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Robust control of quantum dynamics under input and parameter uncertainty
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Despite significant progress in theoretical and laboratory quantum control, engineering quantum systems
remains principally challenging due to manifestation of noise and uncertainties associated with the field and
Hamiltonian parameters. In this paper, we extend and generalize the asymptotic quantum control robustness
analysis method, which provides more accurate estimates of quantum control objective moments than standard
leading-order techniques, to diverse quantum observables, gates, and moments thereof and also introduce the
Pontryagin maximum principle for quantum robust control. In addition, we present a Pareto optimization
framework for achieving robust control via evolutionary open-loop (model-based) and closed-loop (model-free)
approaches with the mechanisms of robustness and convergence described using asymptotic quantum control
robustness analysis. In the open-loop approach, a multiobjective genetic algorithm is used to obtain Pareto
solutions in terms of the expectation and variance of the transition probability under Hamiltonian parameter
uncertainty. The set of numerically determined solutions can then be used as a starting population for model-free
learning control in a feedback loop. The closed-loop approach utilizes a real-coded genetic algorithm with
adaptive exploration and exploitation operators in order to preserve solution diversity and dynamically optimize
the transition probability in the presence of field noise. Together, these methods provide a foundation for
high-fidelity adaptive feedback control of quantum systems wherein open-loop control predictions are iteratively
improved based on data from closed-loop experiments.
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I. INTRODUCTION

Quantum control is the application of control theory and
optimization techniques to a quantum system coupled with
an external field [1–3]. Quantum control problems have been
solved by both high-bandwidth pulse shaping in conjunction
with optimization algorithms (quantum optimal control [4–6])
and modulation of a small number of field modes without the
use of optimization algorithms to induce population transfer
into the desired state, e.g., stimulated Raman adiabatic pas-
sage (STIRAP) [7–12]. Quantum control systems have been
analyzed theoretically for controllability [4,13], as well as
for their control landscapes [14–17]. The former studies and
determines whether a manipulated field exists and is able to
coherently direct the evolution of the system from an initial
to an arbitrary final state after a sufficiently long time. On
the other hand, the latter is the map between the manipulated
field parameters and the control performance measure which
has been analytically shown to harbor no local traps given a
controllable Hamiltonian and unconstrained field parameters.
The analysis provides insights into and explanations for the
successes of laboratory quantum learning control, especially
in the manipulation of molecular evolution along its excited
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potential energy surface such as in photodissociation reactions
[18,19] and bond making [20], optimal dynamic discrimina-
tion and nonlinear spectroscopy [21–23], and energy transfer
[24–26]. Nevertheless, manipulating quantum dynamics is
still largely difficult for both theoretician and experimentalist.
One principal reason is because the knowledge of a quantum
system’s Hamiltonian becomes exponentially more complex
as it increases in size and, as a result, the Hamiltonian pa-
rameters are not known exactly from ab initio calculations. In
addition, due to the nonlinear dynamics of quantum systems,
estimation of Hamiltonian parameters based on experimental
measurements leads to an uncertainty distribution of param-
eter values [27,28]. Disturbances also manifest in the control
field parameters due to limited precision of field-shaping de-
vices and fluctuations of the field source [29,30]. Hence, the
primary challenge in robust quantum control is to develop an
experimentally implementable robust control strategy, which
also agrees with the first-principles model. Recent work on
robustness of controlled quantum dynamics showed that in
order to maximize the robustness of a control field in terms
of its resistance to noise and uncertainty in the control and
system parameters, the effect of parameter distribution on
destructive interference between different order transitions
must be minimized [31]. Whereas model-based quantum con-
trol solutions are at present seldom successfully implemented
in experiments, appropriate quantum control robustness
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analysis and optimization techniques in conjunction with ac-
curate estimates of Hamiltonian parameter distributions and
noise spectra will improve the fidelity of a wide variety of
previously reported model-based control solutions. The con-
trol of more complex quantum systems will also benefit from
integration of robust model-based and model-free control
strategies.

Inspired by well-developed concepts in the field of clas-
sical control engineering, quantum control robustness is
described in terms of the effect of disturbances in the control
field and the system’s Hamiltonian parameters on the differ-
ent moments of the quantum control objective [31–33]. The
control objectives may be formulated mainly for two appli-
cations: The first is to reach a target dynamical propagator
or quantum gate for applications in quantum computation
and information processing and the second is to maximize a
quantum observable, such as in coherent control of chemical
reactions or in photosynthetic energy transfer. The concept
of robustness is essential in ensuring control objectives are
satisfied in the presence of parameter distribution [34–36].
Historically, no prior work has studied the mechanism of
robustness in high-fidelity quantum control. In addition, while
evolutionary algorithms have been successfully implemented
in laboratory quantum control in obtaining optimal control
profiles [18,21,24], analysis of the performance of evolution-
ary algorithms in terms of their ability to Pareto optimize
moments of the control objective in the presence of field
noise and Hamiltonian uncertainty is a relatively new topic of
study. Moreover, experimental quantum learning control has
primarily been applied to the problem of population trans-
fer between pure states [4], whereas applications to control
of mixed states and quantum gates are more challenging
to achieve without employing model-based robust control
[37].

A number of robust quantum control theories and algo-
rithms, which are rooted in their classical counterparts, have
been considered for different control settings [37–47], includ-
ing robust control design via leading Taylor series [37,40],
such as in minimax or worst-case formulations [32]. However,
the latter methods are limited in their accuracy. Recent work
from the authors has also shown that robustness of controlled
quantum dynamics may be understood in terms of the explicit
contribution of control and system parameters to the dynam-
ics, which can be decomposed into quantum pathways [31].
In contrast to the leading-order Taylor expansion, this method
is capable of exactly determining the robustness of a control
field in terms of the robust combination and interferences [48]
between all significant pathways. In this paper we generalize
this theory to arbitrary quantum observables, gates, and mo-
ments thereof, describe methods for dimensionality reduction
through the identification of significant quantum pathways,
and also introduce the Pontryagin maximum principle for the
optimality conditions for quantum control objective moments
in the presence of noise and uncertainty. Based on this the-
ory of quantum robust control optimization, an evolutionary
algorithm-based quantum robust control design is proposed.
The proposed control strategies are classified into two differ-
ent control paradigms, namely, model-based and model-free
robust control, which have the potential for integration. The
objectives of the robust control design are twofold: The first

is to systematically explore robust quantum control solutions
and the second is to overcome the gap between model-
based and model-free quantum control in the laboratory.
Following from recent advances in quantum optimal and ro-
bust control theory, the performance of the robust control
design can be rigorously analyzed in terms of the quan-
tum control landscape, quantum control pathways, and their
interferences.

The paper is organized as follows. The generalized theory
for quantum observable and gate control robustness analy-
sis, and the Pontryagin maximum principle for control of
moments of these objectives, are first presented in Sec. II.
Based on the foundation for robust optimization of mo-
ments of quantum observables, model-based and model-free
quantum optimal and robust control via evolutionary ap-
proaches are discussed in Sec. III. Here the details of the
algorithms’ implementation are outlined with emphasis on
how the quantum control theory and robustness analysis are
used to aid the optimization settings. The implementation of
different types of genetic algorithms (GAs) and their utili-
ties in different robust control scenarios are also described.
In Sec. IV the results of the different control implementa-
tions on a model quantum system are described in detail in
terms of quantum pathways and their interferences. The paper
concludes in Sec. V with a summary of the present work
and how the results can be generalized and used in future
work.

