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We clarify a relation between the Gross-Pitaevskii energy functional for spin-2 spinor Bose-Einstein con-
densates and the Ginzburg-Landau theory for neutron 3P2 superfluidis (spin-triplet P-wave pairing with total
angular momentum two). We then classify all uniform states with nontrivial unbroken symmetries with the help
of geometric invariant theory.
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I. INTRODUCTION

Condensations can have spin and angular momentum de-
grees of freedom. Superfluids 3He having both spin-triplet
(S = 1) and P-wave (L = 1) parings are such an exam-
ple confirmed in nature [1,2]. Among such condensations
total-spin two (J = 2) condensates consist of 2J + 1 = 5
complex degrees of freedom, and the Ginzburg-Landau (GL)
theory for J = 2 condensates was first studied by Mermin
[3] in which possible ground states were classified. Ne-
matic, cyclic, and ferromagnetic phases are typical phases.
In nature, at least two examples of such condensations are
known. One is spin-2 (S = 2) spinor Bose-Einstein condensa-
tions (BECs), which were realized in laboratory experiments.
The other is 3P2 neutron superfluids consisting of neutron
Cooper pairs of spin-triplet and P-wave paring with the
total angular momentum J = 2, relevant for neutron star
cores.

Spin-2 spinor BECs can be theoretically well described
by the Gross-Pitaevskii (GP) equations and GP energy func-
tional; see Ref. [4] as a review. There are typically three
phases, cyclic, nematic, and ferromagnetic phases, and many
interesting physics can be expected in each phase. Experimen-
tally, spin-2 BECs are realized by 87Rb atoms, and the phase is
around the boundary between cyclic phase and ferromagnetic
phase [5–10].

In the cyclic phase, the order parameter manifold (OPM)
parametrized by Nambu-Goldstone (NG) modes associated
with spontaneous symmetry breaking is [U(1) × SO(3)]/T
with a tetrahedral group T [11]. Due to the nontrivial first
homotopy group π1 � Z ×h T ∗ (×h is a product defined in
Ref. [12], and T ∗ is the universal covering group of T ),
1/3 quantized non-Abelian vortices are allowed [13–15]. Two
vortices belonging to noncommutative elements of π1 do
not reconnect in collisions, instead creating a rung vortex

connecting them [14]. 3D skyrmions based on the third ho-
motopy group π3 are allowed in the cyclic phase [16].

The nematic phase consists of three subphases continu-
ously degenerated with each other: uniaxial nematic (UN),
D2 biaxial nematic (D2BN), and D4 biaxial nematic (D4BN)
phases, where Dn is a dihedral group of order n. The OPMs
are U(1) × SO(3)/O(2) � S1 × RP2, U(1) × SO(3)/D2, and
[U(1) × SO(3)]/D4 of dimensions three, four, and four, re-
spectively. These are connected by a parameter of continuous
degeneracy [17], which can be regarded as a quasi-NG mode
associated with symmetry breaking of an enhanced symmetry
[18], and these OPMs are submanifolds of an extended OPM
[S1 × S4]/Z2 parametrized by both the NG and quasi-NG
modes. This continuous degeneracy can be lifted by quantum
corrections [17,18]. In the nematic phase, 1/2 quantized non-
Abelian vortices are allowed [19]. As in the cyclic phase, 3D
skyrmions are also allowed in the BN phase [16].

On the other hand, the neutron 3P2 superfluids are relevant
in the core of neutron stars [20–39]. See Refs. [35,39–43] as
a review from more general perspectives of superfluidity and
superconductivity in neutron stars, including neutron 3P2 su-
perfluids. The existence of 3P2 superfluids was indicated from
astrophysical observations of the rapid cooling of a neutron
star in Cassiopeia A [44–46]. The GL theory as a bosonic
effective theory around the transition point from the normal
phase to the superfluid was established previously [25,26,47–
55]. The ground state in the weak-coupling limit was deter-
mined to be the nematic phase [47]. In the GL free energy up
to the fourth order, there is a continuous degeneracy among
UN, D2BN, and D4BN phases as the case of spin-2 BECs
while a coupling to the magnetic field lifts the degeneracy,
picking up the D4BN state as the ground state [47]. In the
absence of a magnetic field, the next-leading order of the
GL expansion, namely, the sixth order, lifts the degeneracy
picking the UN phase as a possible ground state [47]. In the
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presence of the magnetic field, either UN, D2BN, or D4BN
states can be the ground states depending on the strength of
the magnetic field [51]. However, at this order, the ground
states are not global minima but just local minima because of
the instability caused by the sixth-order terms at large values
of the condensates. Thus, the GL free energy expanded up
to the eighth order is needed to determine the unique ground
states [54]. In the GL theory, bosonic excitations as collective
modes in the 3P2 superfluids were discussed [56–68], which
are relevant for cooling process of neutron stars. Several kinds
of vortices were discussed within the GL theory, such as
integer vortices [25,48,49,51,69], half-quantized non-Abelian
vortices [70], and coreless vortices [71]. Other topological
defects such as domain walls [72] and topological defects on
the boundary (called boojums) of 3P2 superfluids [73] were
also found.

The Bogoliubov-de Gennes (BdG) equation offers a frame-
work beyond the GL theory to deal with fermion degrees of
freedom. The phase diagram in the plane of the temperature
and magnetic field was determined in the BdG equation [74].
A tricritical point connecting first- and second-order phase
transitions between D4 and D2 BN phases was found [74,75].
A topological superfluidity was also found [74], yielding topo-
logically protected Majorana zero modes on the boundary of
3P2 superfluids [74] and an integer vortex core [76] as well as
half-quantized vortex core [77].

Thus far, the so-called quasiclassical approximation lin-
earizing dispersions around the Fermi surface was used to
obtain nematic ground states in both the GL theory and BdG
equation. Without the quasiclassical approximation, novel
ground states were found around the critical temperature in the
presence of strong magnetic fields: a ferromagnetic state and
magnetized BN states (also called broken axisymmetric states
in spin-2 BECs [4]) interpolating the ferromagnetic state and
nematic state [78].

