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Bicircular twisted Laguerre-Gaussian beams possess a definite torus knot angular momentum (TKAM)
Ĵγ = L̂ + γ Ŝ as an alternative a form of angular momentum. TKAM is conserved in nonlinear atomic processes
such as high harmonic generation and can be classified by a time delay parameter τ and a coordination parameter
γ . These parameters are defined by the respective projected orbital angular momentum �i and the energy h̄piω0

of the two superimposed Laguerre-Gaussian beams. We derive a consistent geometric method to determine τ

and γ from the driving beam as well as from the high harmonic radiation. The method relates both invariance
parameters (τ and γ ) to a torus knot which can be constructed from the emitted high harmonic radiation. These
knots are constructed from the spatiotemporal evolution of the electric field of the respective high harmonic
radiation or the driving beam. We demonstrate the classification of the invariance parameters for a planar atomic
gas target irradiated by bicircular Laguerre-Gaussian beams explicitly. In addition, we demonstrate that the
respective torus knots determined by τ and γ can be mapped onto each other within minor modifications.
The numerical calculations are done within the strong-field approximation and the associated quantum orbit
approach. Therefore, we also briefly review high harmonic generation by bicircular twisted light beams. This
introduced geometric method is a different approach to interpret the invariance parameters τ and γ , as well as
their underlying relations, compared to a purely formal derivation. The investigations presented in this work are
in good agreement with previous findings and provide insight into the dynamical symmetry of TKAM in the
context of high harmonic generation induced by bicircular twisted Laguerre-Gaussian beams.

DOI: 10.1103/PhysRevA.104.053116

I. INTRODUCTION

In recent years, strong-field processes like above-threshold
ionization [1,2] and high harmonic generation (HHG) [3–8]
have gained importance. In particular, high-energetic radiation
emitted in the HHG process can nowadays be tailored quite
precisely by utilizing the driving beam properties [9–12]. One
of the most encouraging applications of high harmonic gener-
ation can be found within spectroscopy where high harmonic
attosecond pulses can be used for real-time measurements of
spinning molecules [13], ultrafast relaxation dynamics [14],
or to detect molecular symmetries [15].

It is well known that light beams, like electromagnetic
waves, carry energy. In addition, they possess different forms
of momentum [16,17]. Besides linear momentum, light beams
may carry spin angular momentum (SAM), which is associ-
ated with their local polarization properties, as well as orbital
angular momentum (OAM). The latter is associated with an
azimuthally varying phase of the beam. As a result, such
twisted light beams exhibit a phase singularity on the beam
axis as well as helical phase fronts [18–20].

These types of angular momenta provide a broad range
of variability in strong-field processes like HHG [8,21]. Es-
pecially, HHG driven by twisted light beams has attracted
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particular interest in recent years. The work of Pisanty et al.
[22,23] offered a different way to classify high harmonic
radiation utilizing a different form of angular momentum,
namely the torus knot angular momentum (TKAM). TKAM
solves crucial classification issues of HHG radiation driven
by bicircular bichromatic twisted light beams. More precisely,
TKAM generalizes and simplifies the selection rules associ-
ated with the bicircular driving beam components. In addition,
the mathematical description of HHG induced by bicircular
twisted light beams also significantly improves. Pisanty et al.
[23] also demonstrated that TKAM is conserved in HHG.
To demonstrate the conservation, Pisanty et al. explicitly
calculated the HHG spectrum and validated the statement.
However, the microscopic electron dynamics which cause
the conservation of TKAM remain unknown. Therefore, an
intuitive model and a comprehensive discussion concerning
TKAM in high harmonic radiation are still missing.

