction, hopping
rate, and the long-range interaction. We set the on-site inter-
action to be U = 2π × 0.5 kHz, the range of the hopping
rate to J/2π ∈ [0, 100] Hz, and the range of the dressed
interaction strength V/2π ∈ [0, 250] Hz. We vary the chem-
ical potential μ in such a way that the average filling ρ̄ =
1/N

∑
i∈C〈|b̂†

i b̂i|〉C of a cluster C with N sites is fixed (see
Appendix E). We determine the different phases through cal-
culation of the condensate order parameter |φ| and occupation
number n, as well as the staggered observable |φ|stag.

We first fix the average filling to ρ̄ = 0.5. We vary the
hopping rate J and the long-range interaction V , and plot the
various regimes of the equilibrium phase diagrams for both
types of interaction, NN and NNN [see Fig. 3(a)]. At low
hopping amplitudes we obtain density-wave phases (DW),
whereas for low long-range interaction strengths the system
becomes superfluid (SF). These two regimes are separated by
supersolid phases (SS) which exhibit a staggered condensate
order parameter and occupation number. Note that the NN
interaction leads to checkerboard ordering, while NNN inter-
action favors striped ordering [see Fig. 3(b)]. We clearly see
that the SS regime is broader in the NNN case compared to
the NN case. We believe that this phenomenon arises from
the competition between long-range interaction and particle
hopping, which differs in both cases. For NN interaction,
the long-range interaction and particle hopping mechanism
couple the same pair of sites. While the repulsive long-range
interaction favors a staggered occupation number, the super-
fluid hopping profits from both sites being occupied, which
results in a direct competition between these processes. In
the NNN case the long-range interaction couples sites not
coupled by the hopping mechanism, leading to a weaker com-
petition and therefore allows ordered states to occur at lower
long-range interaction strengths for finite hopping rate. We
conclude that NNN interaction is favorable for supersolid-
ity. We additionally vary the filling ρ̄ and study its effect
on the phase boundary between the SF and the SS regime
[see Fig. 3(c)]. By increasing the filling up to ρ̄ = 1, we are
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FIG. 3. (a) Equilibrium phase diagram of the extended Bose-Hubbard model for U = 2π × 0.5 kHz and ρ̄ = 0.5 for both NN (dashed line)
and NNN (solid line) interactions. We obtain a density wave (DW) and a supersolid (SS) as well as a homogeneous superfluid (SF) regime. NN
interaction results in a checkerboard ordering while NNN interaction leads to striped ordering. (b) Ground-state density pattern of exemplary
supersolid states of the phase diagram with additional harmonic potential. The upper figure represents a striped ordered supersolid obtained
with NNN interaction, the lower figure a checkerboard ordered supersolid obtained with NN interaction. Here, the average filling ρ̄ = 0.5
refers to the density at the center of the harmonic potential. (c) Phase transition for various fillings with NNN interaction. The solid red line
corresponds to the phase boundary obtained through an analytic approach for ρ̄ = 1.

able to lower the critical long-range interaction strength by
a significant amount in the regime of high hopping ampli-
tudes. Since striped phases are less susceptible to the dressed
interaction in comparison to homogeneous phases, they are
energetically more favorable for greater densities. For ρ̄ = 1,
we perform second-order perturbation theory in order to de-
termine the phase transition between the homogeneous SF and
the SS with long-range density-wave order [67]. We obtain the
analytic value for the critical interaction Vc = U/4 + J2/U ,
which coincides well with the numerically obtained phase
boundary. We conclude that the dressed long-range interaction
resulting from the avoided crossing of the chosen asymptotic
pair states renders the task of observing density-wave-ordered
states feasible. For lower hopping amplitudes we choose a
lower filling, while higher fillings are helpful in the high-
hopping-rate regime. Since higher hopping rates lead to faster
dynamics during the time evolution, we focus on the ρ̄ = 1
case hereafter, even though higher densities also increase col-
lective loss rates.