On the other hand, spin-2 BECs are closely related as one
of candidates by astrophysical laboratories for neutron stars
[42,43]. The low-energy theories such as GP theory for spinor
BECs and GL theory for neutron superfluids give an important
viewpoint to connect these systems. However, these two theo-
ries have been explored independently: condensates of spin-2
BECs are usually described by five component condensates
ψ and a 3 × 3 traceless symmetric tensor A are used for
3P2 superfluids in the literature, thus looking different at first
glance. However, since they are both J = 2 condensates, they
can be mapped to each other. The GP and GL energy func-
tionals are quite similar after rewriting them, consequently
admitting similar objects such as half-quantized non-Abelian
vortices, [19] and [70], respectively. Nevertheless they are not
exactly the same. Apparent differences are, for instance, the
following: (1) the GP theory contains up to the fourth order of
the condensates, while the GL theory is basically expansion
of the condensates, thus containing infinitely higher orders;
(2) gradient terms are different: two tensor indices of the
condensates of the spin-2 spinor BECs are both spins which
are internal degrees of freedom, while one of two indices
of the condensates of 3P2 superfluids represents the angular
momentum, which can be contracted with spatial derivatives,
thus admitting more gradient terms; and (3) a magnetic field
interacts with the condensates in different ways. These differ-

ences bring differences beyond topology such as stability and
dynamics.

The purpose of this paper is to clarify a relation be-
tween spin-2 spinor BECs and 3P2 superfluids. To this end,
it turns out to be useful to use the geometric invariant theory
(see, e.g., Refs. [79–81]); since there are five condensations,
the configuration space is C5. The symmetry of the system
is U(1) × SO(3), and then inequivalent configurations can
be expressed by the “moduli space of vacua” C5/[U(1) ×
SO(3)], parametrized by six U(1) × SO(3) invariants. The
symmetry classification of spin-2 spinor BECs have been
investigated in terms of three invariants (among the totally
six invariants) manifestly appearing in the low-energy Hamil-
tonian [4,17,18,82–86]. Here we introduce remaining three
invariants absent in the low-energy Hamiltonian of spin-2
BECs. With a help of all these six invariants, we rewrite
the energy functional of spin-2 BECs in terms of a traceless
symmetric tensor, and that of 3P2 superfluids in terms of five
component condensates. We find that in order to rewrite the
latter in terms of the invariants, all six invariants are needed.
We further classify all possible uniform states with nontriv-
ial unbroken symmetries as candidates of ground states or
metastable states and clarify how they are connected in the
moduli space.

This paper is organized as follows. In Sec. II we introduce
the standard formulations of spin-2 BECs and 3P2 superfluids.
In Sec. III we specify a relation between them, and in Sec. IV
uniform states with nontrivial unbroken symmetries are clas-
sified as candidates of the ground states or metastable states.
Section V describes 3P2 superfluids, and Sec. VI is devoted to
a summary and discussion.

II. FORMULATION

In this section, we introduce the standard formulations of
the GP energy functional of spin-2 BECs in terms of five
component condensates, and the GL theory for 3P2 superfluids
in terms of a 3 × 3 traceless symmetric tensor.

A. Spin-2 spinor Bose-Einstein condensates

The effective low-energy Hamiltonian density h of spin-2
spinor BECs can be written as

h = h0 + hqz + hint,

h0 = h̄2

2mb
j† j,

hqz = q
∑

i, j=x,y,z

Bi(ψ
†ŜiŜ jψ )Bj, (1)

hint =
4∑

S=0

gS

2

S∑
M=−S

2∑
m1,...,m4=−2

CSM
2m1,2m2

CSM
2m3,2m4

× ψ∗
m1

ψ∗
m2

ψm3ψm4 ,

where ψ = (ψ2 ψ1 ψ0 ψ−1 ψ−2)T is the five-component
condensate order parameters of a spin-2 BEC, j = −i∇ψ

is the current density, mb is the mass of bosons, and Ŝi

(i = x, y, z) are 5 × 5 spin-2 matrices. In the quadratic Zee-
man energy part hqz, q = (gμB)2/Ehf is the coefficient of the
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quadratic Zeeman energy under the magnetic field B with the
Landé g-factor g, the Bohr magneton μB, and the hyperfine
energy splitting Ehf . In the interaction part hint, gS is the
coupling constant in the total spin S channel, and CSM

s1m1,s2m2

are the Clebsch-Gordan coefficients.
The interaction part of the Hamiltonian density hint can be

rewritten as

hint = 1

2

(
c0ρ

2 + c1S2 + c2|�20|2
)
,

ρ = ψ†ψ, S = ψ†Ŝψ, (2)

�20 = ψT T̂ ψ =
√

5
2∑

m1,m2=−2

C00
2m1,2m2

ψm1ψm2 ,

where the coupling constants are defined by c0 = (4g2 +
3g4)/7, c1 = (g4 − g2)/7, c2 = (7g0 − 10g2 + 3g4)/35. ρ, S,
and �20 are known as the density, the spin density, and the
singlet-pair amplitude with the time reversal operator T̂ de-
fined as (T̂ ψ )m = (−1)mψ−m ≡ ϕm. Note that ρ2, S2, and
|�20|2 are typical U(1) × SO(3) invariants.

In the absence (presence) of the magnetic field B = 0
(B �= 0), the energy density is invariant under the trans-
formation Gb(ϕ, n, θ )ψ = eiϕe−iŜ·nθψ (Gb(ϕ, B/|B|, θ )ψ =
eiϕe−iŜ·(B/|B|)θψ), giving the symmetry Gb = U(1) × SO(3)
[Gb = U(1) × SO(2)] of the energy density.

B. Ginzburg-Landau free energy for 3P2 neutron superfluids

Here we briefly review the GL theory for 3P2 superfluids
in terms of a traceless symmetric tensor. The original par-
tition function of nonrelativistic two-spinor field ϕ(t, x) =

(ϕ↑ ϕ↓)T for a neutron is

Z =
∫

Dϕ Dϕ∗DA DA∗ exp

(
−

∫
dτ dx L

)
, (3)

where τ ∈ [0, 1/T ] is the imaginary time it with the tem-
perature T . L is the Lagrangian density with the imaginary
time τ as

L = L0 + Lint,

L0 = ϕ∗
(

∂τ + ∇2

2mn
+ μ + μn · B

)
ϕ, (4)

Lint =
∑

i, j=x,y,z

(
A∗abT ab + T ∗abAab + A∗abAab

G

)
,

where B is the external magnetic field, and μn = −h̄γnσ/2
is the magnetic momentum with the Pauli matrices σ and
the neutron gyromagnetic ratio γn in the noninteracting La-
grangian density L0. In the interacting Lagrangian density
Lint , G is the renormalized coupling constant, T ab is the tensor
operator for the repulsive interaction, and Aab is the auxiliary
tenser field having symmetric and traceless form.