In this paper, we derive a means to interpret TKAM in
high harmonic radiation within a geometric approach. Fur-
thermore, we discuss the dynamical symmetry of TKAM in
HHG. We derive an intuitive way to interpret TKAM and
map the corresponding TKAM invariance parameters γ and
τ , separately, onto a torus knot. These invariance parameters
determine the dynamical symmetry R(γα)E(R−1(α)r, t ) =
E(r, t + τα) of the driving beam and the high harmonic ra-
diation. Therefore, γ and τ are crucial in the description of
TKAM in high harmonic radiation. We explicitly demonstrate
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FIG. 1. High-harmonic generation driven by bicircular LG beams. (a) Physical setup: A driving beam (orange), consisting of two
superimposed LG beams, irradiates the physical target atoms (grey dots) from a gas jet (green) that is emitted perpendicularly to the optical
axis (dash-dot line). The target is approximated by a two-dimensional distribution of atoms in the x-y plane (black dots). After the interaction
of the target atoms with the driving beam, high-harmonic radiation (blue) is emitted from the interaction region. (b) Intensity distribution of
the driving beam (�1 = �2 = 1, ω1 = ω2/2 = ω) in the target plane. Lissajous figures indicate the polarization of the superimposed LG beams
for fixed azimuthal angles ϕ. The black dots indicate the electric field vector for a fixed time t and azimuthal angle ϕ. The colored dots display
the electric field maxima for fixed ϕ and t . (c) The phase of the electric field of the driving beam, together with the Lissajous figures also
shown in (b). (d) The blue Lissajous figures are identical to the one in panels (b) and (c), where ϕ = 0 denotes the position at which the electric
field vector is maximized (blue dot). The green, red, and orange lines denote the positions of the field maxima. (e) If the open ends in (d) are
connected, the green, red, and orange lines form a torus knot. (f) Projection of the torus knot constructed in (e) onto a torus.

the mapping of the invariance parameters to the corresponding
torus knots for the high harmonic radiation. However, the
mapping can be analogously applied to the driving beam as
well. Each constructed torus knot determines the eigenvalues
of the associated TKAM operator uniquely. To show this, we
focus on the classification of high harmonic radiation in terms
of its temporal and spatial evolution. Furthermore, we provide
a geometric relationship between the invariance parameters
γ and τ . This relation is associated with the construction of
the torus knot from the electric field maxima of the driving
beam and a scaling factor. Our results offer an intuitive way
to understand TKAM in high harmonic radiation, and our
explicit computations are in good agreement with previous
findings [17,22,23].

This paper is structured as follows. Section II A discusses
the geometric setup as well as Laguerre-Gaussian beams.
Afterward, Sec. II B follows with investigations concerning
the theoretical framework of HHG including the strong-field
approximation and the quantum orbit approach. In Sec. II C,
we discuss the symmetry transformations of twisted light and
introduce the TKAM. Based on this framework, the results
are present in Sec. III. The time delay parameter τ is linked to
and determined from the high harmonic radiation in Sec. III A.
The derivation is based on the temporal and azimuthal evolu-
tion of the high harmonic radiation. Furthermore, in Sec. III B
we determine the coordination parameter γ and link it to
the high harmonic radiation. Considering the findings of
Secs. III A and III B, we finally demonstrate the geometric

relation between τ and γ in Sec. III C. Finally, the last section
summarizes the findings of this work.

In the following, we will use atomic units (h̄ = e = me =
4πε0 = 1) unless stated otherwise.

II. THEORETICAL METHODS

A. Geometric setup and Laguerre-Gaussian beams

We consider a two-dimensional planar atomic gas tar-
get, localized at z = 0 and perpendicular to the optical axis
ez; see Fig. 1(a). The gas target is irradiated by two su-
perimposed counter-rotating biharmonic Laguerre-Gaussian
(LG) beams. In the paraxial approximation, their respec-
tive complex-valued vector potentials Aω1 ξ1

�1,0
and Aω2 ξ2

�2,0
in

Coulomb gauge are given by [24]

Aω ξ
�,n(r, t ) = −

√
I0

ω
C�n

w0

w(z)

(
r
√

2

w(z)

)|�|
L|�|

n

(
2r2

w2(z)

)
× exp

[
− r2

w2(z)
− i

(
k

r2

2R(z)
+ �ϕ − ψ (z)

