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Evolution of static and dynamical density correlations of one-dimensional soft-core bosons
from the Tonks-Girardeau limit to a clustering fluid
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Repulsive soft-core atomic systems may undergo clustering if their density is high enough that core overlap
is unavoidable. In one-dimensional bosonic quantum systems, it has been shown that this instability triggers a
transition from a Luttinger liquid to various cluster Luttinger liquids. Here, we focus on the Luttinger liquid
regime and theoretically study the evolution of key observables related to density fluctuations, which manifest a
striking dependence on density. We tune the interaction so that the low-density regime corresponds to a Tonks-
Girardeau gas and show that as the density is increased the system departs more and more from Tonks-Girardeau
behavior, displaying a much larger compressibility as well as rotonic excitations that finally drive the clustering
transition. We compare various theoretical approaches, which are accurate in different regimes. Using quantum
Monte Carlo methods and analytic continuation as a benchmark, we investigate the regime of validity of the
mean-field Bogoliubov and the real-time multiconfiguration time-dependent Hartree-Fock approaches. Part of
the behavior that we describe should be observable in ultracold Rydberg-dressed gases, provided that system
losses are prevented.
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I. INTRODUCTION

Particles interacting with repulsive soft-core potentials,
which are flat at short distances, may manifest clustering
when externally forced to relatively high densities, since the
cores are bound to overlap and a potential energy gain can
be obtained by forming groups of overlapping particles that
repel each other. In the context of classical physics, a sufficient
criterion was recognized for clustering, involving the Fourier
transform of the potential [1–4].

While in classical mechanics clustering favored by the
potential competes with entropic effects at finite temperature,
in the quantum regime one may expect an interesting phase
diagram, even at zero temperature, due to the role of zero-
point motion. In fact, supersolid behavior, characterized by the
coexistence of crystal and superfluid order, has been investi-
gated for soft-core bosons [5–10], and unconventional states
have been predicted for soft-core fermions [11–13]. In one-
dimensional (1D) systems, where the paradigm for quantum
liquids is Luttinger liquid (LL) theory [14,15], tendency to
clustering manifests as a transition to cluster Luttinger liquids
(CLL), on a lattice [16,17] and in the continuum [18].

In the context of ultracold gases, soft-core potentials are
relevant when considering Rydberg-dressed gases [5,19,20],
where single atoms are in a coherent superposition of their
ground state and a highly excited Rydberg state [21] obtained
with off-resonant Rabi coupling. The resulting effective inter-
action between two Rydberg-dressed atoms is a soft shoulder
potential, with a flat repulsive core of size Rc, related to the
highly excited orbital, and a repulsive van der Waals tail.

Experiments are progressively increasing the coherence time
of such systems [22–24], although they are mostly focusing
on fast out-of-equilibrium dynamics simulating Ising models
[25,26], since equilibration is still a delicate issue due to de-
coherence to other Rydberg states. Although experimentally
challenging, the regime in which soft-core potentials induce
clustering is quite intriguing from a theoretical point of view.
Clustering effects in zero-temperature quantum systems are
best investigated by considering the statistics of density fluctu-
ations, which characterize the dynamical S(q, ω) and the static
S(q) structure factors. In particular, the peaks in S(q, ω) iden-
tify well-defined collective density fluctuation modes ω(q),
which are phonons at small momenta and may display sig-
nificant structure at higher momenta. In [18], the dynamical
structure factor of a soft-core 1D bosonic system without dis-
sipation was studied across the LL-to-CLL transition, driven
by increasing interaction strength at a fixed specific density.
The LL phase, far from being structureless, was found to
manifest a roton excitation, in qualitative accordance with
mean-field theory, similarly to the corresponding phases in
higher dimensions [5,27]. A secondary roton, accessible only
with a fully ab initio quantum Monte Carlo (QMC) simula-
tion, was argued to be the hallmark of an emergent quantum
Ising model. For the same potential, in the weakly interacting
but high-density regime, Ref. [28] showed that mean-field
theory is quantitatively consistent with a variational approach
based on a Gaussian expansion of the single-particle wave
function around equally spaced virtual cluster positions.

In the opposite regime of very low density, soft potentials
are equivalent to the contact potential and thus map to the
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Lieb-Liniger model [29]. In particular, by suitably tuning the
interaction strength, Ref. [30] showed that a Tonks-Girardeau
(TG) regime [31,32] of impenetrable bosons, with its typical
particle-hole flat dynamical structure factor, was accessible. In
this article we explore the intriguing scenario of the evolution
from a Tonks-Girardeau to a rotonic regime, and finally to a
cluster phase, by only changing the density and keeping the
interaction strength fixed. This is at variance with the pure
Lieb-Liniger model in the hard-core limit, where the system
remains in the TG regime whatever the density.