II. QUANTUM ROBUST CONTROL THEORY

A. Quantum optimal control landscape

The dynamics of a quantum system coupled with an exter-
nal electric field is described by the Schrödinger equation

dU (t )

dt
= − i

h̄
[H0 − με(t )]U (t ), U (0) = I, (1)

where H0 is the time-independent Hamiltonian of the system,
μ is the dipole moment, ε(t ) is the time-dependent field,
and U (t ) denotes the dynamical or unitary propagator, i.e.,
|ψ (t )〉 = U (t )ψ (0)〉. Here the quantum state |ψ (t )〉 is said to
be in a Hilbert space of finite dimension N and μ is a real
symmetric matrix of the same dimension. The quantum states
of interest depend on the analytical form of H0 and include
vibrational, rotational, and spin states common in quantum
control examples. In the context of optimal control, the state
of the system is U (t ) ∀ t ∈ [0, T ] and it is the control variable.
The quantum system is controlled by a time-dependent field
ε(t ), which is the manipulated variable. In order to simplify
the ensuing analysis, the notation for the interaction Hamilto-
nian HI (t ) = e(i/h̄)H0t {−με(t )}e−(i/h̄)H0t is used, giving

dUI (t )

dt
= − i

h̄
HI (t )UI (t ), UI (t ) = e(i/h̄)H0tU (t ). (2)

The subscript I is subsequently dropped from the descrip-
tion of the unitary propagator in the interaction picture for
convenience. The objective of the optimization is to achieve
the desired control objective obeying the dynamical constraint
described by (2) as well as limitations in the laboratory. This
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FIG. 1. Quantum control landscape as a function of two frequency modes. (a) Nominal landscape of an artificial four-level system with
bounded field duration and amplitude. (b) Landscape of a five-level system with reduced field duration and amplitude. The contour plots show
how the landscape changes in terms of the shift in optimal points and reduced multimodality.

can be succinctly described in the control formulation

min
ε(·)

F (U (T )),

s.t.

dU (t )

dt
= − i

h̄
H (t )U (t ), U (0) = I,

ε(t ) =
K∑
k

Akcos(ωkt + φk ),

Amin � Ak � Amax,

0 � φk � 2π,

ωmin � ωk � ωmax,

0 � t � T, (3)

where F (U (T )) is the cost function and depends on the quan-
tum control objective and the final state of the system, and the
control field is expressed as a combination of linearly polar-
ized cosine waves. In this work, two performance measures
are relevant. The first is related to optimization of a quantum
expectation of an observable � given an initial density matrix
ρ0, namely, Tr[U (T )ρ0U †(T )�], a special case of which is
the transition probability between an initial pure state |i〉 and
a final pure state | j〉,

F (U (T )) = |Uji(T )|2 − 1, 0 � |Uji(T )|2 � 1. (4)

The second is related to optimization of the fidelity of a
quantum gate in quantum information processing [37]

F (U (T )) = |U (T ) − W |2, (5)

where W is the target quantum gate. The term J[ε(t )] is used
to denote a generic quantum control objective as a functional
on the space of input control fields.

The quantum control landscape [17] determines how the
manipulated parameters map to the performance measure.
This landscape has been analyzed in terms of its topology,
geometry, and search complexities given unconstrained field

parameters [17]. The analysis demonstrates that all critical
points are either global or saddle and that there exists a mul-
tiplicity of control solutions. In contrast, however, optimal
control is not always achieved in the laboratory due to prac-
tical constraints and lack of robustness of the real quantum
system. For instance, bounds on the field’s spectral parame-
ters or field duration and the presence of uncertainties in the
system can significantly affect the control landscape.

As mentioned previously, for control with infinitely flexi-
ble constraints, the landscape is known to be multimodal and
trap-free [17]. However, as constraints such as reduction in
the field duration and the number of frequency modes which
can be manipulated to control the system are imposed on
the optimization, the constrained landscape reveals local traps
[Fig. 1(a)], which depict a landscape in two-dimensional (2D)
space with respect to the first two field frequency modes ω1

and ω2. Moreover, Fig. 1(b) shows how the number of subop-
timal points significantly increases and the level set decreases
as more limitations are imposed on the system. Additionally,
when the system parameters are varied due to uncertainties
δ, the shape of the landscape can change dramatically, shift-
ing and decreasing the location and the number of optimal
points. Note that given δ ∼ N (0, σ 2), E[Pji] would not be
equal to Pji at the nominal values of the parameters unless
it is linear. Hence, robust solutions are generally not an opti-
mum of the original landscape and there may be a trade-off
between performance quality and robustness of optimal solu-
tions. Additional local optima may be introduced in the fitness
landscapes which may be suboptimal but more robust. Thus,
a robust optimization problem can become a multimodal op-
timization problem, in which it is essential to include δ in the
optimization and modify the robust control strategies such that
exploration of both global and local optima is maximized.

B. Asymptotic robustness of quantum control

The asymptotic robustness of quantum control [31] of the
transition amplitude and probability can be described in terms
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of the different moments of these quantities broken down into
quantum pathways. These concepts can also be generalized to
arbitrary quantum observables and gates.

The controlled transition amplitude Uji(T ) is calculated as
an infinite sum of Dyson terms, i.e., Uji(T ) =∑∞

m U m
ji (T )

[49], where the mth-order term is defined as

U m
ji (T ) = 〈 j|

(
− ı

h̄

)m ∫ T

0

∫ t2

0
· · ·
∫ tm−1

0
HI (t1)HI (t2) · · · HI (tm)dt1dt2 · · · dtm|i〉. (6)

Each of the mth-order terms can in turn be expanded in terms of the field’s spectral parameters

U m
ji (T ) =

(
ı

h̄

)m

μ jlm−1 · · · μl1i

K∑
km=1

Akm

∫ T

0
eıω jlm−1 tm cos[ωkmtm + φ(ωkm )] · · ·

K∑
k1=1

Ak1

∫ t2

0
eıωl1 it1 cos[ωk1t1 + φ(ωk1 )]dt1 · · · dtm,

(7)

where 1 � li, lm−1 � N indicate the transitions allowed by the dipole moment. If we use U m
ji (T ) to denote the mth-order term in

the series above, the total transition amplitude between an initial state |i〉 and a final state | j〉 at time T can be expressed as

Uji(T ) =
∞∑
m

U m
ji (T ) (8)

and the transition probability as

Pji =
∞∑
m

∣∣U m
ji (T )

∣∣2 + 2
∑
m′<m

Re
{[

U m
ji (T )

][
U m′

ji (T )
]∗}

. (9)

The above expression demonstrates the property of quantum interferences due to the presence of coherence terms (U m
ji U

m′∗
ji ).

Constructive interference takes place when the sum of coherences is larger than 0 and destructive interference when the sum is
less than 0.

Following from recent work in quantum control robustness analysis [31], each order transition amplitude may be described
as a sum of quantum pathways

U m
ji (T ) =

∑

α∈M

Uji(T, 
α), (10)

where the term 
α ∈ M represents pathways belonging to a particular order m. In the presence of input noise or uncertainty in
system parameters, a normalized quantum pathway can be further defined

c
α = Uji(T, 
α)∏

α θ

αk
k

, (11)

where θ denotes a vector of noisy or uncertain parameters (such as field mode amplitudes, frequencies, or phases for input
noise, or parameters of the control Hamiltonian matrix μ for Hamiltonian uncertainty). In turn, assuming for simplicity that the
parameters θk are independent random variables, the expected transition amplitude is

E[Uji(T )] = E

[∑
m

U m
ji (T )

]
=
∑

m

∑

α∈M

c
α
K∏
k

E
[
θ

αk
k

]
(12)

and the variance

var[Re, Im{Uji(T )}] =
∑


α
(Re, Im{c
α})2

(
K∏
k

E
[
θ

2αk
k

]−
K∏
k

E2[
θ

αk
k

])+ 2
∑

α′<
α

Re, Im{c
α}Re, Im{c
α′ }

×
(

K∏
k

E
[
θ

α′
k+αk

k

]−
K∏
k

E
[
θ

α′
k

k

] K∏
k

E[θαk
k ]

)
. (13)

The expected transition probability and its variance are similarly derived:

E[Pji(T )] = E

[∑
m

∣∣U m
ji

∣∣2]+E

[
2
∑
m′<m

Re
{(

U m′
ji

)(
U m

ji

)∗}]
. (14)

Here θk is the noisy or uncertain parameters (i.e., amplitude, phase, or dipole moments) and therefore also depends on the types
of pathways being analyzed. Using this notation, the expected transition probability may be expressed as

E[Pji(T )] = E

⎡
⎣
∣∣∣∣∣
∑


α
c
α

K∏
k

θ
αk
k

∣∣∣∣∣
2
⎤
⎦ =

∑

α

|c
α|2
K∏
k

E
[
θ

2αk
k

]+ 2
∑

α′<
α

Re

{
c
α′c∗


α

K∏
k

E
[
θ

α′
k+αk

k

]}
. (15)
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In order to compute the E[Pji], the individual pathway
terms Uji(T, 
α) are first calculated. This is accomplished us-
ing the method of pathway encoding and decoding [49,50], of
which Fourier encoding is the most common type. Addition-
ally, the higher moments of noisy or uncertain manipulated
input and system parameters must first be computed. These
terms can be provided in closed form for any uncertainty
distribution for which there exists an analytical Fourier trans-
form:

φ(y) = 〈eıθy〉 =
∫ ∞

−∞
p(θ )eıθydθ. (16)

Here φ(y) (not a control field phase) is referred to as the
characteristic moment-generating function of the probability
distribution of the manipulated input or system parameter
p(θ ). If φ(y) is available in closed form, the moments of θ

can be obtained via

〈θ k〉 = (−ı)k

[
∂k

∂yk
φ(y)

]
y=0

. (17)

The asymptotic robustness analysis method is applicable
to fully general field noise and Hamiltonian parameter
uncertainty distributions, including any form of statistical in-
terdependence, whereas leading-order methods can only use
the first and second moments of noise or uncertainty in the
calculation of quantum control objective moments. Moreover,
leading-order methods can only provide. E[J] to second or-
der and var(J ) to first order [32]. Numerically, the moments
derived above can be compared to the leading-order Taylor
expansion approximations for the first and second moments
of state-to-state population transfer reported in [31]. In gen-
eral, there is no a priori reason to believe the leading-order
moment calculations are sufficiently accurate for model-based
control applications. In particular, assuming Gaussian noise or
parameter uncertainty, δE[J] = 0 to first order [31].

C. Robustness of significant quantum pathways

In this section we further develop asymptotic robustness
analysis methods. In previous work [31], Fourier encoding of
pathways was performed for a full set of uncertain or noisy
parameters. We refer the reader to the reference for details of
the approach. However, there are cases where only a subset of
parameters is relevant, for example, those involving uncertain
dipole moments or noisy field modes that have a significant
impact on controlled dynamics. Subset encoding is especially
useful when computational complexity is an issue and only
mechanistic and robustness analysis of the most significant
subset of parameters are desired. The method of subset encod-
ing and decoding for a subset of pathways is described in this
section. Given that θk specifies the uncertain system or input
parameter, the encoding of the subset of parameters subject to
uncertainty is as follows:

θk → θk exp(iγks), k = 1, . . . , n, n � nmax,

Here n denotes the number of uncertain parameters and nmax

the total number of parameters. Without loss of generality,
the uncertain parameters are indexed such that they are the
first n parameters. In this way, all terms containing θ

α1
1 · · · θαn

n
can be extracted via the encoded transition amplitude
Uji(T, γ = α1γ1 + · · · + αnγn) via the Fourier decoding

transformation

Uji(T, γ = α1γ1 + · · · + αnγn)

= θ
α1
1 · · · θαn

n

[
(im1)

nmax∑
k1=n+1

θk1 · · ·
nmax∑

km1=n+1

θkm1 + · · ·

+ (im2 )
nmax∑

k1=n+1

θk1 · · ·
nmax∑

km2=n+1

θkm2
+ · · ·

]
.

It is important to note, however, that in the full-encoding
method there is no sum over unencoded parameters. In
addition, the coefficient cα1,...,αn , which is written without
specification of a constraint on the αi’s, contains contribu-
tions from many different orders. Hence, for subset encoding
m =∑i αi is not a Dyson series order. It however plays an
important role in determining the effect of noise on the path-
way norm and interferences involving that pathway, since the

ratio E[
∏

k θk ]∏
k θk

depends on m.
Significant quantum pathways can be identified with the

use of leading-order sensitivity analysis methods. Consider,
for example, the problem of minimizing var(J ) in the pres-
ence of field noise when Jnom has been maximized (the top
of the quantum control landscape [14–17]), where Jnom de-
notes the nominal value of J for a given control field and
estimated value of the time-independent Hamiltonian pa-
rameters in the absence of uncertainty or noise. The most
common leading-order approximation for robust control is
the first-order approximation for which there is an analytical
distribution, which is Gaussian [32]. Here E[δJ], where δJ ≡
J − Jnom, is 0 for Gaussian noise or uncertainty, which results
in the distribution for J being centered at Jnom [31]. To first
order, varJ ≈ ∫ �

0

∫ �

0
δJ

δε(ω′ )A(ω′, ω) δJ
δε(ω) dω′dω, where δJ

δε(ω)
denotes the frequency domain gradient vector and A(ω′, ω)
denotes the frequency domain autocovariance function. How-
ever, at the top of the landscape, this variance approximation is
also 0 because δJ

δε(ω) is identically 0 there. Thus, at the extrema
of the nominal Jnom landscape the Jnom, var(J ) and Jnom, E[J]
Pareto fronts cannot be sampled using the standard first-order
Taylor approximation to the distribution of J .

As such, at the extrema of the Jnom landscape, a second-
order Taylor approximation must be used for both E[δJ] [40]
and var(J ). These are both expressed in terms of the Hessian
kernel of J with respect to the uncertain or noisy parame-
ters. Considering the leading (second)-order approximation
for E[δJ] at such extrema of the quantum control landscape,
we have

E[δJ] ≈ 1

2

∫ �

0

∫ �

0
A(ω,ω)H(ω,ω)dω dω, (18)

where H denotes the Hessian kernel of the quantum control
objective functional J (ε); H is a finite-rank kernel of rank
2N − 2 for the problem of state-to-state population transfer on
Hilbert space dimension N [4]. At the optima of the nominal
quantum control landscape, for var(J ) (or E[δJ]) calculation,
only those uncertain or noisy parameters corresponding to
terms in the integral (18) above a specified magnitude (of
which there are at most 2N − 2 in the basis where the Hessian
is diagonal) can be included in the asymptotic moment
calculation. Thus, at the top of the quantum control landscape,
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employing a Fourier basis wherein H(ω′, ω) is diagonal,
along with the expression of the noise or uncertainty distri-
bution on these transformed parameters, enables a substantial
reduction in computational expense of the asymptotic var(J )
(or E[δJ]) calculation, through the use of at most 2N − 2 en-
coding frequencies for population transfer problems (similarly
for Hamiltonian parameter uncertainty).

We denote by � = {0, . . . , γ f } the set of encoding frequen-
cies corresponding to the significant pathways and where the
upper limit of integration is set to s f for a specified error
tolerance on the moment calculation. Additional methods for
dimensionality reduction of asymptotic quantum control ro-
bustness calculations exist but are beyond the scope of the
present work..

D. Representation of quantum interference moments

Adding to the description of quantum pathways in the com-
plex plane, the description of quantum pathway interference
moments can be further elaborated in the polar representation.
Using the definition A
α ≡ |U 
α

ji | to represent a pathway and

φ
α = tan−1 Im(c
α )
Re(c
α ) as the phase angle between two pathways,

the transition probability may be rewritten as

Pji =
∑


α

∣∣U 
α
ji

∣∣2 + 2 Re
∑

α′<
α′

U 
α
jiU


α′,∗
ji

=
∑


α
A2


α + 2
∑

α′<
α′

A
αA
α′ cos(φ
α − φ
α′ ).