We now present possibilities for the preparation of itinerant
states with density-wave order via NNN interaction. We start
with an initial SF state and switch on the macrodimer dressing
adiabatically by linear ramping up of the dressed interaction.
Since striped phases are fourfold degenerate with respect to
rotation and translation, we impose an external, anisotropic
harmonic confinement in order to lift the degeneracy and
hereby enable the possibility of adiabatic time evolution. In
order to determine the emergence of a striped phase, we define
the imbalance I = |ρodd − ρeven|/N as an order parameter
where N is the number of sites. We consider odd and even sites
along the more strongly confined direction, as we expect the
stripes to form along the less strongly confined direction [see
Fig. 4(c)]. We determine whether the imbalance is finite or not
based on a numerical threshold Ith = 0.05 (see Appendix E).

In the following simulation, we set the initial average
occupation at the center of the harmonic confinement to ρ̄ ≈ 1
and the on-site interaction U = 2π × 0.5 kHz. For rubidium
at the considered principal quantum numbers, we obtain a
bare Rydberg scattering rate at around �Ryd = 4 s-1 and a
macrodimer scattering rate of �mol = 8 s-1 (see Appendix C),
assuming no collective loss processes. The dressed interac-
tion is ramped up linearly with time tramp. We perform time
evolution simulations of an initial SF state (i.e., at time t = 0
we start with the equilibrium state for V = 0) up to a time
t = 500 ms. We perform these time evolution simulations for
different values of the ramping time tramp, dressed interaction
V , and hopping rate J and determine a parameter regime
which yields finite imbalance during the time evolution. With
respect to the quantum adiabatic theorem, a ramping time
of tramp > 20 ms for any dressed interaction V considered
ensures the adiabaticity of the time evolution [68,69].

We see the critical dressed interaction becoming larger
as the ramping time becomes longer [see Fig. 4(a)]. Sim-
ilar to the phase transition of the equilibrium ground-state
calculations, the critical interaction strength for striped order
increases for larger hopping rates.

We depict the time evolution for an initial SF state (I = 0)
for fixed hopping rate and dressed interaction while varying
the ramping time tramp ∈ [100, 400] ms. We find the emer-
gence of finite imbalance I at later times for higher ramping
times. The imbalance also becomes smaller due to the losses
as the ramping time grows, although it is far from zero.

We conclude that the considered scattering process does
not inhibit the emergence of spontaneous striped density-
wave order in an initial SF for reasonably slow ramping of
the coupling to the macrodimer state. The depletion of the
system due to the finite scattering rate indicates an upper
limit of the possible ramping time, but achieving spontaneous
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FIG. 4. (a) Parameter regime of spontaneous symmetry-broken time evolution (I > Ith) and homogeneous time evolution (I < Ith) given
by the critical dressed interaction Vc vs the hopping rate J for different values of the ramping times with Ith = 0.05. Longer ramping times
require larger dressed interaction for the imbalance I to become finite within the evolution times considered here. (b) Imbalance I vs time t for
an initial SF state for fixed parameters of the extended Bose-Hubbard model U = 2π × 0.5 kHz, J = 2π × 75 Hz, V = 2π × 175 Hz, a bare
Rydberg scattering rate �Ryd = 4 s-1, and a molecular scattering rate �mol = 8 s-1 for different values of the ramping times tramp ∈ [100, 400]
ms. We find a finite imbalance emerging after ramping up the coupling to the macrodimer state. The later onset of a finite imbalance occurs
for longer ramping times, and its value decays due to the single-particle and macrodimer losses. (c) Exemplary depiction of the time evolution
of (b) with ramping time tramp = 200 ms at times t ∈ [0, 150, 300, 450] ms, where the occupation number ρ at each site is shown. The average
filling ρ̄ = 1 is determined at the center of the trap. Due to the anisotropic harmonic confinement, striped order in y direction becomes more
favorable.

symmetry breaking seems possible for realistic parameter val-
ues. The determined dressed interaction strengths appear to
be significantly larger than the critical value necessary for the
observation of symmetry breaking.