For the soft shoulder potential, we characterize this evolu-
tion by employing QMC methods complemented by analytic
continuation of imaginary-time correlation functions and an-
alyze the limits of validity of approaches such as mean-field
Bogoliubov theory, Feynman approximation, and the multi-
configuration time-dependent Hartree method (MCTDH).

This article is meant as an extension of the results presented
in Ref. [18], expanding on the analysis of the homogeneous
phase, at a relatively smaller interaction than those which were
the focus of Ref. [18]. Given the large span of densities that we
consider, we want to determine in what regime it is sufficient
to use the computationally lighter Bogoliubov approximation
and where beyond-mean-field effects are significant in various
observables, using QMC methods as a benchmark. We also
report on results from MCTDH as an alternative method to
directly tackle the real-time dynamics of this system.

In Sec. II we describe the Hamiltonian, the criterion for
clustering, and the theoretical methods that we employ to
tackle the problem; in Sec. III we describe the results for the
relevant observables, and in particular the spectrum of density
fluctuations; in Sec. IV we draw conclusions.

II. MODEL AND METHODS

We consider a 1D system of N bosons interacting with the
following Hamiltonian in configuration space,

H = − h̄2

2m

N∑
i

�xi +
∑
i< j

V0

r6
i j + R6

c

, (1)

where m is the mass, xi is the coordinate of particle i, and
ri j = |xi − x j | the distance of particles i and j; V0 and Rc

are the strength and the radius of the soft-core interaction
potential, respectively. This is usually referred to as shoulder
potential and has been considered as an effective model for
Rydberg-dressed gases [5,19,20] at density smaller than or
of the order of 1/Rc. We consider no hard-core part in the
shoulder potential, assuming that realistic quasi-1D configu-
rations effectively smooth it out, analogously to dilute gases
modeled with the Lieb-Liniger Hamiltonian [33,34]. While
we also theoretically study densities much higher than 1/Rc,
experimental applicability of our results in this regime is at
the moment prevented due to increased losses, which can
partially be reduced by using an underlying optical lattice. In
the following we use Rc as the unit for length, 1/Rc for wave
vectors, Ec = h̄2/mR2

c for energy and h̄/Ec for time, leading
to the dimensionless interaction strength U = V0/(R6

cEc) and
density ρ = nRc.

The Fourier transform of the potential [35]

Ṽ (q) ≡
∫

V (x)eiqxdx

= Uπ

3
e− |q|

2

[
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( |q|√3

2

)
+ e− |q|

2 +
√

3 sin

( |q|√3

2

)]
(2)

features a global minimum Ṽ (qc) < 0 at qc � 4.3, corre-
sponding to a typical length bc = 2π/qc � 1.46. It has been
shown that classically, even in the case of a completely repul-
sive potential, such a feature favors the formation of clusters
at a mutual distance ∼bc [1,2]. For the 1D system consid-
ered in the present case, an ordered phase is prevented by
thermal fluctuations at all temperatures T > 0 [36,37], even
though classical simulations observed and characterized dis-
tinct signatures of clustering tendency [38]. When considering
quantum effects at zero temperature, the cluster phase can be
observed for large U or high density, and it manifests itself as
a cluster Luttinger liquid [16–18].

In the dilute limit ρ � 1, the macroscopic properties of
the system depend only on the scattering length a1D. This
universality regime was verified in Ref. [30] by showing that
static and dynamical observables of the model (1) are com-
patible with those of the Lieb-Liniger [29,39] and hard-rods
[40] models, depending on whether the strength is smaller or,
respectively, higher than U = UTG � 1.09. This interaction
corresponds to a1D ∼ 0, so that at very low density the system
behaves as a TG gas.

Here we fix the interaction at U = UTG and increase the
density from the Tonks-Girardeau gas to a relatively more
compressible, but strongly correlated liquid, until we observe
cluster formation. This behavior, different from the Lieb-
Liniger model, stems from the shape of the potential, implying
a role of both na1D and nRc. Using different theoretical ap-
proaches, we calculate the zero-temperature values of the en-
ergy per particle E/N , the pair distribution function g2(r), the
dynamical S(q, ω) = ∫

dteiωt 〈eitĤ ρ̂qe−it Ĥ ρ̂−q〉/(2πN ), and
the static S(q) = 〈ρ̂qρ̂−q〉/N structure factors, where ρq is the
density operator in momentum space and 〈· · · 〉 stands for the
ground-state expectation value.