By definition, constructive interference corresponds to
cos(φ
α − φ
α′ ) > 0 and destructive interference to cos(φ
α −
φ
α′ ) < 0. In order to depict the contribution of interferences
between different pathways to the transition probability, the
norm of the sum of two pathways U 
α

ji and U 
α′
ji is considered,∣∣U 
α

ji + U 
α′
ji

∣∣2 = ∣∣U 
α
ji

∣∣2 + ∣∣U 
α′
ji

∣∣2 + 2
(
U 
α

ji · U 
α′
ji

)
= ∣∣U 
α

ji

∣∣2 + ∣∣U 
α′
ji

∣∣2 + 2
(
Re
{
U 
α

ji

}
Re
{
U 
α′

ji

}
+ Im

{
U 
α

ji

}
Im
{
U 
α′

ji

})
,

such that the interference term is naturally interpreted in
terms of the dot product of the pathway vectors. If we now
define A
α ≡ |c
α| as the normalized quantum pathway and take
into account noise or uncertainty associated with the control
and input parameters, the expected transition probability is
described as

E[Pji] =
∑


α
E
[∣∣U 
α

ji

∣∣2]+
∑

α′<
α′

E
[
2 ReU 
α

jiU

α′,∗
ji

]

=
∑


α
A2


αE

[∏
k

θ
2αk
k

]

+ 2
∑

α′<
α′

A
αA
α′Ree[ı(φ
α−φ
α′ )]E

[∏
k

θ
αk+α′

k
k

]

=
∑


α
A2


αE

[∏
k

θ
2αk
k

]

+ 2
∑

α′<
α′

A
αA
α′ cos(φ
α − φ
α′ )E

[∏
k

θ
αk+α′

k
k

]
.

Hence the dot product between the cα vectors is retained, but
note that the expectation of the product of parameters is not
equal to the product of their expectations.

E. Pontryagin maximum principle for quantum robust control

In this section we introduce the Pontryagin maximum
principle for quantum robust control, which builds on asymp-
totic robustness analysis. Whereas [31] introduced methods
for quantum control robustness analysis, we now extend
this theory to identify optimality conditions for quantum ro-
bust control that establish a foundation for robust control
optimization. Regardless of the algorithm used for control
optimization, the optimality conditions we derive below apply
at the optima of the moments of quantum control objectives.
In particular, conditions can be derived for maximization or
minimization of the expectation of a quantum control objec-
tive. Together with deterministic quantum control optimality
conditions [51], these criteria also define the properties of
common quantum robust control Pareto (multiobjective) op-
tima comprised of combinations of optima of E[J], varJ ,
and Jnom.

The costate equation, which imposes the dynamical con-
straints in control optimization, and the Pontryagin maximum
principle (PMP) (first-order conditions for optimality) for
quantum robust control can be derived analogously to the
deterministic quantum control PMP [51]. However, the state
and costate (�) equations for the robust quantum control PMP
are partial differential equations. Both the state and costate are
functions of t and the timelike variable s employed in pathway
encoding.

A generalized expression for the moments of quantum ob-
servables or gates is required in order to derive the PMP. With
F (U (T )) representing the quantum observable expectation
value or gate fidelity, we have for the first moment

E[F (U (T ))] =
∑
γ ′∈�

∫ s f

0
F (U (T, s)) exp(−iγ s)ds

× δ(γ , γ ′)
E
[∏

k θ
αk (γ ′ )
k

]
∏

θ
αk (γ ′ )
k

.

Using the PMP Hamiltonian function H =
〈�(t, s),− i

h̄ H (t, s)U (t, s)〉, we can obtain first-order
conditions for optimality of moments. In deterministic
quantum control, the Lagrangian J̄ (objective function
augmented by Lagrange multiplier constraints) is expressed
in terms of H and 〈�(t ), dU (t )

dt 〉 is integrated by parts to obtain
[51]

J̄ = F (U (T )) − Tr[�†(T )U (T )] + Tr[�†(0)U (0)]

+
∫ T

0
H(U (t ),�(t ), ε(t )) + Tr

(
d�†(t )

dt
U (t )

)
dt .

In robust quantum control, we are interested in E[δJ̄].
The costate equation for quantum robust control is the partial
differential equation in t, s,

∂

∂t
�(t, s) = − i

h̄
H (t, s)�(t, s),
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subject to a terminal boundary condition on �(T, s) to be
derived below. The expression for E[δJ̄] can be evaluated by

first writing the s-evolved Lagrangian J̄ and then considering
its first-order variation

δJ̄ (s) = Tr{[∇U (T,s)F (U (T, s)) − �(T, s)]δU †(T, s)} + Tr{[�(0, s)]δU †(0, s)}

+
∫ T

0
Tr

[(
∇U (t,s)H + ∂�(t, s)

∂t

)
δU †(t, s)

]
+ [∇ε(t,s)H]δε(t, s)dt .

The corresponding first-order conditions (Euler-Lagrange equations) follow from the requirement that δE[J] = 0 for any
specified deterministic variation δε(t, s) and hence for any deterministic variation δU (t, s). If the uncertainty is in the system
Hamiltonian, E[∇ε(t )H] = ∇ε(t )E[H]. Then

∂

∂ε(t )
E[H(U,�, ε)] = ∂

∂ε(t )

∑
γ ′∈�

∫ s f

0

〈
�(t, s),− i

h̄
H (t, s)U (t, s)

〉
exp(−ıγ s)ds δ(γ , γ ′)

E
[∏

k θ
αk (γ ′ )
k

]
∏

k θ
αk (γ ′ )
k

= − i

h̄

∑
γ ′∈�

∫ s f

0
Tr{U †(T, s)∇U F (U (T, s))U †(t, s)μI (s)U (t, s)} exp(−ıγ s)dsδ(γ , γ ′)

E
[∏

k θ
αk (γ ′ )
k

]
∏

k θ
αk (γ ′ )
k

,

(19)

where first-order conditions from the expression for δJ̄ (s)
have been used to solve for the terminal boundary condition
on the costate �(T, s) = ∇U F (U (T, s)) and the t, s-evolved
costate in the PMP Hamiltonian function

H(U (t, s),�(t, s), ε(t ))

=
〈
�(t, s),− i

h̄
H (t, s)U (t, s)

〉

= − i

h̄
Tr{�†(t, s)H (t, s)U (t, s)}

= − i

h̄
Tr{U †(T, s)∇U F (U (T, s))U †(t, s)μ(s)ε(t )U (t, s)},

where μ is also represented in the interaction picture.
The explicit forms of ∇U F (U ) for observables and gates

can be substituted above. For quantum observable control,
∇U (T )F (U (T )) = U (T )[U (T )ρ0U †(T ),�] [52], whereas for
gate control, ∇U (T )F (U (T )) = U (T )W †U (T ) − W [51]. The
first-order condition for optimality of the expectation is

E
[

∂

∂ε(t )
H(U,�, ε)

]
= 0 ∀ t ∈ [0, T ]. (20)

Following the principles above, the first-order conditions for
any higher moment can be derived, by replacing F (U (T ))
above with F n(U (T )). The first-order optimality condition in
the presence of field noise can be derived similarly. Moreover,
as described above in Sec. II C, identification of quantum
pathways that significantly contribute to the quantum control
gradient ∂

∂ε(t ) E[H(U,�, ε)] can be achieved through leading-
order sensitivity analysis. Here this involves encoding only
those Hamiltonian parameters for which the magnitude of the
respect component of dJ

dθ
exceeds a specified threshold value.