IV. CONCLUSION

In conclusion, we study coupling rates to various
macrodimer potentials over a wide range of experimental
tuning parameters and provide the relevant scaling laws. In
addition to the single-color coupling scheme, we propose a
tunable two-color scheme which allows us to enhance the
dressed interactions and cancel the overall ac Stark shift. Us-
ing experimentally feasible values for the interaction strength,
we obtain spatially modulated equilibrium phases, which can
be realized by ramping up the coupling to the macrodimer
state. Thanks to its wide range of tunable parameters, we
hope that one can find a parameter regime where previously
limiting avalanche losses, which were observed near-resonant
to the Rydberg transition, can be avoided.
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APPENDIX A: DRESSING HAMILTONIAN
AND EFFECTIVE INTERACTION

In order to determine the effective interaction of the
dressed regime, we write the Hamiltonian of the system in the
basis B = {|gg〉, |0

mol〉, |ν
mol〉}, after adiabatic elimination of

the intermediate state, which reads

Ĥ = h̄

2

⎛
⎜⎜⎜⎜⎝

0 �̃0 �̃1 · · ·
�̃0 δ0 0 · · ·
�̃1 0 δ1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠

, (A1)

with δν = δ + �ν , and �ν being the energy spacing between
the lowest and the νth vibrational bound state, and δ the
two-photon detuning to the lowest vibrational state ν = 0.
As our laser frequency is close to the lowest vibrational res-
onance, all other vibrational states become far-off detuned
|δ| � �̃ν . Additionally, the Franck-Condon integral fν =∫

�∗
ν (R)�g(R)dR maximizes for the lowest vibrational state.

For all potentials studied here, we obtain Franck-Condon fac-
tors fν which decrease with increasing vibrational quantum
number ν (see Fig. 5), implying weaker coupling for higher
vibrational states. Within the dressing regime |δ| � �̃0,
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FIG. 5. Upper diagram depicts Franck-Condon factors fν vs vi-
brational quantum number ν for the interaction potential Rb1 and
fixed n = 55, trapping frequency νtrap = 40 kHz. Lower diagram
shows the accumulated contribution of vibrational bound states vs
ν for δ = 2π × 3 MHz.

we determine the dressed interaction V = ∑
ν Vν , where Vν =

h̄�̃2
ν/4δν is the contribution of the molecular state with vi-

brational quantum number ν to the full interaction. The
correction to the approximated dressed interaction V0 of the
lowest vibrational state by including higher-lying vibrational
states up to state ν ′ can be calculated via

∑ν
ν ′=0 Vν ′/V0, which

is valid for both the single-color and two-color scheme. For
a two-photon detuning δ = 2π × 3 MHz to the lowest vibra-
tional state, we obtain an additional factor of 2 through the
contribution of higher vibrational bound states. The additional
contributions mainly come from other lower vibrational states,
while states with very high vibrational quantum number have
negligible contribution. We also find that the contribution of
higher vibrational states slightly depend on other parameters
such as the trapping frequency. We furthermore want to men-
tion that for small intermediate-state detuning the coupling to
the motional states has to be taken into account.

APPENDIX B: FURTHER SCALING PROPERTIES
OF THE POTENTIAL WELLS

We compute various properties of the potential well mini-
mum, namely, the position of the potential well Re, the shift
U0, the potential-well depth De, and the spacing �ν of the
vibrational levels, and identify their scaling relations with
respect to n∗ (see Fig. 6). With growing n∗ the energy scales
of the potential curve diminish, meaning that asymptotic pair
states become energetically closer. This results in more shal-
low potential wells De and consequently narrower spacing �ν .
We also see the position Re of the potential well increasing
with higher effective principal quantum numbers. We con-
firm previously obtained scaling laws for the position and
depth [20].