A. Bogoliubov approach

In the standard mean-field approach to a bosonic (quasi)
condensate, the bosonic quantum field is replaced by a classi-
cal field �(x, t ) and the Gross-Pitaevskii equation is obtained
[5]:

i
∂�(x, t )

∂t
=

(
−�x

2
+

∫
V (x − x′)|�(x′, t )|2dx′

)
�(x, t ).

(3)
By assuming a small perturbation with respect to a uniform
condensate,

�(x, t ) = e−iμt (
√

ρ + ue−i[εB (q)t−qx] − v∗ei[εB (q)t−qx] ), (4)

where |u| and |v| are much smaller than
√

ρ and μ = ρgB ≡
ρṼ (0) = 2πρU/3 is the ground-state chemical potential, one
obtains the Bogoliubov–de Gennes equations [27] that admit
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the analytical solution for the energy of excitations:

εB(q) =
√

ε0(q)[ε0(q) + 2ρṼ (q)], (5)

where ε0(q) = q2/2 is the energy of a free particle. Notice
that in this approach all properties depend on the combined
coupling ρU . However, given its assumption on the field, one
expects it to be valid only for large enough densities [28]. In
spite of the fact that at high density the average particle dis-
tance is much smaller than the range of the shoulder potential
core, correlations between single particles are not very strong,
thanks to the flatness of the potential, and the mean-field
approximation appears to be valid in this regime, similarly to
what occurs for the contact-interaction Lieb-Liniger model.
In fact, the zero-density limit corresponds to the TG regime
where surely the Bogoliubov approach breaks down. From
Eq. (5) one may also infer the value of ρ = ρCL � 20.65/U
at which the Bogoliubov dispersion becomes imaginary close
to q = qc, due to the dominance of the negative contribution
from ρṼ (q), signaling cluster formation [18]. In our study,
this corresponds to ρCL ≈ 18.9. In the weakly interacting,
high-density regime, the cluster phase is very different from
the low-density one, studied in Ref. [18], since here the clus-
ters largely overlap (see also Fig. 3). It is therefore plausible
that the one-body density matrix of bosons does not decay
exponentially and that a Gross-Pitaevskii approach is still
valid [28].

B. Quantum Monte Carlo methods

We employ two canonical ensemble QMC methods: varia-
tional Monte Carlo (VMC) [41] and path integral ground-state
Monte Carlo (PIGS) [42,43]. VMC evaluates expectation val-
ues 〈Ô〉VMC = 〈�T |Ô|�T 〉/〈�T |�T 〉 of various observables
Ô given an explicit trial wave function �T . The probability
density to be sampled is |�T ({xi})|2, which depends on pa-
rameters to be optimized by minimizing the expectation value
of energy or its variance. PIGS performs an imaginary-time
evolution of the VMC trial state |�τ 〉 = exp (−τ Ĥ )|�T 〉. For
sufficiently long projection, the ground-state observables can
be estimated with 〈Ô〉0 � 〈�τ |Ô|�τ 〉/〈�τ |�τ 〉, provided the
trial state has a non-negligible overlap with the ground state.
We employ a fourth-order pair-Suzuki approximation of the
density matrix and notice that, for bosons, this approach has
been shown to be unbiased even if �T ({xi}) = 1 was used
[44]. In practice, using a trial wave function which has been
previously optimized for VMC guarantees rapid convergence
of the PIGS method.

We typically simulate N = 100 particles (up to N = 360
in the cluster phase) using periodic boundary conditions in
a segment of length L = N/ρ. As in [18,30], we consider a
two-body Jastrow form of the wave function:

�T ({xi}) = exp

{
−1

2

∑
i< j

[u(ri j ) + χ (ri j )]

}
, (6)

where u(ri j ) and χ (ri j ) are the short-range and the long-range
contributions, respectively. This form would be exact if the
Hamiltonian could be diagonalized into the sum of two terms
H = Hrel + Hph, describing the short-range relative motion
and the long-range phononic dynamics, respectively [45].

Short range. The short-range correlation exp[−u(r)/2] is
taken to be the solution of the two-body Schrödinger equation
with an auxiliary potential, with the boundary condition that
the wave function has zero derivative at a distance R̄ < L/2.
In the ultra-low-density regime [30], we used a step auxiliary
potential and tuned its height and radius so as to have the
same 1D scattering length as for the shoulder potential. The
resulting wave function is not suited to the moderate densities
that we consider here: we therefore use a rescaled shoulder po-
tential Veff(r) = sV (r/l ), where the scaling parameters s � 1
and l � 1 are optimized with VMC. We also notice that for
the stronger interactions that we considered in [18], a more
refined auxiliary potential was needed, which included the
mean-field effect of neighboring clusters.