Optimization of quantum control moments in the presence
of input noise or parameter uncertainty can be achieved us-
ing either deterministic or stochastic algorithms. Quantum
control Pareto optimization using deterministic, multiobjec-
tive gradient-based algorithms has been previously reported
[52,53]. One can apply the Pareto optimization methods

reported therein to robust quantum control, by replac-
ing the deterministic gradients with the expressions for

∂
∂ε(t ) E[H(U,�, ε)] derived above for the gradients of quan-
tum control objective moments. These methods can carry out
constrained control optimization wherein one objective can
be maximized or minimized while another is held constant.
For example, mean-variance optimization of a single quantum
observable can be achieved in this way, especially in model-
based control, by optimizing one moment (maximization of
E [J]) followed by constrained optimization of the second
moment [minimization of var(J )]. This approach is applica-
ble to any kind of quantum robust control optimization (any
moments) for either field noise or Hamiltonian uncertainty.

Gradient-based quantum control optimization algorithms
have been applied to optimize quantum control moments us-
ing leading-order Taylor approximations (for field noise) in
[40]. The quantum robust control methods described herein
can be used in conjunction with leading-order control meth-
ods. Namely, once a relatively robust field is found using
leading-order approximations, one can optimize its robustness
with more accurate moment calculations. Such refinement
of the convergence of robust control algorithms that rely on
leading-order expansions is warranted especially for more
demanding quantum control objectives.

Here we apply stochastic multiobjective algorithms to
identify Pareto optima in conjunction with the above robust-
ness analysis techniques for mean-variance optimal control
since they are applicable to either model-based or model-free
control. However, for model-based control, gradient-based al-
gorithms based on the above expressions can be employed. We
focus on the most common quantum control laboratory objec-
tive, namely, state-to-state population transfer. The study of
the application of gradient-based algorithms is left for future
work.

In deterministic optimal control in the absence of con-
straints on the control field, the value of J at the optima is
typically known; for example, for state-to-state population
transfer, that optimum value is 1 (perfect transfer). However,
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in robust quantum control, since moments are being opti-
mized, there is no way to know what the optimal value of J
is in advance of optimization. As such, even if a stochastic
optimization algorithm is applied, it is useful to check the
PMP optimality condition in Eq. (20) at putative optima (e.g.,
Pareto optima corresponding to E[J]max) in order to verify the
algorithm has converged to the true optima. We apply these
principles below.

III. ROBUST CONTROL OPTIMIZATION VIA
MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

In this section we introduce robust optimization algorithms
that employ asymptotic robustness analysis and the quantum
robust control Pontryagin maximum principle.

A. Quantum learning control via a genetic algorithm

Optimization of various quantum systems using an evolu-
tionary algorithm, such as a GA, evolutionary strategies, and
their variants, has been frequently performed in an experimen-
tal setting commonly referred to as the learning feedback loop
[3]. In the context of process control, this is an example of
a model-free control strategy in which the stochastic algo-
rithm learns the control solution based on trial and error via
incoherent feedback measurements. This control implementa-
tion inherently takes into account the true system parameters
without explicit knowledge of their values such that the issue
of the system’s model parameter uncertainty is overcome. In
this case, the design of the controller is mainly concerned
with dealing with input field noise during the optimization.
While the laboratory implementation of this control strategy
has often been successful, its mechanism of convergence has
not been precisely understood. Moreover, in cases where there
is significant noise associated with the input field, there is no
guarantee that the algorithm would obtain a robust solution.
In this work, the convergence mechanism of the algorithm is
first described in the nominal case and the results are used as
the basis for further analysis of model-based and model-free
robust quantum control in the next two sections. Specifically,
the convergence of the learning algorithm will be analyzed in
terms of addition of quantum pathways and their interferences
using the robust control theory developed above.

The robust control study would be performed in the follow-
ing artificial quantum system (Figs. 2 and 3), which is closely
related to atomic quantum systems like atomic Rb used in
experimental quantum learning control [4,54]:

H0 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 1.5 0
0 0 0 0 2

⎞
⎟⎟⎟⎠,

μ =

⎛
⎜⎜⎜⎝

0 2 2 1 0
2 0 0 2 0
2 0 0 0 2
1 2 0 0 2
0 0 2 2 0

⎞
⎟⎟⎟⎠. (21)

We note that a variety of quantum control systems previ-
ously studied, including both molecular and spin states, can

FIG. 2. Graphical depiction of a five-level artificial quantum sys-
tem. The state |E4〉 is the target state and it is connected to three
states, namely, |E1〉, |E2〉, and |E5〉

be described by Hamiltonians of Hilbert space dimension
similar to that above and are amenable to model-based control,
rendering the robust control of systems such as our example
system important in practice. In the context of atomic and
molecular systems, the control of subspectra similar to that
above has been studied using the STIRAP method [55–57].
More generally, robustness to uncertainty in a small num-
ber of Hamiltonian parameters is important in a variety of
quantum control applications including quantum information
processing, where, for example, coupling strengths between
subsystems may be imprecisely known based on first prin-
ciples [37]. Estimation of a limited number of Hamiltonian
parameters has been reported in [27]; the methodologies intro-
duced herein would also be applicable to model-based control
of such systems.

The GA chromosome formulation is chosen as 
x ≡
[ω1, . . . , ωn, φ(ω1), . . . , φ(ωK )]. Each 
x represents an elec-
tric field profile ε(t ) =∑K

k=1 A(ωk ) cos[ωkt + φ(ωk )] with a

FIG. 3. Examples of significant pathways in control of the five-
level quantum system. The text under each figure represents the
polytope 
α corresponding to each dipole pathway. Note that none
of the significant pathways took the direct route of |E1〉 → |E4〉,
because the magnitude of the dipole moment for the transition is half
as strong as the other state-to-state couplings.
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FIG. 4. Choice of optimization variables: GA optimization of the model five-level quantum system with different choices of field mode
frequencies and phases as optimization variables, and constraints on those variables. The maximum achievable objective function value is
plotted vs (a) the number of field modes optimized and (b) the amplitudes of manipulated field modes. Frequencies and phases were chosen as
optimization variables because robustness to noise in spectral amplitudes is considered in this work.

duration T = 40. The number of modes K is chosen to be 7
and A(ωk ) = 0.15.

In experimental quantum control, phases, amplitudes, fre-
quencies, or a combination thereof can be optimized. Because
in this paper, noise in field mode amplitudes and uncertainty in
dipole parameters are considered, the parameters for GA op-
timization are chosen to be frequencies and phases with fixed
amplitudes. Otherwise, field noise could cause amplitudes
to exceed inequality constraints. The most natural choice of
which parameter set to not sample is the one that is commonly
constrained in an experimental setting. Finally, high-fidelity
control is possible by setting amplitudes for multiple modes to
a single value, whereas this is not possible if mode frequencies
are constrained in this manner. Note that amplitudes are also
sampled across different optimization runs (Fig. 4), based on
which the value used for Pareto front sampling and robust con-
trol is chosen. Similarly, for the number of modes, it is found
that the number chosen is sufficient for high-fidelity control
of this system while not increasing computational expense.
Several optimizations with different choices of parameters are
studied numerically (Fig. 4).

B. Multiobjective optimization of dipole robustness

As discussed in the preceding section, given uncertain
input and system parameters, the objective of model-based
robust control is to obtain control solutions which satisfy a
set of robustness criteria. These criteria include the first and
second moments of the transition amplitude and probability.
In the robust control method proposed, the first step is to
perform multiobjective optimization of the two robustness
criteria under dipole uncertainty. The amplitude noise would
be significant during the experimental implementation of the
control and is studied in the subsequent step.