)]
× exp[i(kz − ωt )]ξ, (1)

where r, ϕ, z are cylindrical coordinates, n is the radial index
which determines the number of radial nodes, and � is the
orbital angular momentum (OAM). Note, all the mentioned
angular momenta in this work are projected onto the op-
tical axis unless stated otherwise. In the above expression,
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ξ ∈ { 1√
2
(1

i ),
1√
2
( 1
−i)} is the polarization vector, in the following

denoted with {�,�} respectively, w0 is the waist radius, k is
the linear momentum, and L|�|

p are the generalized Laguerre

polynomials. Here, zR = k w2
0

2 is the Rayleigh range, I0 is the

beam intensity at the maximum, C�p =
√

2p!
π (π+|�|)! is a nor-

malization constant, and w(z) = w0

√
1 + z2

z2
R

is the radius at

which the field amplitude of a Gaussian beam (equal to a LG
beam of � = 0 and p = 0) decreased to 1/e, with the Gaussian
beam waist w0. The radius of curvature is defined as R(z) =
z[1 + ( zR

z )2] and the Gouy phase as �(z) = arctan ( z
zR

). With
the above vector potential, the complex-valued electric field
of the Laguerre-Gaussian beam can be computed as

Eω ξ
�,p(r, t ) = −∂tAω ξ

�,p(r, t ). (2)

The frequencies, orbital angular momenta, and polarizations
of the beams Aω1 ξ1

�1,0
(r, t ), Aω2 ξ2

�2,0
(r, t ) are denoted as (ω1, ω2),

(l1, l2), and (ξ1, ξ2), respectively. In the following, we denote
E(r0, ti ) and A(r0, ti ) as the respective real-valued fields of
E (r0, ti ) and A(r0, ti ). Since we use an identical Gaussian
beam waist w0 for each beam, this will not be denoted ex-
plicitly. In order to simplify the notation, we will drop the
indices ω, l, ξ and write the vector potentials as well as the
electric fields of the two beams as A1(r, t ),A2(r, t ) and
E1(r, t ),E2(r, t ), respectively. As a result of their OAM, LG
beams exhibit helical phase fronts and a phase singularity
on the optical axis. The helical phase fronts are induced by
the angle-dependent factor e−i�ϕ [19,20]. On the other hand,
the SAM s is associated with the (local) polarization of these
beams, ξ ∈ {�,�} ⇔ s ∈ {+1,−1}, for left and right circu-
larly polarized beams, respectively [25].

In this work, we always assume counter-rotating beams
with ω2 = 2ω1 and equal intensities I0.

B. Quantum orbit approach of high-harmonic generation

To theoretically describe the HHG process driven by strong
laser fields, we utilize the model by Lewenstein et al. [26].
In this model, the properties of high-harmonic radiation are
derived from the time-dependent dipole moment,

D(r0, tr ) = − i
∫ tr

−∞
dti

∫
d3 p d†(p + A(r0, tr ))E(r0, ti )

× d(p + A(r0, ti ))e−iS(r0,p,ti,tr ). (3)

Here, d(p) = 〈p|r̂|g〉 denotes the dipole matrix element of the
bound-free transition of the active electron with 〈p| as the
electron plane-wave continuum state with momentum p and
hydrogen-like 1s ground state |g〉. Complex atoms are usually
described as a superposition of hydrogen wave functions as
in the “Jena Atomic Calculator” [27]. However, here we are
assuming atomic systems with a ground state which can be
approximately described as hydrogen-like. In the dipole mo-
ment (3), the spatial dependence of the driving beam enters
only parametrically. Therefore, each target atom experiences a
spatially constant vector potential as well as a constant electric
field. The phase S(r, p, ti, tr ) denotes the classical action of the

electron in the continuum,

S(r0, p, ti, tr ) =
∫ tr

ti

dt ′′
(

1

2
[p + A(r0, t ′′)]2 + Ip

)
, (4)

where Ip is the ionization potential of the atomic target. To
evaluate the dipole moment (3), we exploit the saddle-point
approximation to solve the highly oscillating time and mo-
mentum integrals. Therefore, the dipole moment reduces to
[26,28,29]

D(r0, ωq ) = − i
∑

s

√
(2π i)2

det(�′′)