We further investigate the dependence of the Franck-
Condon factor f0 on the trapping frequency νtrap for high
principal quantum number n = 75 [see Fig. 6(e)]. We obtain a

)b()a(

)d()c(

0 200 400 600 800 1000
0.4

0.6

0.8

1

(e)

FIG. 6. (a)–(d) Position of the potential well Re (a), shift U0 (b),
potential depth De (c), and spacing �ν (d) vs effective principal
quantum number n∗. The scaling relations of Re and De fit a previous
study [20]. (e) Franck-Condon factor f0 vs trapping frequency νtrap

for fixed principal quantum number n = 65.

scaling law of f0 ∝ ν
±1/4
trap , which is identical to the scaling of

the width of the ground-state wave function. The maximum
implies that both the motional ground state and the lowest
vibrational state wave function are identical. Increasing or
decreasing the trapping frequency narrows or broadens the
ground-state wave function and consequently diminishes the
overlap between the wave functions.

APPENDIX C: DRESSING QUALITY OF COUPLING
SCHEMES AND TYPICAL SCATTERING RATES

Within the conventional one-photon dressing scheme de-
fined through the Rabi coupling � and the detuning � to
the bare Rydberg state, the decoherence rate is defined as
�Ryd = PRydγ , with the Rydberg admixture PRyd = �2/(2�)2

and the scattering rate γ of the bare Rydberg state. With the
previously defined interaction strength we obtain |V |/�Ryd =
�2/(2|�|γ ). For a weak admixture we require �/� 
 1,
which strongly inhibits the dressing quality.

In the macrodimer-dressing scheme, the decoherence rate
is defined through the decoherence rate of both the inter-
mediate state and the molecular state as � = �Ryd + �mol =
PRydγ + Pmolγmol. The admixture of the molecular state reads
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FIG. 7. Single-site-Gutzwiller mean-field calculation of the ex-
tended Bose-Hubbard model (left) and cluster Gutzwiller cal-
culations of the SS regime (right) for comparison within the
grand-canonical ensemble. Using small clusters incorporates addi-
tional quantum fluctuations, which reduce the size of the SS regime.
The difference is insignificant between the clusters of size 3×2 and
4×2, and we assume further increasing the cluster size will not
influence the phase boundaries.

Pmol = �̃2
0/4δ2. The scattering rate of the macrodimer state

can be approximated by twice the scattering rate of the
bare Rydberg state involved in forming the macrodimer [33].
Hence we assume the molecular scattering rate to be approxi-
mately γmol = 2γ .

Within the single-color dressing scheme, the Rydberg ad-
mixture P1C

Ryd = �2/(2�1C)2 and the effective coupling �̃1C
0 =

α f0�
2/�1C yield the same dressing quality as that obtained

from the two-color dressing scheme with corresponding Ryd-
berg admixture P2C

Ryd = (ε�)2/(2�2C)2 and effective coupling

�̃2C
0 = αε f0�

2/�2C, i.e., |V 1C|/�1C = |V 2C|/�2C. This hints
that the dressing quality is independent of the coupling
to the intermediate state and has to be optimized through
the coupling to the molecular state. At the optimum de-
tuning δopt = α f0�, the admixture of the molecular state
and the intermediate state are equal, since Pmol = �̃2

0/4δ2 =
α2 f 2

0 �4/(4δ2�2
1C) = �2/(4�2

1C) ≡ PRyd (analogous calcula-
tion for the two-color coupling scheme).

For the calculation of the typical values of the decoherence
rate �, we assume lifetimes to be around 1/γ ∈ [20, 200] μs
for n ∈ [30, 85] and temperature T ∈ [0, 300] K [35]. For δ =
α f0� = 2π × 3 MHz and �2C = 2π × 50 MHz, we obtain a
bare Rydberg scattering rate around �Ryd ∈ [1, 10] s−1 and a
macrodimer scattering rate around �mol ∈ [2, 15] s−1.