The analytical expressions for the different moments of
transition probability with respect to a control profile have
been derived and can be numerically solved. In the examples
below, asymptotic robustness analysis has been used along-

side numerical sampling from the probability distribution in
order to achieve a suitable balance between accuracy and
speed. That is, the number of numerical draws from the pa-
rameter distribution (e.g., the Gaussian distribution associated
with uncertain dipole parameters) that is required to determine
each quantum control moment to a specified level of accuracy
is determined periodically during the course of the optimiza-
tion using asymptotic robustness analysis. This is required to
guarantee that the algorithm is in fact converging to the true
Pareto optima. Depending on the complexity of the quantum
system, dimensionality reduction using significant pathway
identification can be used to further mitigate computational
expense. In addition, at the Pareto optima corresponding to
E[J]max, the optimality of these moments is verified by evalu-
ating the PMP optimality condition in Eq. (20) and confirming
that the norm of the PMP gradient [Eq. (19)] is within a
specified convergence threshold. This threshold on the PMP
gradient norm is set to 0.5% of its maximum value. The norm
of the PMP gradient is evaluated at one sampled point on the
optimization trajectory every ten iterations of the evolutionary
algorithm.

Depending on user preferences for maximization of ex-
pected fidelity or minimization of variance, the appropriate
point on the front can be defined as desired control. The
solutions derived in this optimization can then serve as initial
population for learning control of amplitude robustness de-
scribed in the next section. In addition, the resulting solutions
are further analyzed using the asymptotic robustness analysis
method for insights into the robustness mechanism, which
is essential in generalizing the observed results to general
quantum systems.

C. Learning control of amplitude robustness

In this section we introduce robust control algorithms that
can be used to refine control designs (such as those reported
above) in the presence of field noise, via learning control.
In addition to robust optimization under dipole parameter
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uncertainty, robust control of quantum systems in the presence
of field amplitude noise has also been studied in the past
[31,40]. Significant amplitude noise arises in quantum control
experiments involving intense ultrafast lasers in a feedback
loop. In the preceding section, the robust control objective is
the expected transition probability, which is estimated over a
number of measurements, and is an optimization over a static
landscape. In this case, a traditional GA (TGA) has frequently
been shown to successfully optimize different quantum sys-
tems [58,59]. However, there are cases where the optimization
must be performed without averaging when the optimization
would take place across a noisy landscape and the locations
of optima vary from one optimization iteration to the next. In
this case, a GA which has not been appropriately equipped
with operators to explore and exploit the landscape would
not converge to a diverse population of robust solutions. In
this work, studies on how robust control may be achieved
in this dynamic setting are further described and compared
to its expected formulation counterpart. Dynamic optimiza-
tion using a TGA often fails due to loss of diversity. This
takes place because of static selection pressure, whereby an
elite individual in the population dominates the reproductive
pool by replacing outlier individuals after one particular it-
eration. Another cause for population uniformity in a TGA
is weak exploration feature. Here diversity lost through se-
lection and crossover is not recovered via mutation, resulting
in population inbreeding [60]. Thus, adaptive mutation and
crossover rates and selection pressure are essential to pre-
serve the ability to explore other parts of the landscape as
the landscape fluctuates due to noise. The adaptive crossover,
mutation, and selection (ACROMUSE) GA [60] has recently
been developed and applied to multimodal test functions using
a binary-coded GA formulation (Algorithm 1). In this study,
the algorithm is applied using a real-coded formulation [61] to
robust dynamic quantum control in the presence of amplitude
noise.

In addition to adaptive operators, population diversity may
be achieved using other techniques including various niching
methods such as fitness sharing and deterministic crowding.

Algorithm 1. ACROMUSE pseudocode. Here HPD and SPD
denote healthy and standard population diversity, respectively.

X ← init( )
2: f ← eval(X )

[HPD, SPD] ← diverse(X ): measure diversity in terms of HPD
and SPD

4: [pc, pm] ← prob(HPD, SPD): determine crossover pc

and mutation probability pm

R ← select(X, f , HPD, SPD): select fit individuals based on
HPD and SPD

6: while t < tmax do
C ← recomb(R, pc )

8: M ← mutate(R, pm )
f ← eval(C, M )

10: [pc, pm] ← prob(HPD, SPD)
[HPD, SPD] ← diverse(X )

12: R ← select(X, f , HPD, SPD)
t ← t + 1

14: end while

While the no free lunch theorem states that any two genetic
algorithms are equivalent when their performance is aver-
aged across all possible problems, the ACROMUSE GA is
specifically suited to the quantum control problem as it adapts
quickly to fitness landscape variation and to the exploration of
highly multimodal quantum control landscapes. It is also im-
portant to note that there is implicit averaging associated with
general GA optimization; a GA of infinite population size,
which uses proportional selection and adds random perturba-
tions to the design variables in each generation, is theoretically
equivalent to GA optimization of the expected fitness function
[60]. Thus, the performances of the TGA and ACROMUSE
GA are performed using the same population size.

IV. RESULTS AND DISCUSSION

A. Quantum optimal control via a GA

The result of the optimization is analyzed using the subset
encoding of dipole pathways. The encoding is performed over
the algorithmic iterations to track how the quantum pathways
and their interferences evolve over the course of the optimiza-
tion. Some examples of transition pathways for the optimal
field under nominal conditions are graphically depicted in
Fig. 3. As seen in Fig. 5, as the GA learns the direction
of optimal control under the nominal condition, the pathway
amplitudes increase and their interferences become stronger.
As shown analytically in [31,49], the pathway amplitude is al-
ways positive and can reach values above unity. Consequently,
the interference is always destructive in the case of optimal
control. Furthermore, over the course of the optimization, the
algorithm is shown to minimize the normalized destructive
interference (Figs. 5 and 6). It is also worthwhile to note that
different GA runs converge to different solutions due to the
level sets of quantum control landscapes [17]. In addition,
fields which are limited in their parametrization lead to nonop-
timal landscapes and therefore suboptimal solutions (Fig. 4).
Analysis of suboptimal control solutions reveals that, in com-
parison, a suboptimal field utilizes fewer pathways such that
pathway amplitude and interferences are not maximized for
maximum transition probability (Fig. 5 and Table I). However,
as will we see below, more pathways mean more entry points
for noise and such robust control does not necessarily mean
optimal control under nominal condition.

B. Multiobjective optimization of dipole robustness

In this section we identify robust optimal controls in the
presence of time-independent Hamiltonian uncertainty for
model systems representative of atoms to which quantum
control has been applied in the laboratory.

NSGA-II [62] is used to obtain the 3D Pareto front in
terms of the nominal, expected, and variance of the transition
probability (Fig. 7). The 3D Pareto front can be presented
more clearly upon the front projection towards the 2D plane
of the Jnom/E[J] front and E[J]/var(J ) front (Fig. 7). Figure 7
suggests that there exists a robust solution which is close to but
not optimal under nominal conditions. Specifically, there ex-
ists a robustness trade-off in terms of E[J] and var(J ), which
include nonoptimal solutions shown as dominated points in
the figure. Another observation can be made that a nonoptimal
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FIG. 5. The GA optimization trajectory of nominal P41 (solid line) and its normalized interference (dashed line) (left) with identified
significant pathways (right). As described in the text, the total interference is negative (destructive) and its magnitude decreases due to
optimization. The plot shows how the magnitude of pathways and their relative angles evolve during the optimization.
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FIG. 6. Bar plot of the sum of interferences along the GA
optimization trajectory. As described in the text, the destructive inter-
ference (negative bars) is minimized relative to the constructive ones
as the GA converges to an optimal solution; the total interference is
negative (destructive) throughout the course of optimization.

pulse which does not induce optimal transition from an initial
to a target state is also less susceptible to noise. This makes
intuitive sense as the quantum pathways resulting in the state-
to-state transitions are low in amplitude such that uncertainty
affecting those pathways does not manifest in affecting the
population transfer. In order to generalize the observation
for understanding robust control of general quantum systems,
analysis of the Pareto fronts is performed using the subset
of pathway encoding. The analysis reveals the mechanism of
dipole robustness in terms of dipole pathways utilized by the
control field. Figures 8 and 9 display the real-time nominal
and expected transition probabilities as well as real-time field
amplitudes for solutions on the Pareto front, showing how
a robust solution may be nonoptimal under nominal condi-
tions.