Near the transition temperature Tc for neutron 3P2 su-
perfluidity, the original partition function (3) gives the GL
free-energy density f as [54]

f = K0
(

f (0)
202 + f (1)

202

) + α f002 + β0 f004 + γ0 f006

+ δ0 f008 + β2 f022 + γ2 f024

+
∑

4l+2m+n=10

O(∂ l|B|mAn). (5)

Each term in the free-energy density f can be written as

f (0)
202 =

∑
i, j,k=x,y,z

∂iA jk∂iA
∗
jk, f (1)

202 =
∑

i, j,k=x,y,z

(∂iA ji∂kA∗
jk + ∂iA jk∂kA∗

ji ),

f002 = (trA∗A), f004 = (trA∗A)2 − (trA∗2A2),

f006 = −24(trA∗A)3 + 36(trA∗A)(trA∗2A2) − 6|trA∗A2|2 + 10

3
|trA3|2,

f008 = 192(trA∗A)4 − 384(trA∗A)2(trA∗2A2) − 64(trA∗A)|trA3|2 + 144(trA∗2A2)2 + 192(trA∗A)|trA∗A2|2 (6)

− 48|trA2|2(trA∗2A2) + 12|trA2|4 − 96 Re[(trA2)(trA∗2A)2],

f022 = BT (A∗A)B,

f024 = B2[−2(trA∗2)(trA2) − 4(trA∗A)2 + 4(trA∗AA∗A) + 8(trA∗2A2)]

+ 2 Re[(trA2)(BT A∗2B)] − 8(trA∗A)(BT A∗AB) + 4BT [Re(A∗A2A∗) − 2A∗AA∗A − 2A∗2A2]B.

The GL coefficients can be calculated in the weak coupling
limit within the quasiclassical approximation as [54]

K0 = 7ζ (3)N (0)p4
F

240π2m2
nT 2

, α = N (0)p2
F

3
log

T

Tc
,

β0 = 7ζ (3)N (0)p4
F

60π2T 2
, γ0 = 31ζ (5)N (0)p6

F

13 440π4T 4
,

δ0 = 127ζ (7)N (0)p8
F

387 072π6T 6
, β2 = 7ζ (3)N (0)p2

Fγ
2
n

48
(
1 + F a

0

)2
π2T 2

,

γ2 = 31ζ (5)N (0)p4
Fγ

2
n

3840
(
1 + F a

0

)2
π4T 4

, (7)

with the neutron mass mn, the Fermi momentum pF, the state-
number density N (0) = mn pF/(2π )2 at the Fermi surface,

053302-3



MICHIKAZU KOBAYASHI AND MUNETO NITTA PHYSICAL REVIEW A 104, 053302 (2021)

and the Landau parameter F a
0 defined as the modification of

the magnetic momentum |μ| = (γn h̄/2)/(1 + F a
0 ). The GL

free energy without the quasiclassical approximation was also
calculated in Ref. [78].

One can consider the transformation with the spin-orbit
locked symmetry

Ḡn(ϕ, n, θ )A = eiϕR(n, θ )AR(n, θ )T , (8)

where eiϕ denotes the global U (1) phase shift and R(n, θ )
denotes spin-orbit locked rotation with the rotation axes n and
rotation angles θ . The free-energy density is invariant under
the transformation shown in Eq. (8) in the absence of the mag-
netic field B = 0, showing the symmetry Gn � U(1) × SO(3)
for the free energy.

In the presence of the magnetic field B �= 0, the symmetry
Gn is explicitly broken by the background to Gn � U(1) ×
SO(2), where the rotational axis n is fix to be parallel to B.

III. RELATION BETWEEN NEUTRON SUPERFLUIDITY
AND SPIN-2 SPINOR CONDENSATES

In this section, we rewrite the free-energy density f for
neutron 3P2 superfluids and the energy density h for spin-2
spinor condensates in terms of the condensate order parameter
ψ and the tensor field A, respectively, by introducing a map
between them.

A. Spin-2 spinor BECs in terms of a traceless
symmetric tensor A

We begin with considering the spherical harmonic form Yψ

for the condensate wave function ψ in Eq. (2) as

Yψ =
2∑

m=−2

Y2 m(n)ψm, (9)

where Y2m(n) is the rank-2 spherical harmonic functions

Y2 ±2 = 1

4

√
15

2π
(nx ± iny)2,

Y2 ±1 = ∓1

2

√
15

2π
nz(nx ± iny), (10)

Y2 0 = 1

4

√
5

π

(
2n2

z − n2
x − n2

y

)
,

with the unit vector n. The spherical harmonic form Yψ in
Eq. (9) can be rewritten as where A is a 3 × 3 complex matrix

given by

[A]11 =
√

3

2
(ψ2 + ψ−2) − 1√

2
ψ0,

[A]12 = [A]21 =
√

3i

2
(ψ2 − ψ−2),

[A]13 = [A]31 = −
√

3

2
(ψ1 − ψ−1),

[A]22 = −
√

3

2
(ψ2 + ψ−2) − 1√

2
ψ0,

[A]23 = [A]32 = −
√

3i

2
(ψ1 + ψ−1),

[A]33 =
√

2ψ0.

(11)

Because A is the traceless and symmetric having the same
property with the order parameter A in Eq. (5), we can regard
Eq. (11) as a map between the order parameters of neutron 3P2

superfluids and spin-2 spinor condensates. By using Eq. (11),
the density ρ, the spin density S2, and the singlet-pair ampli-
tude �20 can be rewritten as

ρ = 1

3
(trA∗A), �20 = 1

3
(trA2),

S2 = 4

9
(trA∗A)2 + 2

9
|trA2|2 − 4

3
(trA∗2A2).