Long range. The long-range contribution to the Jastrow
factor, χ (r), allows for the correct description of phonons and
is taken to be of the Reatto-Chester form [30,45]:

χ (r) = −αr

β
log

[
sinhβ

(
π

Lkc

) + sinβ
(

πr
L

)
sinhβ

(
π

Lkc

) + 1

]
, (7)

where kc = 2π/R̄, and we typically use β = 8.
Once a sufficiently long τ is considered, further projec-

tion allows us to estimate the imaginary-time intermediate
scattering function. We perform analytic continuation of this
function with the genetic inversion via falsification of the-
ories (GIFT) [46–48] algorithm, which gives access to the
real-frequency dynamical structure factor. This algorithm is
capable to reconstruct both narrow and broad spectral fea-
tures [40], so it is suited to investigate both the TG regime,
dominated by particle-hole excitations, and the higher density,
relatively more compressible regime, dominated by a single
Bogoliubov excitation.

C. Feynman approximation

The zeroth momentum of the dynamical structure factor
is m0(q) = ∫ ∞

0 S(q, ω)dω = S(q). For a homogeneous sys-
tem, the first momentum of the dynamical structure factor
is determined by the f -sum rule m1(q) = ∫ ∞

0 ωS(q, ω)dω =
ε0(q)/h̄. These exact properties, together with the assump-
tion that the dynamical structure factor is a delta function
peaked at a single frequency, yields the Feynman ap-
proximation S(q, ω) = S(q)δ(ω − εFA(q)/h̄) with εFA(q) =
ε0(q)/S(q). We determine εFA(q) using the static structure
factor evaluated with the PIGS method described in the previ-
ous section.

The same single-mode approximation, together with the
Bogoliubov dispersion of Eq. (5), allows us to derive a Bo-
goliubov expression for the static structure factor SB(q) =
ε0(q)/εB(q).

D. Multiconfiguration time-dependent Hartree method

Real-time simulations are performed via the multiconfigu-
ration time-dependent Hartree method for identical particles
[49,50] using the MCTDH-X software [51–54]. This tech-
nique approximates the single-particle Hilbert space by means
of a basis of M time-dependent orthonormal single-particle
states |ψk (t )〉, which are called orbitals. If we denote by
|n1 . . . nM ; t〉 = |n, t〉 the symmetrized product state in which
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FIG. 1. Energy per particle as a function of the density from
QMC simulations, in units of the corresponding quantity for a Tonks-
Girardeau gas ETG/N , compared with the Tonks-Girardeau model at
low density (solid line) and to the mean-field Bogoliubov result EB/N
at high density (dashed line). Inset: PIGS results and Bogoliubov
result in a wider range of densities (log-log scale).

nk bosons occupy orbital |ψk (t )〉, then the MCTDH ansatz for
a many-body state of N particles is the following superposi-
tion:

|φ(t )〉 =
∑

n

Cn(t )|n, t〉, (8)

where the expansion coefficients Cn(t ) are time dependent,
and the sum runs over all the symmetrized product states of N
particles in M orbitals. Plugging the ansatz (8) into the time-
dependent variational principle [55,56] yields a coupled set of
equations of motion for the coefficients Cn(t ) and the orbitals
|ψk (t )〉, whose solution gives the variationally optimized dy-
namics, which can be computed both in real and imaginary
time. Note that the approximation lies in the dimensionality of
the orbital basis, truncated to M, which is selected by physical
considerations and computational resources’ constraints [57].

III. RESULTS

In this section we show the results of static properties
such as the energy per particle, the Luttinger parameter, the
pair distribution function, and the static structure factor eval-
uated with QMC methods as a function of the density at
fixed U = UTG. Then we approach the dynamics of density
fluctuations using various techniques described in Sec. II: we
evaluate the energy dispersion in the Bogoliubov and Feyn-
man approaches, the dynamical structure factor from analytic
continuation of imaginary-time PIGS simulations, and finally,
we show the energy of low-lying excited states obtained by
MCTDH simulations.