Figure 10 presents a robustness analysis of Pareto front so-
lutions (high E[Pji], low var(Pji ) and low E[Pji], low var(Pji )
points), decomposing the pathway contributions into the de-
terministic and stochastic contributions. The analysis reveals
how the robust control optimization selects pathways that are
less susceptible to the effects of uncertainty. While the optimal
solution under the nominal condition utilizes the largest num-

ber of quantum pathways, including higher-order pathways,
in order to satisfy the control objective, the robust solution
is one which utilizes the appropriate number of pathways to
satisfy the expected transition probability without involving
too many of them and higher-order ones such that the control
is susceptible to noise. Furthermore, gleaning from the results
of robustness analysis in Table I, there may be different con-
ditions of robustness relevant in other quantum systems. For
instance, there could be circumstances where the interaction
between the control field and the dipole parameter is not suf-
ficiently strong to result in optimal combination of pathways
but are associated with a sufficiently small uncertainty such
that its expected value and variance are robust. Understand-
ing the mechanisms by which robust control fields achieve
robustness also requires analysis of the robustness of quan-
tum interferences to uncertainty. First, note that uncertainty
amplifies the magnitude of nearly all quantum interferences
in expectation, as shown in Fig. 11, which represents quan-
tum interferences binned by interference angle. The polar
representation of interferences bar plots in this figure have
consistently higher total interference magnitudes compared
to nominal in each bin, i.e., the various interference angles
magnify the effects of uncertainty to a similar extent. The
figure also indicates how uncertainty increases the average
interferences between different pathways such that the overall
destructive interference is amplified relative to the construc-
tive counterpart. Second, as noted above in Sec. II D, there
is a difference between expectation of interferences and the
dot product of expectation of pathways. Thus, complex plane
representations of dominant pathway contributions to popu-
lation transfer by nominally optimal vs robust control fields
(see Fig. 12) cannot fully capture the mechanisms by which
robust control fields achieve robustness. The expectation of
interferences is displayed instead by pathway order in Fig. 10
for a robust field and for a field with low E [Pji] and low
var(Pji ). Finally, the order m in partial encoding (Sec. II C)
is the relevant quantity when considering the effect of noise
in magnifying interferences, since only those parameters con-
tributing to m are subject to uncertainty. Recall that m in
partial encoding does not refer to Dyson series order.

Finally, the PMP gradient vector [Eq. (19)] was evaluated
periodically during the optimization and at the Pareto optima
in Fig. 7 corresponding to E[Pji]max [e.g., black dot at the

TABLE I. List of robust pathways and their magnitudes corresponding to different transition probability under expected and nominal
conditions shown in Fig. 7.

Near-optimal Suboptimal Nonoptimal
(black) Magnitude (green) Magnitude (red) Magnitude

[0, 4, 1] 2.7460 [0, 2, 1] 1.2843 [0, 4, 1] 1.0548
[0, 5, 0] 2.4865 [0, 4, 1] 1.1622 [0, 2, 1] 1.0128
[0, 7, 0] 2.1538 [0, 0, 1] 1.1243 [0, 0, 1] 0.9775
[0, 6, 1] 1.8544 [0, 6, 1] 1.0325 [0, 6, 1] 0.9444
[0, 2, 1] 1.8532 [0, 8, 1] 0.6599 [0, 8, 1] 0.5883
[0, 3, 0] 1.2933 [0, 2, 3] 0.5677 [0, 2, 3] 0.4760
[0, 9, 0] 1.0531 [0, 0, 3] 0.4363 [0, 0, 3] 0.3737
[0, 4, 0] 0.8428 [0, 4, 3] 0.4323 [0, 5, 0] 0.3566
[0, 4, 3] 0.7860 [0, 7, 0] 0.2900 [0, 4, 3] 0.3332
[0, 0, 1] 0.7275 [0, 5, 0] 0.2768 [0, 7, 0] 0.2813
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FIG. 7. Pareto front of robust control solutions in terms of the first and second moments of the transition probability. The plot shows that
the optimal solution in the nominal case is not the most robust in the Pareto sense, i.e., it resides in the nondominated front of the E[P41] and
var(P41) Pareto surface.

bottom left of Fig. 7(a), and also depicted in Fig. 7(b)] and the
norm of this gradient was calculated; these norms at the Pareto
optima were within the chosen convergence threshold of 0.5%
of the maximum value of this norm over the optimization
trajectory, thus verifying convergence according to Eq. (20).

FIG. 8. Plot of population transfer of Pareto front solutions under
(a) nominal and (b) uncertain conditions (bottom), for the color-
coded fields depicted in Fig. 9. The plots show that a robust solution
may be nonoptimal under nominal conditions and a nominally opti-
mal solution may not be robust under uncertain conditions.

FIG. 9. (a) Plot of fields corresponding to the color-coded Pareto
front solutions depicted in Fig. 7 and (b) a list of associated path-
ways for robust [lowest value of var(Pji )] and nonrobust fields. It
is observed that the nonrobust dipole pathways utilize higher-order
pathways relative to their robust counterparts.
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FIG. 10. Robustness analysis of a robust Pareto front solution (high E[Pji] and low var(Pji )) (top row) and a Pareto front solution with
low E[Pji] and low var(Pji ) (bottom row) in Fig. 7 under Hamiltonian uncertainty via subset encoding. In each case, the left and middle
panels compare the components of each encoded pathway with and without the terms that are affected by uncertainty. The left panel depicts
pathway norms whereas the middle depicts quantum pathway interferences. The right panel compares the magnitudes of each pathway in
expectation and under nominal condition. The optimal solution uses a significantly larger number of higher-order pathways compared to the
robust counterpart, since the robust control optimization selects pathways that employ lower orders which are less susceptible to uncertainty.
Moreover, the mechanism of robustness is such that there is an appropriate number of higher-order pathways utilized for reaching an optimal
balance between the different moments of transition probability.

FIG. 11. Bar plot of expected and nominal interferences. The fig-
ure indicates how noise increases the average interferences between
different pathways such that the destructive interference is amplified
relative to the constructive counterpart.

In summary, while the ability to control a multitude of
pathways and their interferences is essential for achieving ro-
bust quantum control fidelity, the optimal strategies are quite
different for deterministic and robust control. This has been
demonstrated numerically by how a nominally optimal control
strategy can be very different from a robust optimal control
strategy in terms of the pathways and interferences it must
control. Neither the deterministic theory of optimal control
nor leading-order approaches to quantum robust control es-
tablish this result.

C. Learning control of amplitude robustness

In this section we apply robust control algorithms in the
presence of field noise that can be implemented through learn-
ing control.

ACROMUSE and the TGA are used to optimize for noisy
transition probability (without averaging) and expected tran-
sition probability, respectively. The purpose of this simulation
is to demonstrate different methods of model-free learning
control which can be implemented in a feedback loop. So-
lutions and their properties are listed in Tables II–IV. The
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FIG. 12. Complex plane representation of pathways under (a) nominal and (b) expected conditions with normal dipole uncertainty
distribution. The figures show how noise significantly changes the norm and interference of different pathways resulting in further destructive
interference.

result shows that while GA optimization can be readily per-
formed under a static landscape without a diverse population
[Figs. 13(a) and 14(a)], the same algorithm fails when dealing
with a noisy landscape, where the global optima fluctuate
[Fig. 13(b)]. In the case of the latter, a diverse population must
be maintained during the optimization and this is achieved
using the ACROMUSE GA, with the parameters tuned to
ensure exploration and exploitation [Fig. 14(b)]. Note that the
mechanism of convergence is different in the two methods.
In TGA optimization of expected transition probability, the
algorithm converges to a particular solution in the averaged
and static landscape. In contrast, the noisy optimization using
the adaptive GA results in a distribution of solutions, some of
which have higher transition probability relative to the others
under an instance of input parameter, which changes from one
iteration to the next.