(12)

The Hamiltonian density h in Eq. (2) for the spinor conden-
sates can be rewritten as

h0 = h̄2

6mb

∑
i, j,k=x,y,z

∂iA jk∂iA
∗
jk,

hqz = −2q

[
BT (A∗A)B − 2

3
(trA∗A)B2

]
(13)

hint = c0 + 4c1

18
(trA∗A)2 − 2c1

3
(trA∗2A2)

+ 2c1 + c2

18
(trA∗2)(trA2)

in terms of the traceless symmetric tensor A. Apart from
apparent absence of higher order terms of A, one can observe
that the gradient term f (1)

202 in Eq. (6) for 3P2 superfluids is
absent in this case. At the fourth order, the last term in hint

is absent in Eq. (6). As for the interaction with the mag-
netic field B, the second term in hqz is absent in Eq. (6) at
this order.
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B. 3P2 superfluids in terms of five component condensates �

On the other hand, the free-energy density f in Eq. (5) for
neutron 3P2 superfluids can be rewritten as

f (0)
202 = 3 j† · j,

f (1)
202 = 4 j† · j − i

2
j† · Ŝ × j − ( j† · Ŝ)(Ŝ · j),

f002 = 3ρ, f004 = 6ρ2 + 3

4
S2 − 3

2
|�20|2,

f006 = −324ρ3 − 81ρS2 + 162ρ|�20|2

+ 15|�30|2 − 27|�30|2,
f008 = 6480ρ4 + 1944ρ2S2 − 5184ρ2|�20|2

− 864ρ|�30|2 + 2592ρ|�30|2 + 81S4

+ 648|�20|4 − 1296�4

f022 = 2ρB2 − 1

2
ψ†ŜBŜBψ,

f024 = ( − 100ρ2 + 3S2 + 16|�20|2
)
B2

+
[

22ρψ†ŜBŜBψ + Re
(
�∗

20ψ
T ŜT

B T̂ ŜBψ
)

+ 5

4
�

†
22ŜBŜB�22 + 1

2
�T

22ŜT
B T̂ ŜB�22

]
,

(14)

with ŜB ≡ Ŝ · B, where �30 and �30 are SO(3)-invariants,
called the singlet trio and the deformed single trio amplitudes,
respectively, defined by

�30 =
√

2

3
tr(A3)

= −
√

35

2

4∑
J=0

J∑
M=−J

2∑
m1,m2,m3=−2

× C00
JM,2m3

CJM
2m1,2m2

ψm1ψm2ψm3 ,

�30 =
√

2

3
tr(A∗A2)

= −
√

35

2

4∑
J=0

J∑
M=−J

2∑
m1,m2,m3=−2

× C00
JM,2m3

CJM
2m1,2m2

ψm1ψm2ϕ
∗
m3

,

(15)

respectively, and �4 is an U(1) × SO(3) invariant, defined by

�4 = Re
[
�20�

∗2
30

] = 2

27
Re{tr(A2)[tr(A∗2A)]2}. (16)

Here �22 and �22 are the quintuplet (spin-2) pair and the
deformed quintuplet pair amplitudes, respectively, defined by

(�22)M =
√

14
2∑

m1,m2=−2

C2M
2m12m2

ψm1ψm2 ,

(17)

(�22)M =
√

14
2∑

m1,m2=−2

C2M
2m12m2

ψm1ϕ
∗
m2

,

where M runs from −2 to 2 for the total spin 2 channel with
the Clebsch-Gordan coefficient C2M

2m12m2
.

IV. CLASSIFYING UNIFORM STATES

In this section, we classify the all possible uniform states
with nontrivial unbroken symmetries for f in Eq. (5) and h
in Eq. (2), which are called strata in the geometric inviariant
theory, as candidates of the ground states or metastable states,
and determine the moduli space to which all the uniform states
belong.

A. The geometric structure

When B = 0, uniform part of the free-energy density
α f002 + β0 f004 + γ0 f006 + δ0 f008 and the Hamiltonian density
hint should include only terms which are invariant under the
U(1) × SO(3) transformation Gn,b. Since A or ψ belongs to
C5 and its real dimensions (or degrees of freedom) are 10,
there should be 10 − dim[U(1) × SO(3)] = 6 independent
U(1) × SO(3) invariants composed of A or ψ . We can choose
them as{

ρ, S2, |�20|2,
|�30|2, |�30|2, �4

}
∈ C5

U(1) × SO(3)
≡ M. (18)

All of other U(1) × SO(3) invariants such as f00n�10 can be
written only with these six terms and are not independent. This
is a U(1) × SO(3) orbit space in which subspaces with the
same unbroken symmetries are called strata.

In the following, we exclude the case of ρ = 0 in which
the U(1) × SO(3) symmetry is fully recovered. Furthermore,
we always fix the value of ρ(> 0) because it is irrelevant to
the symmetry structure of the uniform states. With fixing ρ

and dividing it by U(1) first, we obtain the complex complex
projective space CP4 of the real dimension eight. Dividing it
by SO(3), we have a five-dimensional space{

S2, |�20|2,
|�30|2, |�30|2, �4

}
∈ CP4

SO(3)
� Mρ=1 ⊂ M, (19)

parametrized by the five U(1) × SO(3) invariants instead of
Eq. (18). When the uniform state A in f or ψ in h is
fixed, the symmetries of the system are further broken from
Gn,b down to subgroups Hn,b, where Hn,b are the symmetries
of the uniform state A and ψ Depending on the nontrivial
unbroken symmetries Hn,b, there can be nine (15) candi-
dates for the ground (or metastable) states (or strata) with
B = 0 (B �= 0).

We define S (⊂ Mρ=1) by a space of all uniform states
having the nontrivial unbroken symmetry Hn,b under B = 0
except for the trivial state ρ = 0 where the U(1) × SO(3)
symmetry is fully recovered. In Fig. 1 we show a schematic
image of S , consisting of a gray S2 surface, green, blue,
and purple S1 curves on the S2 surface, a red S1 curve con-
nected to the S2 surface at two points, and a yellow S1 curve
attached to the S2 and the red curve at points. The dimen-
sion for this space is dim[S] = 2. This is a U(1) × SO(3)
orbit space with nontrivial unbroken symmetries which are
not U(1) × SO(3) or 1. The U(1) × SO(3) orbits are fibered
over S to recover S9 of A or ψ with the constraint ρ = 1.
However, because the total dimension of the space for states

053302-5



MICHIKAZU KOBAYASHI AND MUNETO NITTA PHYSICAL REVIEW A 104, 053302 (2021)

FIG. 1. Schematic image for the topological structure of uniform
states having the nontrivial internal symmetries Hn,b under B = 0.

having the nontrivial symmetries is dim{[U(1) × SO(3)] ×
S} = 6, this space cannot cover S9 space for A or ψ hav-
ing nine dimensions. All states having the trivial internal
symmetry Hn,b � 1 constructs the remaining five-dimensional
space (Mρ=1 − S ).

Below we show all of the uniform states having the non-
trivial unbroken symmetries Hn,b one by one.