APPENDIX D: CLUSTER SIZES AND THE INFLUENCE
OF QUANTUM FLUCTUATIONS

By treating the system with the CGA, we are able to
include nonlocal quantum fluctuations within the cluster in

FIG. 8. Time evolution boundaries for different ramping times
tramp and numerical thresholds Ith. A larger threshold (Ith = 0.1)
shifts the boundaries previously obtained for a smaller threshold
(Ith = 0.05) to higher dressed interactions V . The difference between
the boundaries does not seem to depend on the hopping rate J but
increases with ramping time tramp.

the computation of the ground state [66]. Bigger cluster sizes
allow for the inclusion of quantum fluctuations at larger length
scales, hereby rendering the method more exact. For the ex-
tended Bose-Hubbard model studied in this work, we compute
the phase boundaries between the Mott-insulating (MI), SF,
DW, and SS regimes for various cluster sizes (see Fig. 7).
We find a marginal shift of the phase boundaries of the SS
regime by going from the single-site to the cluster Gutzwiller
approximation but do not see further changes of the phase
boundaries beyond a certain cluster size.

In this work, we choose a cluster size of 4×4, which is
sufficiently large for including important nonlocal quantum
fluctuations. This cluster size is used for the equilibrium phase
diagram computation and time evolution simulation.

APPENDIX E: ORDER PARAMETERS, MEAN
FIELDS, AND PHASE DISTINCTION

We define the condensate order parameter φi =
|〈|b̂i|〉C| and the occupation number ρi = 〈|b̂†

i b̂i|〉C
at a lattice site i in the cluster with the cluster wave function
|〉C . For lattice sites on the border i ∈ ∂C, we determine the
mean fields ϕi = ∑

j /∈C φ j , with j being nearest neighbor of
site i across the border and ηi = ∑

k /∈C ρk , with k being either
NN or NNN of site i across the border, dependent on the type
of interaction. These values are determined self-consistently
within the iterative procedure.

Suppose we split the system into M unique clusters
of size N . We thus define the mean observables φ̄ =
1/(MN )

∑
C

∑
i∈C φi and ρ̄ = 1/(MN )

∑
C

∑
i∈C ρi. In the

case of an external harmonic confinement, the average fill-
ing is determined in the center of the confinement, where
the potential is quasihomogeneous. We also introduce the
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staggered order parameter φstag, with which we identify
supersolid phases [70,71]. The type of staggered order pa-
rameter depends on the expected density-wave order of
the phase. In the case of NN and NNN interaction, we
expect either checkerboard or stripe modulation. We there-
fore introduce the checkerboard order parameter φCH

stag =
1/(MN )

∑
C | ∑i∈C (−1)x(i)+y(i)φi| and the stripe order param-

eter φSTR
stag = 1/(MN )

∑
C | ∑i∈C (−1)x(i)φi|.

Following the Table I, we identify the various phases of the
equilibrium phase diagrams.

In the time evolution calculation, we characterize the
various simulations through the imbalance I. Since numer-
ical fluctuations can accumulate up to 10−3, we need to
define a numerical threshold Ith such that O(Ith) > 10−3,
with which we determine whether translational symmetry
has been spontaneously broken or not during the evolution.
In Fig. 4(a), we determined the boundaries for the different
ramping times with the threshold set to Ith = 0.05. Although

TABLE I. Classification of quantum phases through order
parameters.

Phase ρ̄ φ̄ φstag

Mott insulator N 0 0
Superfluid R R 0
Density wave Q 0 0
Supersolid R R R

the chosen value is large enough for characterizing transla-
tional symmetry-broken time evolution, the boundaries are
not fully robust to the choice of the threshold (see Fig. 8). A
larger threshold of Ith = 0.1 requires the dressed interaction
to be larger and thus shifts the boundaries to bigger dressed
interaction strengths. The shift is approximately 10(20) Hz
for the ramping time tramp = 100(400) ms and thus does not
drastically alter the boundaries.
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