TABLE II. List of ACROMUSE solutions which use different
pathways and are affected by noise in different ways and at different
instances.


x1 
x2 
x3 
x4

1.7384 1.7429 1.7399 3.2723
1.0448 3.9752 1.0452 3.9819
1.3715 1.3703 1.3665 2.7221
1.3669 1.3627 1.3660 3.9054
1.5256 1.5262 1.5250 0.7801
0.7038 0.7037 0.7036 2.0866
3.2220 3.2204 3.2292 1.3671
2.4826 2.4794 0.1077 5.0870
1.9833 1.9684 3.9931 2.4549
0.2558 0.2535 4.5513 4.4031
6.1403 6.1408 6.1403 0.7070
5.5389 5.5248 5.5380 4.3336
1.6142 1.6178 1.6117 5.4109
4.9542 4.9673 4.9537 1.3264

D. Integrated model-based and model-free control

The results for multiobjective optimization of dipole ro-
bustness can be placed in the learning control counterpart
for integrated model-based and model-free quantum robust
control. The performance of such a strategy depends upon
the magnitude of uncertainty and noise associated with the
system and input parameters, respectively. The two types of
robust control considered above, namely robust control under
system parameter uncertainty and input noise, were chosen
because of their potential for combination in the context of
an integrated model-based and model-free control strategy.
Thus far, there have been very few if any examples of model-
based quantum control used to control population transfer in
molecules. The principle is to use the uncertain Hamiltonian
to do model-based robust control based on moments and then
to refine the solutions in the presence of field noise with
the true known Hamiltonian in a model-free learning control
approach. Moreover, the integrated strategy is an example
of adaptive feedback control, wherein the Hamiltonian pa-
rameter estimates obtained through asymptotically efficient
estimators [28] can be updated following learning control,
after which model-based robust control can again be applied
in order to improve convergence. Thus far, although learning
control has been implemented in the quantum control labora-
tory, adaptive feedback control has not.

TABLE III. List of real-time transition probabilities associated
with ACROMUSE solutions under different noisy instances.

Instance 1 Instance 2 Instance 3 Instance 4

0.8556 0.6204 0.8528 0.4272
0.8118 0.9319 0.8570 0.3289
0.6263 0.4128 0.8598 0.1700
0.3380 0.6006 0.8332 0.7671
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TABLE IV. List of real-time amplitudes (including noise) as-
sociated with the different solutions’ modes in Table II and noisy
real-time transition probabilities in Table III.

Amplitude 1 Amplitude 2 Amplitude 3 Amplitude 4

0.1396 0.1465 0.1865 0.1144
0.1092 0.2271 0.0757 0.1569
0.1436 0.0945 0.1097 0.1625
0.1407 0.1452 0.1523 0.1663
0.1024 0.1425 0.2023 0.1698
0.1942 0.1701 0.1629 0.2031
0.1223 0.1577 0.1756 0.1728

V. SUMMARY AND OUTLOOK

We have described model-based and model-free robust
control strategies and explained their methods of convergence
using the asymptotic robustness analysis method. The analysis
demonstrates the mechanism of how these classes of control
methods converge to a particular set of robust solutions. The
more restricted the manipulable variables and the larger the
variations associated with the system and input parameters
are, the harder it is for an optimizer to reach a robust con-
trol solution. In model-based robust control, a multiobjective
genetic algorithm is used to obtain Pareto optimal solutions
in the presence of Hamiltonian uncertainty, in terms of the
nominal and the expected transition probability as well as
with respect to the expectation and variance of the transition
probability. Analysis of robustness of Pareto optimal solu-
tions showed that the trade-offs in terms of the robustness
criteria are system dependent but certain universal features
were identified. Specifically, a set of robust pathways may not
combine optimally under nominal condition if the interaction
between the control field and the dipole parameter is not
strong enough to maximize the transition probability within a
specified field duration and amplitude. In the presence of un-
certainties, however, these pathways may be associated with a

small magnitude of uncertainty such that their expected value
and variance are relatively more robust.

On the other hand, the implementation of model-free ro-
bust control was demonstrated in a closed feedback loop,
where robust optimization over amplitude noise is considered.
Two methods of robust control, an adaptive GA and a tra-
ditional GA, were studied in order to reach a solution in a
dynamic and static landscape, respectively. Robustness anal-
ysis of the solutions obtained reveals that the two algorithms
entail different methods of robustness. While a traditional GA
converges to a particular solution with the highest expected
transition probability, an adaptive GA converges to a set of
population. The individual solutions within the population
obtained in the latter are generally less robust in terms of
their expected transition probability than that obtained with
a traditional GA. They are however collectively more ro-
bust as the best solution is utilized at different instances
of the landscape, which changes due to noise. It is impor-
tant to note that in addition to gaining an understanding of
the magnitude of variation in J due to uncertainties in the
system and field parameters, the method of asymptotic ro-
bustness analysis is also used to determine the number of
samples required to achieve an accurate estimation of sampled
mean. This is useful in both model-based and model-free
robust control when the calculation of expected transition
probability using the asymptotic method is computationally
expensive. To implement the asymptotic robustness analysis
method for large quantum systems, parallel processing can be
applied.

We note that several of the Pareto fronts reported in this
paper could not have been effectively produced with stan-
dard leading-order approximations, since inaccuracies can
reduce performance measure fidelity if the leading-order Tay-
lor approximation for moments is used at each step of ε(t )
optimization. For example, the inaccuracy of the Taylor ap-
proximation for E[J] is exaggerated for the most common
scenario of Gaussian uncertainty (noise), because the first-

FIG. 13. Trajectory of GA optimization (a) under the nominal condition and (b) in the presence of amplitude noise. The blue line
corresponds to the GA trajectory with fixed crossover and mutation operator and the black line corresponds to the adaptive counterpart.
The red (dark gray) and green (light gray) lines are the measure of the healthy population diversity along the optimization trajectory for the
fixed and adaptive crossover and mutation rates, respectively.
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FIG. 14. Schematic of the 2D landscape of (a) TGA and (b) ACROMUSE optimization. The contour plot shows the low distribution of
TGA solutions due to the fixed crossover and mutation rates when compared with that of ACROMUSE solutions, which employs adaptive
crossover and mutation rates.

order correction is always 0, leaving only the second-order
correction to account for the effects of uncertainty. In addi-
tion, as noted above, the standard first-order approximation
for var(J ) [32] is also 0 when Jnom maximized; hence any
front containing varJ and Jnom cannot be constructed with the
standard first-order approximation to the variance. In practice,
leading-order approximations beyond first- and second-order
approximations [32,40] are almost never used, due to the need
for analytical expressions for each higher-order derivative of
J and the lack of available numerical methods for their evalu-
ation beyond term-by-term calculation.

The present work has provided a foundation for the ap-
plication of evolutionary algorithms to both (a) model-based
quantum robust control in the presence of Hamiltonian un-
certainty and (b) model-free quantum robust control in the
presence of field noise. In future work, quantum adaptive
feedback controllers can be designed which improve the

convergence of evolutionary quantum control algorithms by
applying model-based robust control to provide an initial
guess for model-free learning control and then iteratively
updating Hamiltonian parameter estimates based on the data
obtained from learning control. Applications to quantum in-
formation processing [40] may also be explored.

Recently, the application of sampling-based learning con-
trol to experimental quantum robust control design in the
presence of laser field noise has been reported [43]. This
demonstrates the feasibility of applying robust genetic or
evolutionary learning control algorithms in the laboratory to
achieve robust quantum control and also motivates the integra-
tion of model-based quantum robust control in the presence
of Hamiltonian uncertainty with robust experimental learning
control. In addition, the methodologies applied herein can be
employed to reveal the control mechanisms whereby robust
quantum control is achieved in such applications.
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