B. Ferromagnetic states

The ferromagnetic (F) state ψF can be written as

ψ̄F = (1 0 0 0 0)T
,

ĀF =
√

3

2

⎛
⎜⎝

1 i 0

i −1 0

0 0 0

⎞
⎟⎠, (20)

where the overbar denotes the normalization as ψ̄ = ψ/
√

ρ

and Ā = A/
√

(trA∗A). ψ̄F and ĀF are invariant under the
transformation Gn,b(θ, ẑ, θ/2), giving the symmetry Hn,b �
U (1) × Z2 for B = 0 or B ‖ ẑ. Here, θ is the arbitrary real
value. For spinor condensates, the F state can be realized for
c2 > 4c1, c1 < 0, and q = 0 or c2 > 4c1, c1 < |q|/(2ρ|B|2),
and q < 0. The F state appears in a certain region of the
phase diagram in 3P2 superfluids without the quasiclassical
approximation [78].

In terms of invariants, the F state can also be characterized
by S2 = 4ρ2 and |�20|2 = |�30|2 = |�30|2 = �4 = 0, shown
as point F in Fig. 1.

C. Canted ferromagnetic states

The canted ferromagnetic (CF) state ψCF can be written as

ψ̄CF = (0 1 0 0 0)T
,

ĀCF = −
√

3

2

⎛
⎝0 0 1

0 0 i
1 i 0

⎞
⎠.

(21)

ψ̄CF and ĀCF are invariant under the transformation
Gn,b(θ, ẑ, θ ), giving the symmetry Hn,b � U (1) for B = 0 or
B ‖ ẑ.

In terms of invariants, the CF state can also be charac-
terized by S2 = ρ2 and |�20|2 = |�30|2 = |�30|2 = �4 = 0,
which is shown as point CF in Fig. 1.

D. Nematic states

The nematic (N) states ψN can be written as

ψ̄N = 1√
2

(
cos ζ 0

√
2 sin ζ 0 cos ζ

)T
,

ĀN =
√

2

⎛
⎝cos λ+

6 (ζ ) 0 0
0 − cos λ−

6 (ζ ) 0
0 0 sin ζ

⎞
⎠,

λ±
n (x) ≡ x ± π

n
, (22)

Here ζ is the arbitrary real value. Depending on unbroken
symmetries, the nematic states can be further classified into
the D2 biaxial nematic (D2BN), D4 biaxial nematic (D4BN),
and uniaxial nematic (UN) states, as explained below. The
nematic states are ground-state 3P2 superfluids in the weak
coupling limit, within the quasiclassical approximation. The
nematic states are shown as the blue S1 curve in Fig. 1. The
extended OPM space (S1 × S4)/Z2 is fibered over this blue S1

curve with the fiber U(1) × SO(3)/D2 [17]. The fiber shrinks
at the two points corresponding to the UN and D4BN states.

1. D2 biaxial nematic states

For generic ζ , the nematic state is in the D2BN states,
ψ̄D2BN and ĀD2BN, which are invariant under the transfor-
mations Gn,b(0, x̂, π ) and Gn,b(0, ẑ, π ), giving the symmetry
Hn,b � D2 and Hn,b � Z2 for B = 0 and B ‖ ẑ, respectively.
For spinor condensates, the D2BN state can be realized for
c2 < 0, c2 < 4c1, and q = 0.

In terms of invariants, the D2BN states can also be
characterized by S2 = 0, |�20|2 = ρ2 and 0 � |�30|2/ρ3 =
|�30|2/ρ3 = �4/ρ

4 � 1, which are shown as the blue curve
(except for the two points labeled by D4BN and UN) in Fig. 1.

2. Uniaxial nematic states

One specific case is the uniaxial nematic (UN) state. The
UN state ψUN is the specific state of the nematic state with
ζ = π/2 in Eq. (22) as

ψ̄UN = (0 0 1 0 0)T
,

ĀUN = 1√
2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠. (23)

ψ̄UN and ĀUN are invariant under the transformations
Gn,b(0, x̂, π ) and Gn,b(0, ẑ, θ ), giving the symmetry Hn,b �
D∞ � O(2), Hn,b � U (1), and Hn,b � Z2 for B = 0, B ‖ ẑ,
and B ‖ x̂, respectively. For spinor condensates, the VUN state
can be realized for c2 � 4c1, c2 < 2q/(ρ|B|2), and q > 0.

In terms of invariants, the UN state can also be char-
acterized by S2 = 0, |�20|2/ρ2 = |�30|2/ρ3 = |�30|2/ρ3 =
�4/ρ

4 = 1, which is shown as point UN in Fig. 1.
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3. D4 biaxial nematic states

The other specific case is the D4 biaxial nematic (D4BN)
state, which is also called the square nematic state. The D4BN
state ψD4BN is the specific state of the nematic states with ζ =
0 in Eq. (22) as

ψ̄D4BN = 1√
2

(1 0 0 0 1)T
,

ĀD4BN =
√

3

2

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠. (24)

ψ̄D4BN and ĀD4BN are invariant under the transformations
Gn,b(0, x̂, π ), Gn,b(π, ẑ, π/2), and Gn,b(π, (x̂ + ŷ)/

√
2, π ),

giving the symmetry Hn,b � D4, Hn,b � Z4, Hn,b � Z2, and
Hn,b � Z2 for B = 0, B ‖ ẑ, B ‖ x̂, and B ‖ (x̂ + ŷ), respec-
tively. For spinor condensates, the D4BN state can be realized
for c2 < 4c1, c2 < 2|q|/(ρ|B|2), and q < 0.

In terms of invariants, the D4BN state can also be charac-
terized by |�20|2 = ρ2 and S2 = |�30|2 = |�30|2 = �4 = 0,
which is shown as point D4BN in Fig. 1.

E. Cyclic state

The cyclic (C) state ψC is written as

ψ̄C = 1√
3

(1 0 0
√

2 0T ),

ĀC = 1

2

⎛
⎝ 1 i

√
2

i −1 −√
2i√

2 −√
2i 0

⎞
⎠. (25)

ψ̄C and ĀC are invariant under the transformations
Gn,b(0, (

√
2x̂ + ẑ)/

√
3, π ) and Gn,b(−2π/3, ẑ, 2π/3), giving

the symmetry Hn,b � T , Hn,b � Z3, and Hn,b � Z2 for B = 0,
B ‖ ẑ, and B ‖ (

√
2x̂ + ẑ), respectively.