( −2π i

t (s)r − t (s)
i

) 3
2

× d†(p(s) + A
(
r0, t (s)

r

))
E

(
t (s)
i

)
× d

(
p(s) + A

(
r0, t (s)

i

))
× e−i�

(
r0,p(s),t (s)

r ,t (s)
i

)
(5)

with

�
(
r0, p(s), t (s)

r , t (s)
i

) = S
(
r, p(s), t (s)

r , t (s)
i

) − ωqt (s)
r . (6)

Here, �′′ is the Hessian matrix of the dipole phase � with
respect to t (s)

r and t (s)
i . The saddle points are denoted as s =

(ps, t (s)
r , t (s)

i ) and are solutions to the saddle point equations

p(s) = − 1

t (s)
r − t (s)

i

∫ t (s)
r

t (s)
i

dτA(τ ), (7a)

Ip = −1

2

[
p(s) + A

(
t (s)
i

)]2
, (7b)

qω − Ip = 1

2

[
p(s) + A

(
t (s)
r

)]2
. (7c)

If we insert the combined vector potential A(r0, t ) =
A1(r0, t ) + A2(r0, t ) and electric field E(r0, t ) = E1(r0, t ) +
E2(r0, t ) of the superimposed LG beams into Eq. (5), we
obtain the dipole moment for a specific harmonic order q with
energy qω. The electric field of the emitted radiation is then
simply given by

EH (r0, t ) =
∫

dωqD(r0, ωq)ω2
qeiωqt

=
∑

q

D(r0, ωq)ω2
qeiωqt . (8)

In the present case, the energy spectrum of the high-harmonic
radiation is discrete since the driving beam components are
monochromatic. In the following, we will refer to the high har-
monic electric field (8) as high harmonics (HHs). The times
t (s)
i and t (s)

r can be interpreted in a quasiclassical picture as ion-
ization time and recombination time, respectively [30,31]. The
saddle-point equations (7) and the respective saddle points for
these times imply a strong relationship between the magnitude
of the driving beam’s electric field and the dipole moment (5)
[32,33]. Therefore, this relation is imprinted in the temporal
and azimuthal evolution of the outgoing HH field. The evo-
lution of a field F(x, y) with respect to the arbitrary variable
x describes the function value F(x, y0) for increasing or de-
creasing values of x within the domain of x. Here, y0 denotes
a set of fixed variables in a way according to which

F(x) ≡ F(x, y0). (9)
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The temporal and azimuthal evolution of the driving beam
and the HHs can be likewise denoted with regard to
their field maxima Eϕ (t ) = maxϕ[E(r0, ϕ, z0, t )] and Et (ϕ) =
maxt [E(r0, ϕ, z0, t )]. Here, the index j = t, ϕ denotes the di-
mension with regard to which the field E is maximized. The
respective variables r0 and z0 are associated with the fixed
variable set y0 in Eq. (9). This restriction from the general field
E(r, t ) to the corresponding field maxima is a simplification
to display the crucial dynamical behavior concerning t and ϕ.

The counter-rotating ξ1 = �, ξ2 = � composition of the
bichromatic driving beam in Sec. II A is necessary, since HHG
for bicircular corotating beams is exponentially suppressed
[34]. In general, the LG beams A1(r, t ), A2(r, t ) can possess
arbitrary integer OAM and frequencies ωi = piω with co-
prime integers p1 and p2. Moreover, both LG beams share
a common fundamental frequency ω. With the above assump-
tions for the driving beam parameters, their combined electric
field is

E(ϕ, t ) ≡ E(r0, ϕ, z0, t )

= E0(r0, z0)

(
cos(l1ϕ − ω1t ) + cos(l2ϕ − ω2t )
sin(l2ϕ − ω2t ) − sin(l1ϕ − ω1t )

)
.

(10)

The radial position r0 = const is chosen such that the time
averaged local intensity I (r) = ‖E(r)‖2 of the driving beam is
maximized. Thus, the coordinate space of the driving beam is
reduced to two dimensions for a fixed position on the optical
axis z0 = const = 0 and r0. The remaining electric field is a
function which depends on the time t and the azimuthal angle
ϕ [E(r0, ϕ, z0, t ) → E(ϕ, t )].