A. Energy per particle and Luttinger parameter

We compute the zero-temperature energy per particle for
increasing density both with the VMC and the PIGS methods.
In Fig. 1 we report the results compared with the TG result

ETG/N = π2ρ2/6. As customary for ultracold gases, we nor-
malize the energy to the typical kinetic energy per particle,
which in this case corresponds to ETG/N . Only at very low
density are these two energies compatible, while for ρ � 0.3
they start to differ significantly. The increase in energy with
density is slower than in the TG case, showing a relatively
larger compressibility of the system. We ascribe this behavior
to the fact that for increasing density the details of the shoulder
potential start to matter and the absence of a hard core allows
for particle overlap without large penalty. Indeed, the mean-
field Bogoliubov equation of state EB/N = ρgB/2 appears
to be the main contribution to energy in the density range
ρ � 1. We notice that for the well-known contact-interaction
Lieb-Liniger model, it is known that the first beyond-mean-
field terms, in units of ET G, scale as ρ−3/2 and ρ−2 [29,58].
It is difficult to accurately discriminate between analogous
corrections in the system under consideration with our current
results. It is, however, unsurprising to observe that the energy
is significantly reduced at densities ρ � 3 with respect to
the mean-field result, due to the reduced overlap of particles.
More accurate expressions for the energy in the high-density
regime have been investigated in [28]. Interestingly, the Bo-
goliubov expression coincides with the mean-field, van der
Waals approximation for the interaction contribution to the
energy per particle of a classical 1D fluid with the same
potential considered here, even though it should be recalled
that at T = 0 the classical system is actually a crystal at all
densities and interaction strengths.

Let us now focus on the Luttinger parameter KL of 1D
bosonization theory [14,15], which is related to the sound
velocity c of a homogeneous system via c = πρ/KL. The
Luttinger parameter measures how compressible a fluid is
with respect to an ideal Fermi gas at the same density, thus
for the TG gas KL = 1, while KL > 1 indicates a more com-
pressible fluid and KL < 1 a less compressible one such as
the super Tonks-Girardeau or the hard-rod gases [40,59,60].
The value of KL can be derived from the energy per particle
via the compressibility κ−1 = ρ ∂

∂ρ
(ρ2 ∂ (E/N )

∂ρ
) and using the

relation KL
2 = π2ρ3κ . Moreover, it can be obtained from a

linear fit of the static structure factor at small momenta using
the relation S(q)/q →

q→0
KL/(2πρ) [45]. In particular, for the

Reatto-Chester long-range Jastrow factor one finds the rela-
tion αr = 2/KL.

In Fig. 2 we show the results from the fit of S(k). For
ρ = 0.1 we are recovering the TG value KL = 1, as expected.
However, already at ρ = 0.3 strong deviations from the TG
model are visible. A weakly interacting bosonic fluid behav-
ior is inferred by comparison to the Bogoliubov result KL =
π

√
ρ/gB = √

3πρ/2U [18]. Within the accuracy of our QMC
results, beyond-mean-field corrections appear to be small for
this observable.

B. Pair distribution function

In Fig. 3 we show the evolution of the pair distribu-
tion function for increasing densities. For ρ = 0.1, g(r)
approaches the one expected for the ideal Fermi gas (IFG),
as expected in the TG low-density limit. However, already at
ρ = 0.3 the pair distribution function is not zero anymore for
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FIG. 2. Log-log plot of the Luttinger parameter KL as a function
of the density ρ, extracted from the low-momentum behavior of the
PIGS static structure factor, compared to the Tonks-Girardeau value
KL = 1 and the Bogoliubov result (dashed line, see text).

r → 0. The small-distance depletion is gradually lost when
the density increases, leading to a saturation in the large den-
sity limit and even to the manifestation of a local maximum
at contact and then to significant oscillations in the cluster
regime ρ � ρCL. It is important to notice that such peaks
appear at multiples r = 2π/qc, independent of density.

As already pointed out for the energy, also the behavior
of g(r) is similar to that brought out in former studies of its
classical counterpart at T �= 0: as ρ is increased, at first g(r)
approaches 1 over the whole r range, meaning that correla-
tions become weaker and weaker. This effect is due to the
soft-core character of the interaction, which allows mutual
overlap of the particles, thereby depressing density fluctua-
tions, and is the reason why the mean-field approximation
provides an accurate description of the fluid regime of the

FIG. 3. Pair distribution function for increasing densities ρ (sym-
bols, PIGS). The distance between particles r is in units of the typical
clustering distance bc, to highlight its role at high density. Lines are
a guide to the eye. Datasets for ρ = 5.5, 17.8, 24.6 are reproduced
from Ref. [18].