The other well-known form of the C state is

Gb
Cψ̄C = 1

2
(i 0

√
2 0 i)T ,

Gn
CĀC =

⎛
⎝e2iπ/3 0 0

0 e−2iπ/3 0
0 0 1

⎞
⎠, (26)

where Gn,b
C ≡ Gn,b(0, ẑ,−π/4)Gn,b(0, ŷ,− cos−1(1/

√
3)). In

this form, Gb
Cψ̄HC and Gn

CĀHC are invariant under the
transformations Gn,b(−2π/3, (x̂ + ŷ + ẑ)/

√
3, 2π/3), and

Gn,b(0, ẑ, π ), giving the symmetry Hn,b � Z2 and Hn,b � Z3

for B ‖ ẑ and B ‖ (x̂ + ŷ + ẑ), respectively. For spinor con-
densates, the cyclic state can be realized for c1 > 0, c2 > 0,
and q = 0.

In terms of invariants, the C state can also be characterized
by |�30|2 = 2ρ3 and S2 = |�20|2 = |�30|2 = �4 = 0, which
is shown as point C in Fig. 1.

F. Canted cyclic states

The canted cyclic (CC) states ψCC are intermediate states
interpolating C, UN, and D4BN states written as

ψ̄CC = 1√
2

(i cos η 0
√

2 sin η 0 i cos η)T ,

ĀCC =
√

2

⎛
⎝ση 0 0

0 σ ∗
η 0

0 0 sin η

⎞
⎠,

ση = sin η cos(2π/3) + i cos η sin(2π/3). (27)

The C, UN, and D4BN states are the specific states with
η = π/4, π/2, and 0, respectively. ψ̄CC and ĀCC are invari-
ant under the transformations Gn,b(0, x̂, π ) and Gn,b(0, ẑ, π ),
giving the symmetry Hn,b � D2 and Hn,b � Z2 for B = 0 and
B ‖ ẑ. For spinor condensates, the CC state can be realized for
c2 < 4c1, c1 > |q|/(2ρ|B|2), c2 > 2|q|/(ρ|B|2), and q �= 0.

In terms of the invariants, the CC state can also be charac-
terized by S2 = 0, 0 � |�20|2 � ρ2, and

|�30|2 = 2ρ3 − 3|�20|4
2ρ

− |�20|6
2ρ3

,

|�30|2 = |�20|4
2ρ

− |�20|6
2ρ3

, �4 = −|�20|6
2ρ3

+ |�20|8
2ρ5

,

(28)

which is shown as the green circle in Fig. 1.

G. Reduced ferromagnetic states

The reduced ferromagnetic (RF) states ψRF are the inter-
mediate states interpolating F and D4BN states:

ψ̄RF = (cos ν 0 0 0 sin ν)T
,

ĀRF =
√

6

2

⎛
⎝ sin λ+

4 (ν) i sin λ−
4 (ν) 0

i sin λ−
4 (ν) − sin λ+

4 (ν) 0
0 0 0

⎞
⎠. (29)

The F and D4BN states are the specific states with ν = 0 and
π/4, respectively. ψ̄RF and ĀRF are invariant under the trans-
formation Gn,b(π, ẑ, π/2), giving the symmetry Hn,b � Z4 for
B = 0 or B ‖ ẑ.

In terms of the invariants, the RF states can also be
characterized by 0 � S2 = 4(ρ2 − |�20|2) � 4ρ2, |�30|2 =
|�30|2 = �4 = 0, which are shown as the green curve
in Fig. 1.

H. Reduced canted ferromagnetic state

The reduced canted ferromagnetic (RCF) states ψRCF are
intermediate states interpolating the CF and D4BN states:

ψ̄RCF = (0 cos ξ 0 sin ξ 0)T
,

ĀRCF = −
√

6

2

⎛
⎝ 0 0 sin λ−

4 (ξ )
0 0 i sin λ+

4 (ξ )
sin λ−

4 (ξ ) i sin λ+
4 (ξ ) 0

⎞
⎠. (30)

The F and D4BN states are the specific states with ξ = 0
and π/4, respectively. ψ̄RCF and ĀRCF are invariant under the
transformation Gn,b(π, ẑ, π ), giving the symmetry Hn,b � Z2

for B = 0 or B ‖ ẑ.
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In terms of the invariants, the RF states can also be char-
acterized by 0 � S2 = ρ2 − |�20|2 � ρ2, |�30|2 = |�30|2 =
�4 = 0, shown as the green curve in Fig. 1.

I. Mixed state

The mixed (M) states ψM are intermediate states interpo-
lating the C, F, and CF states, which can be written as

ψ̄M = (cos φ 0 0 sin φ 0)T
,

ĀM =
√

3

2

⎛
⎜⎝

cos φ i cos φ sin φ

i cos φ − cos φ −i sin φ

sin φ −i sin φ 0

⎞
⎟⎠. (31)

The C, F, and CF states are the specific states with φ =
cos−1(1/

√
3), φ = 0, and φ = π/2, respectively. ψ̄M and ĀM

are invariant under the transformation Gn,b(−2π/3, ẑ, 2π/3),
giving the symmetry Hn,b � Z3 for B = 0 or B ‖ ẑ. For spinor
condensates, the M state can be realized for c2 > 4c1, c1 >

|q|/(2ρ|B|2), c2 > 2|q|/(ρ|B|2), and q < 0.
In terms of the invariants, the M states can also be charac-

terized by −ρ2 � (S2)1/2 � 4ρ2, |�20|2 = |�30|2 = 0, and

|�30|2 = 4ρ3 − 3ρS2 + (S2)3/2

2
, (32)

which are shown as the green curve in Fig. 1.

J. Broken axisymmetric states

The broken axisymmetric (BA) states are intermediate
states interpolating the RF and CC states, which can be
written as

ψ̄BA = (a + b 0 c 0 a − b)T
,

ĀBA = 1√
2

⎛
⎜⎝

√
6a − c

√
6ib 0

√
6ib −√

6a − c 0

0 0 2c

⎞
⎟⎠. (33)

Here a, b, and c are arbitrary real values satisfying 1 =
2(a2 + b2) + c2. RF and CC states are the specific states with
c = 0 and a = 0, respectively. ψ̄BA and ĀBA are invariant
under the transformation or Gn,b(0, ẑ, π ), giving the symmetry
Hn,b � Z2 for B = 0 or B ‖ ẑ. For spinor condensates, the BA
state can be realized for c2 � 4c1, q > 0, and B ‖ x̂ where
the symmetry becomes trivial Hn,b � 1. The BA states (also
called magnetized BN states in Ref. [78]) appear in a certain
region of the phase diagram for B ‖ ẑ in 3P2 superfluids with-
out the quasiclassical approximation [78].