This reduced coordinate space of the driving beam (10)
is found in the HHs (8) as well. Here, the emitting targets
form a ring with radius r0 that is associated with the dominant
contribution of the high harmonic time-averaged intensity
profile in the x-y plane; see Fig. 1(b). The temporal evolution
of the HHs exhibits p1 + p2 separate sections in one period
T = 2π/ω of the fundamental frequency ω. The sum p1 + p2

represents the number of intensity maxima of the electric field,
concerning the time, where each section is associated with
one maximum. Here, a section is defined as the time interval
between two intensity minima. An illustration can be found
in Fig. 2(b). These separate sections are likewise known as
attosecond pulse for one section and attosecond pulse trains
(APTs) for multiple sections. Attosecond pulses are separated
by points in time with minimized electric field intensity. This
indicates that the APTs mimic the temporal evolution of the
electric field at the position of the target atom.

In the HHG process, the active electron accumulates the
dipole phase (6). This dipole phase induces a constant phase
shift between the electric field of the driving beam and the
emission of the HHs. The induced phase shift is equal for all
target atoms since the ionization and recombination times are
characteristic. Therefore, the HHs are emitted after a constant
time delay with respect to the electric field of the driving
beam. The phase shift, in general, does not affect our analysis
below. Formally, this can be seen in Eq. (10), where the
azimuthal angle as well as the time appear as an argument

of the trigonometric functions but not as an argument of the
electric field amplitude.

C. Bicircular Laguerre-Gaussian beams and TKAM

As discussed above, monochromatic LG beams are eigen-
states of the OAM and SAM projection operators. Therefore,
these quantities are conserved during the propagation of the
beams. According to Noether’s theorem, the conservation of
a quantity is directly linked to the invariance of the system
under a transformation of a global continuous symmetry [35].
The conservation of OAM and SAM is the consequence of
transformations that leave the electric field of a LG beam in-
variant. The transformations associated with the conservation
of OAM are rotations of the coordinate system with respect
to the optical axis, i.e., the angle α. Likewise, SAM conserva-
tion is associated with the rotation of the electric field vector
itself. In addition, each of these rotations needs to be linked
with a time translation to fulfill the symmetry conditions.
Furthermore, the subsequent application of both rotations is
associated with the conservation of total angular momen-
tum (TAM). These rotations are called coordinated rotations
(CRs). The corresponding symmetry transformations related
to the respective conservation laws are explicitly denoted as

E i(R−1(α)r, t ) = E i

(
r, t + �iα

ωi

)
, (11a)

R(γα)E i(r, t ) = E i

(
r, t ± γiα

ωi

)
, (11b)

R(γα)E i(R−1(α)r, t ) = E i

(
r, t + (�i ± γi )

α

ωi

)
. (11c)

In these expressions, R(γiα) and R−1(α) represent rotations
of the electric field and the coordinate system, respectively.
The variable γiα is associated with the orientation of the
Lissajous figure Fig. 1(b) in the transverse polarization plane.
The parameter (±)γi represents the coupling parameter for
CRs and the sign ± denotes the polarization. For the case of
monochromatic LG beams, γi can take an arbitrary value in
the symmetry transformations (11).

Equations (11) state that OAM, SAM, and TAM are well-
defined quantum numbers and are therefore independently
measurable. Equivalently, monochromatic LG beams can be
classified by their respective symmetry group. This group is
called the full symmetry group of paraxial optics SO(2) ×
SO(2) [22,36].