FIG. 4. Static structure factor for increasing densities ρ (sym-
bols, PIGS) compared to its Bogoliubov expression SB(q) (solid
lines). Momentum is in units of qc to highlight its role at high density.

system at relatively high density. For soft-core interactions
of the so-called Q+ class [1], i.e., featuring a monotonically
decreasing Fourier transform, this loss of correlations would
go on indefinitely, and the mean-field picture would become
exact in the ρ → ∞ limit [61]. Instead, for interactions be-
longing to the Q± class [1] as in the present case, whereby the
Fourier transform presents an absolute minimum at nonzero
wave vector, strong density modulations eventually appear as
the stability limit of the fluid phase is approached, beyond
which the cluster crystal takes over.

C. Static structure factor

In Fig. 4 we show the evolution of the static structure
factor for increasing densities. As for the pair distribution
function, for ρ = 0.1 the static structure factor approaches the
IFG result: SIFG(q) = q/(2πρ) for q < 2πρ, SIFG(q) = 1 for
q � 2πρ. At higher densities, the behavior of S(q) departs
more and more from the IFG result and is well described
by the mean-field result SB(q), except for the simulation at
the density ρ = 24.6 in the cluster phase. Given the large
number of bosons per cluster at this density, we are able
to simulate only 10 clusters and cannot exclude the role of
significant finite-size effects. The static structure factor shows
higher peaks for increasing ρ, all located at q = qc. In a finite
system one cannot see a true divergence at q = qc, but, in the
harmonic approximation for the cluster phase [18], the height
of the peak scales with the number of bosons as N1−2KL/N2

CL ,
where NCL is the number of particles per cluster.

D. Dynamical structure factor

We discuss the collective density excitations of the system
in three ways: we first compare the single-mode approxima-
tions of the Bogoliubov and Feynman approaches, then we
evaluate the full dynamical structure factor via analytic con-
tinuation of PIGS imaginary-time data, and finally we perform
real-time simulations of long-wavelength excitations via the
MCTDH method.
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FIG. 5. Feynman approximation of the dispersion relation
εFA(q), using the PIGS results for the static structure factor, for
increasing densities, compared to the Bogoliubov expression εB(q)
(solid lines). Momenta are in units of qc to highlight its role with
increasing density. Datasets for ρ = 5.5, 17.8, 24.6 are reproduced
from Ref. [18].

For densities far from the TG regime, we expect the Bo-
goliubov approximation to be valid. This hypothesis can be
tested by comparing εB(q) to the dispersion relation εFA(q),
which is obtained from the static structure factor calculated
with the PIGS method. Figure 5 shows that the two ap-
proaches are quantitatively consistent up to at least ρ � 18,
indicating that a single-mode approximation is indeed ade-

quate. As for the static structure factor, the discrepancy at
ρ = 24.6 could possibly due to finite-size effects.

Given the reliability of the Bogoliubov approximation for
the dispersion, it is also easy to explain the apparent fixed
point in the curves, once those are expressed in units of qc

for momenta and Ec for energy. It is clear that εB(q) does
not depend on density at momentum q0 � 3.14qc, which cor-
responds to the first zero of Ṽ (q). At q = q0, then εB(q0) =
ε0(q0) � 4.94Ec. In Fig. 6 we show the full dynamical struc-
ture factor as extracted from GIFT analytic continuation of
imaginary-time PIGS correlation functions [18,48].

In Ref. [30] we showed that S(q, ω) at ρ = 0.001 and
U = UTG was consistent, for each q, with a flat spectrum in
between the two particle-hole boundaries εIFG(q) = |kF q ±
q2/2|, similarly to the TG model. In panel (a) of Fig. 6, we ob-
serve that at ρ = 0.1, S(q, ω) has nonzero weight in the same
region predicted by the TG model, but the energy excitation
spectrum is more peaked around the Feynman approximation,
showing the predominance of certain frequencies. Therefore
the dynamical structure factor is more sensitive than the pair
distribution function and the static structure factor in signaling
a departure from the low-density TG limit.