In terms of the invariants, the BA states can also be char-
acterized by 0 � S2 � 4ρ2, −(ρ2 − S2/4) � (|�20|2)1/2 �
ρ2 − S2/4, and

|�30|2 = χρ2
{
4ρ2 − S2 + 6(|�20|2)1/2ρ + 2|�20|2

}2

32
{
ρ + (|�20|2)1/2

}3 ,

|�30|2 = χρ2
{
S2 + 2(|�20|2)1/2ρ + 2|�20|2

}2

32
{
ρ + (|�20|2)1/2

}3 ,

c1 ρ

c2 ρ

c2 = 4c1

2Q

Q/2

BA

C

UN

(a)

c1 ρ

c2 ρ

c2 = 4c1

2|Q|

|Q|/2

F

C

BN

M(b)

c1 ρ

c2 ρ

c2 = 4c1

F

C

N

(c)

0.8 0.9 1.0
T/Tc

0.00

0.05

0.10

B
γ

n

(1
+

F
a 0
)T

c

D2 BN

D4 BN

UN

(d)

FIG. 2. Phase diagram for the spinor condensates (a)–(c) and the
neutron 3P2 superfluid (d). In panels (a), (b), and (c), the coefficient
of the quadratic Zeeman energy Q ≡ q|B|2 is positive, negative, and
zero, respectively. In panel (a), the boundary between the BA and
UN states can be numerically determined. In panel (d), the UN (B =
0) and D2BN (B > 0) states appear only at T � 0.796. The critical
magnetic field between D2BN and D4BN states takes the maximal
B = 6.05 × 10−3(1 + F a

0 )Tc/γn at T = 0.860Tc.

�4 = (|�20|2)1/2|�30|2,

χ ≡ 4 − S2

ρ2
− 4|�20|2

ρ2
, (34)

which are shown as the gray surface in Fig. 1.

K. Phase diagram and topological structure
for symmetric uniform state

In Fig. 2 we show phase diagrams for the spinor conden-
sates for the Hamiltonian density h in Eq. (1) and neutron
superfluid for the free-energy density f in Eq. (5). For spinor
condensates, the F, M, C, and BN (BA, C, and UN) states
appear for q > 0 (q < 0). In the case of q = 0, the F, C, and
N states appear, and all states (D2BN, D4BN, and UN states)
in the N states are degenerated.

For neutron 3P2 superfluids, the UN, D2BN, and D4BN
states are dominant within the present framework, which cor-
responds to the region with positive c1 and negative c2 for
the spinor condensates. At high temperatures, the D4BN and
D2BN (UN) states appear for B �= 0 (B = 0). At low temper-
atures, the only D4BN state appears, which contradicts the
result obtained by the BdG analysis [74] giving the D4BN,
D2BN, and UN states at any temperature. This contradiction
originates from the fact that the GL expansion is valid only
around the critical temperature, and this discrepancy may be
cured by including higher order terms into the free-energy
density f in Eq. (5), which neglects terms higher than the
eighth order. Besides these three states, the existences of the

053302-8



SYMMETRY CLASSIFICATION OF UNIFORM STATES IN … PHYSICAL REVIEW A 104, 053302 (2021)

TABLE I. U(1) × SO(3) invariant terms S2, |�20|2, |�30|2, |�30|2, and �4, and unbroken symmetry Hn,b for uniform ground states. Here
F (x) defined as the expansion with cos(2x): F (n)

a0,···an
(x) ≡ ∑n

k=0 ak cosk (2x) and F±
ab ≡ (1 − 8a2 ± 4b2 )2.

State S2/ρ2 |�20|2/ρ2 |�30|2/ρ3 |�30|2/ρ3 �4/ρ
4 Hn,b

F 4 0 0 0 0 [U (1) × Z2]B=0, B‖ẑ

CF 1 0 0 0 0 [U (1)]B=0, B‖ẑ

D2BN 0 1 sin2(3ζ ) sin2(3ζ ) sin2(3ζ ) [D2]B=0, [Z2]B‖ẑ

UN 0 1 1 1 1 [D∞]B=0, [U (1)]B‖ẑ, [Z2]B‖x̂

D4BN 0 1 0 0 0 [D4]B=0, [Z4]B‖ẑ, [Z2]B‖x̂, B‖(x̂+ŷ)

C 0 0 2 0 0 [T ]B=0, [Z3]B‖ẑ, [Z2]B‖(
√

2x̂+ẑ)

CC 0 cos2(2η) 1
2 F (3)

4,0,−3,−1(η) 1
2 F (3)

0,0,1,−1(η) 1
2 F (4)

0,0,0,−1,1(η) [D2]B=0, [Z2]B‖ẑ

RF 4 cos2(2ν ) sin2(2ν ) 0 0 0 [Z4]B=0, B‖ẑ

RCF cos2(2ξ ) sin2(2ξ ) 0 0 0 [Z2]B=0, B‖ẑ

M 1
4 F (2)

1,6,9(φ) 0 27
16 F (3)

1,−1,−1,1(φ) 0 0 [Z3]B=0, B‖ẑ

BA 64a2b2 (1 − 4b2)2 F+
ab c2 F−

ab c2 (1 − 4b2)F−
ab c2 [Z2]B=0, B‖ẑ

F and BA states [4] are also predicted [78] without the quasi-
classical approximation that we use to obtain the free-energy
density f in Eq. (5) from the Lagrangian L in Eq. (4)

Now let us go back to Fig. 1 in which we have shown all
the states having the nontrivial symmetry Hn,b under B = 0
explained above. The BA states for 2a2 + 2b2 + c2 = 1 are
represented by the gray S2 surface, and the D2BN, CC, RF
states are denoted by the green, blue, and purple S1 curves
parametrized by ζ , η, and ν, respectively. The S2 surface
can also be constructed with the U(1) × SO(3)-invariants
{S2, |�20|2, |�30|2, |�30|2, �4} under the constraints shown in
Eq. (34). The RCF state is represented by the S1 curves for
ξ out of the S2 surface for the BN state except for the point
corresponding to D4BN states. The M state is represented by
the S1 curves for φ out of the S2 surface for the BN state except
for two points corresponding to C and F states. The F, UN, and
D4BN states correspond to the points on the S2 surface for the
BN state, while the CF state corresponds to the point out of
the S2 surface for the BN state.

V. 3P2 NEUTRON SUPERFLUIDS

When B = 0, uniform part of the free-energy density
α f002 + β0 f004 + γ0 f006 + δ0 f008 and the Hamiltonian density
hint includes only terms which are invariant under the U(1) ×
SO(3) transformation Gn,b. Because the internal degrees of
freedom for A or ψ are nine after fixing ρ, there are five
independent U(1) × SO(3) invariant terms. We fix them as
S2, |�20|2, |�30|2, |�30|2, and �4. In Table I we summarize
them and unbroken symmetries in the free-energy density f
for each uniform ground state. In Table II we also summarize
components S2, |�20|2, |�30|2, and |�30|2 and components
in the free-energy density f for each uniform ground state,
respectively. For the BA state, some results are too long to be
shown in the table, and we write them here:

f004

ρ2
= 9

2
+ 12(1 + 4a2 − 2b2)b2, (35)

f006

ρ3
= − 6[29 − 4a2(3 − 8a2)2 + 156b2

+ 48a2(31 − 24a2)b2 − 96(3 + 10a2)b4 − 64b6],
(36)

f008

ρ4
= 216[11 − 4a2(3 − 8a2)2 + 84b2

+ 48a2(21 + 16a2 − 64a4)b2

− 48(3 − 28a2 + 96a4)b4 − 64(1 + 60a2)b6]. (37)

We further show

f022

ρB2
= 2c2, (38)

f024

ρ2B2
= −12(6a2 + 10b2 + 7c2)c2, (39)

for B ‖ ẑ, and

f022

ρB2
= 3

2
− (

√
6a + c)c, (40)

f024

ρ2B2
= − 6[2 + 22a2 + 18b2 − 8(a2 − b2)(2a2 − b2)

−
√

6ac(8a2 − 4b2 + 5)], (41)

for B ‖ x̂.
In Table II we also highlight the lowest values for each

terms. At the temperature close to the superfluid transition
temperature Tc, the N state (D2BN, UN, and D4BN states)
has the lowest value of f004 = (9/2)ρ2, and the UN (D4BN)
state has the lower value of f006 = −174ρ3 ( f008 = 1944ρ4)
than other nematic states. Under the magnetic field, the D4BN
(UN) state with B ‖ ẑ has a lower value of f022 = 0 ( f024 =
−84ρ2B2) than other nematic states. Actually, UN, D4BN,
and D2BN states are predicted to be realized within the GL
expansion in Eq. (5) [54].

VI. SUMMARY AND DISCUSSION

In this paper, we have discussed a relationship between the
neutron 3P2 superfluids and spin-2 spinor BECs, the formalism
of which is usually written with the 3 × 3 traceless symmetric
tensor A and the five-component condensate wave functions
ψ , respectively. Because A and ψ have the same internal
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TABLE II. Components of free-energy density f for uniform ground states. The lowest values for each term are highlighted with underlining.

State f004/ρ
2 f006/ρ

3 f008/ρ
4 f022/(ρB2) f024/(ρ2B2)

[F]B‖ẑ 9 −648 15 552 0 0
[CF]B‖ẑ

27
4 −405 8505 3

2 −45

[UN]B‖ẑ
9
2 −174 2376 2 −84

[D4BN]B‖ẑ
9
2 −162 1944 0 0

[D4BN]B‖x̂, B‖(x̂+ŷ)
9
2 −162 1944 3/2 −54

[D2BN]B‖ẑ
9
2 −6F (3)

28,3,0,−4(ζ ) 216F (3)
10,3,0,−4(ζ ) F (1)

1,−1(ζ ) −6F (2)
5,−7,2(ζ )

[C]B‖ẑ, B‖(
√

2x̂+ẑ) 6 −294 4752 1 −36

[CC]B‖ẑ
3
2 F (2)

4,0,−1(η) −6F (3)
49,0,−21,−1(η) 216F (3)

22,0,−12,−1(η) F (1)
1,−1(η) −6F (2)

6,−7,1(η)

[RF]B‖ẑ
9
2 F (2)

1,0,1(ν ) −162F (2)
1,0,3(ν ) 1944F (4)

1,0,6,0,1(ν ) 0 0

[RCF]B‖ẑ
9
4 F (2)

2,0,1(ξ ) −81F (2)
2,0,3(ξ ) 243F (4)

8,0,24,0,3(ξ ) 3/2 −9F (2)
5,0,−1(ξ )

[M]B‖ẑ
9

16 F (2)
11,2,3(φ) − 81

16 F (3)
63,29,41,−5(φ) 243

16 F (4)
363,292,402,−60,27(φ) 3

4 F (1)
1,−1(φ) − 9

4 F (2)
13,−10,−3(φ)

[BA]B‖ẑ Eq. (35) Eq. (36) Eq. (37) Eq. (38) Eq. (39)

[BA]B‖x̂ Eq. (35) Eq. (36) Eq. (37) Eq. (40) Eq. (41)

degrees of freedom, they are transformed to each other, and
we have shown the correspondence between the free-energy
density f for the neutron superfluids and the low-energy den-
sity h for spin-2 spinor BECs in the both languages of A and
ψ . We also have listed 15 uniform states having the internal
symmetry as the candidate of the possible ground states for
neutron 3P2 superfluids.

In this paper, we have started from the low-energy func-
tional h in Eq. (1) and the GL free-energy density f in Eq. (5),
which are effective theory restricted at T = 0 and T ≈ Tc,
respectively. We need to use a different framework beyond
these temperature regions. For example, we have to use the
BdG theory [74] for neutron 3P2 superfluidity near T = 0 (see
Ref. [34] for 3P2-3F2 pairing). Once we find new candidates for
stable states, our results will immediately give information for
such new states via Table I.

We hope that our present work will lead a deeper un-
derstanding of neutron 3P2 superfluids, spin-2 spinor BECs,
their relationship, and a systematic way to discuss possible
ground states. Although not all states appear as the ground
states or metastable states in either spin-2 spinor BEC or
3P2 superfluids, some may appear, for instance, as metastable
states at spin-2 spinor BECs with higher order interaction

terms such as three- and four-body scattering, or higher order
expansions of the GL theory for the 3P2 superfluids. Another
application of our present work is local structures in a vor-
tex core at which the different symmetric state may appear
from that surrounding the vortex in the bulk. We can discuss
which state is filled at the vortex core by calculating S2,
|�20|2, |�30|2, |�30|2, and so on. We will report on this topic
elsewhere.

In Ref. [55] a mixture of a 3P2 neturon superfluid and a 1S0

neutron superfluid, which may be realized in the intermediate
region of neutron star cores, was discussed. This situation
corresponds to a mixture of a spin-2 spinor BEC and a
scalar BEC.
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