The accumulation of spectral weight close to a single mode
is gradually more evident going to densities ρ = 0.3, 0.8, 1.0
[panels (b), (c), and (d)]. Notice, however, that although
panels (c) and (d) are qualitatively in agreement with the
mean-field spectrum, beyond-mean-field effects are still ap-
parent at low momenta, in both the position of the peak and
in a residual width. For higher densities [panels (e)–(f)] a
single mode can be ascertained, with a residual width that is
probably partially due to the analytic continuation method. In
this figure, differently form Fig. 5, we scale frequency and

FIG. 6. Panels (a)–(f): Dynamical structure factors for the densities ρ = 0.1, 0.3, 0.6, 0.8, 1.0, 1.5, 8.2 from the analytic continuation
of PIGS data in units of the corresponding h̄/EF . The structure factors have been represented by a color map in the (q, ω) domain, with
higher values of S(q, ω) corresponding to darker shades of green. The figure also shows the curves corresponding to the ideal Fermi gas
particle-hole boundaries εIFG (blue dashed lines) and to the Feynman sum rule εFA (red dotted line) and Bogoliubov εB (purple dash-dotted
line) approximations. In panels (c)–(f), an arrow indicates the momentum q = qc in units of 2kF , and εB essentially coincides with εFA. Notice
that the cutoff of S(q, ω) is customized for each panel to highlight the dominant features and that panel (f) is magnified to highlight the rotonic
region. The dataset for ρ = 0.1 is reproduced from Ref. [18].
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momentum with the effective Fermi energy EF = h̄2π2n2/2m
and twice the Fermi momentum 2kF = 2πn, respectively,
which are the relevant scales in the TG regime. A small arrow
in panels (c)–(f) marks the position of the special clustering
momentum qc. At density ρ = 8.2 [panel (f)] a roton is ap-
parent, consistently with the dispersion in Fig. 5. We have not
performed GIFT continuations at higher density, since high
resolution at small momenta requires very large systems and
long imaginary-time projections.

E. Low-lying excited states via MCTDH

We performed a series of MCTDH simulations of N = 12
particles with up to M = 12 orbitals in periodic boundary
conditions. N was limited by the computational costs; M = 12
was deemed sufficient because the comparison of the MCTDH
ground-state energy with PIGS results shows very good agree-
ment, and tests with higher M yielded relative corrections
to the energy of order 10−3 or lower, at the expense of a
much higher computational cost. In the conditions studied
here (U = UTG), we observe that by increasing the density
the convergence with M becomes faster. This is probably due
to the system being relatively more compressible at higher
density than in the TG regime, consistently with the adequacy
of the Bogoliubov approximation.

To investigate the low-lying excited states, we simulate the
real-time evolution of the system subject to a time-dependent
perturbation potential of the form

Vext (x, t ) = A sin(kminx − ωextt ), (9)

where the amplitude A is much smaller than the interparticle
interaction strength so that the perturbation is in the linear
response regime, kmin = 2π/L is the lowest wave vector com-
patible with periodic boundary conditions, and ωext is the
probing frequency. Here we target a density regime in which
the spectrum is expected to be strongly peaked at momentum
kmin (see Fig. 6), so, as a consequence of the perturbation,
the wave function of the system gains a small component on
the excited state of momentum kmin and energy E (kmin). The
overlap with higher momentum modes is negligible. If the
perturbation was removed, the evolution of this superposition
would conserve energy and would be periodic with frequency
given by the energy difference between the excited state and
the ground state: ω(kmin) = (E (kmin) − Egs)/h̄. However, in
the persistence of the time-dependent perturbation, the energy
is not conserved, but it increases when the oscillations of the
system and the perturbation are in phase and decreases when
they are in phase opposition. Hence, the energy oscillates with
frequency ωE = |ωext − ω(kmin)|.

The simulation procedure is as follows. The system is first
relaxed over a static version (ωext = 0) of the potential (9)
to reduce initial transients. Then a real-time evolution with
a probing frequency ωext is performed. The frequency of the
energy oscillations ωE is measured, and the excitation energy
is computed as ω(kmin) = ωext ± ωE . To determine the correct
sign, a second simulation with a different ωext is needed. We
expect this method to work if the excitation spectrum exhibits
a single phononic mode and if there are not nonphononic
excitations at lower energy. Figure 7 shows an example of this

FIG. 7. Energy oscillations during the propagation of a 12-
particle system at interaction U = UTG and density ρ = 2.05, subject
to the time-dependent perturbation (9) with amplitude A = 10−4Ec.
The simulations with ωext = 1.750, 1.850, 1.950 Ec/h̄ show that, as
ωext approaches ω(kmin ), the oscillations grow in amplitude and
decrease in frequency. If their frequencies ωE are used to infer the ex-
citation energy, the result for all three simulations is ω(kmin ) � 2.062.
Indeed, a simulation with ωext = 2.062 (solid line, only partially
shown) exhibits no oscillation during the time of the simulation but
rather a steady energy growth.

method, which illustrates how the energy oscillations change
as ωext approaches ω(kmin).

Figure 8 shows the resulting ω(kmin). Please note that as
kmin changes also the density ρ changes, since kmin = 2π/L =
2πρ/12. For densities in the range to 1 � ρ � 3, the Bogoli-
ubov frequencies are in excellent agreement with the MCTDH
results. Conversely, at higher densities the two curves become

FIG. 8. Excitation energy of the low-lying excited states obtained
by MCTDH simulations on a system of 12 particles compared to
the Bogoliubov spectrum. Note that these results have been obtained
for systems with different densities, which are reported on the upper
x axis.
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very different and the Bogoliubov values are lower than the
MCTDH results. These differences are likely due to the size
effects present in this small system of 12 particles that become
stronger for higher densities.

IV. CONCLUSIONS

In summary, we have shown that by varying the density, a
1D system of bosons with a suitably tuned shoulder interac-
tion manifests a gradual crossover between a Tonks-Girardeau
gas, where the density fluctuation spectrum is dominated by
particle-hole excitations, to a relatively more compressible
fluid dominated by a single Bogoliubov mode displaying a
rotonic excitation close to a typical momentum independent of
density. By using QMC results as a benchmark, we observed
that mean-field theory is accurate in a wide range of densities,
although for ρ � 3 beyond-mean-field effects are relevant in
various observables. We also devised a real-time protocol
to study phononic excitations in this system with MCTDH.
For even higher densities, a transition occurs towards large
overlapping clusters. Future prospects include the character-

ization of this transition, which is expected to be different
than the 1D quantum Ising universality class that is relevant
to densities compatible with two-particle clusters [18]. Other
interesting prospects are the characterization of beyond-mean-
field corrections at intermediate densities, the study of trapped
quasi-1D configurations [34] with QMC, and the investigation
of quenches in real-time dynamics with MCTDH, possibly
with fermions [26].

Data and scripts to reproduce the figures in this paper are
available online (Ref. [62]).

ACKNOWLEDGMENTS

We acknowledge the CINECA Awards IscraC-SOFTDYN
(2015), IscraB-PANDA (2019), and IscraC-SEMIPRO (2019)
for the availability of high-performance computing resources
and support. D.P. acknowledges financial support by Univer-
sità degli Studi di Milano, Project No. PSR2019_DIP_008-
Linea 2. C.A. and D.E.G. would like to thank Axel U. J. Lode
for support in using the MCTDH-X software.

[1] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Criterion
for determining clustering versus reentrant melting behavior for
bounded interaction potentials, Phys. Rev. E 63, 031206 (2001).

[2] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N.
Likos, Formation of Polymorphic Cluster Phases for a Class of
Models of Purely Repulsive Soft Spheres, Phys. Rev. Lett. 96,
045701 (2006).

[3] B. M. Mladek, G. Kahl, and C. N. Likos, Computer Assembly
of Cluster-Forming Amphiphilic Dendrimers, Phys. Rev. Lett.
100, 028301 (2008).

[4] D. A. Lenz, R. Blaak, C. N. Likos, and B. M. Mladek, Micro-
scopically Resolved Simulations Prove the Existence of Soft
Cluster Crystals, Phys. Rev. Lett. 109, 228301 (2012).

[5] N. Henkel, R. Nath, and T. Pohl, Three-Dimensional Ro-
ton Excitations and Supersolid Formation in Rydberg-Excited
Bose-Einstein Condensates, Phys. Rev. Lett. 104, 195302
(2010).

[6] F. Cinti, T. Macrì, W. Lechner, G. Pupillo, and T. Pohl, Defect-
induced supersolidity with soft-core bosons, Nat. Commun. 5,
3235 (2014).

[7] S. Saccani, S. Moroni, and M. Boninsegni, Excitation Spectrum
of a Supersolid, Phys. Rev. Lett. 108, 175301 (2012).

[8] F. Ancilotto, M. Rossi, and F. Toigo, Supersolid structure and
excitation spectrum of soft-core bosons in three dimensions,
Phys. Rev. A 88, 033618 (2013).

[9] A. Angelone, F. Mezzacapo, and G. Pupillo, Superglass
Phase of Interaction-Blockaded Gases on a Triangular Lattice,
Phys. Rev. Lett. 116, 135303 (2016).

[10] S. Prestipino, A. Sergi, and E. Bruno, Freezing of soft-core
bosons at zero temperature: A variational theory, Phys. Rev. B
98, 104104 (2018).

[11] W.-H. Li, T.-C. Hsieh, C.-Y. Mou, and D.-W. Wang, Emergence
of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi
Gas, Phys. Rev. Lett. 117, 035301 (2016).
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