We now turn to the more intricate case of bicircular twisted
light beams. In general, the superposition of two LG beams
does not need to fulfill the symmetry properties of their in-
dividual components. This property can be seen explicitly
if we focus on the temporal and azimuthal dependencies of
monochromatic LG beams in Eqs. (11). Here, the symmetry
transformations are crucially dependent on the OAM �i, the
frequency ωi, and the polarization ξi. The superposition of an
additional beam with different parameters �1 �= �2, ω1 �= ω2,
and/or ξ1 �= ξ2 will lead to a violation of the symmetry con-
ditions of the first beam. This symmetry breaking induces
ill-defined OAM, energy, and/or SAM eigenvalues of the su-
perimposed beam. Moreover, for different beams, the TAM is
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FIG. 2. (a) Bicircular field as a superposition of a circularly polarized harmonic (red) and its counter-rotating second harmonic (blue),
which gives rise to the Lissajous figure (trefoil shape) if the position of the electric field vector is followed in time. (b) Absolute values for
the electric field at azimuthal angles ϕ = 0 and ϕ = π/2 as a function of time. (c)–(f) Orientation of the Lissajous figures for various values
of the azimuthal angle ϕ of a bicircular driving beam (�1 = �2 = 1, ω1 = ω2/2 = ω). The background shows the cycle averaged intensity
distribution of the driving beam with the characteristic singularity on the beam axis. Each panel (c)–(f) shows the electric field at the target for
increasing times t = 0, T/12, T/6, T/3. The black dots indicate the electric field at the respective angle in the target plane. The colored dots
denote the maxima of the electric field concerning the azimuthal angle similar to Figs. 1(b) and 1(c). (g) Temporal evolution of the HHs with
respect to the black axis (time axis). The separate helices indicate the HH intensity maximum with respect to the azimuthal angle at the target
(light gray plane at the bottom). The dots are the field maxima that we also show in (c)–(f). (h) The time axis in (g) is bent and connected for
the times t = 0 and t = T . (i) The resulting closed line of intensity maxima has the topology of a torus knot.

also not well defined, ĴzE i �= jzE i, which restricts the beam
symmetries even further.

In the vector potentials (1), we see that the temporal ωt and
azimuthal ϕ� contributions to the complex phase are identical
besides a respective constant factor ω and �. This can be
recognized even better in the arguments of the trigonometric
functions in the superimposed electric field (10). Here, the
time t and the azimuthal angle ϕ are coupled to the frequency
ωi and the OAM �i, respectively. The frequency, as well as
the OAM of the LG beam, define the temporal and azimuthal
evolution with ωit and �iϕ, respectively. Thus, the temporal
evolution of two superimposed LG beams is determined by ω1

and ω2. This holds for the azimuthal evolution and �1 and �2 as
well. In contradiction to the superposition of two LG beams,
the time and azimuthal dependencies of the superimposed
beam are nonlinear. This can be seen explicitly in the electric

field (10). Here, the different arguments of the trigonomet-
ric functions do not allow one to rewrite the superimposed
beam in a form similar to a single LG beam. Therefore, the
superimposed beam is no longer invariant under the symmetry
transformations of a single LG beam (11). Moreover, the
explicit parameters �i and ωi of the superimposed beam define
the symmetry transformations in Eq. (11). Thus, the explicit
symmetry transformations need to be adjusted to each beam
explicitly.

The electric field of monochromatic bicircular twisted light
beams can be expressed as

E = Re(E1ei�1ϕξ1 + E2ei�2ϕξ2). (12)

Here, we omit the spatial and temporal dependencies of the
amplitudes Ei = Ei(r, z, t ). Ballantine et al. [17] found that
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such fields satisfy the eigenvalue equation

(L̂ + γ Ŝ)E = jγ E, (13)

with the eigenvalue

jγ = �2 + �1

2
(14)

and the parameter

γ = �2 − �1

2
. (15)

Therefore, a half-integer TAM quantization arises for
monochromatic bicircular beams [17].

However, it is possible to generalize the idea of Ballantine
et al. to bichromatic bicircular beams. In this scenario, the
previously arbitrary parameters γi need to be restricted. The
restriction intends to induce the same rotation of the electric
field for both beams. This can be written in an explicit way as

γ1α ≡ γ2α

⇒ γ1 = γ2, (16)

where γiα is the angle of rotation of the electric field. The
restriction enables a description of the driving beam which
fulfills a symmetry transformation similar to Eq. (11c).

The solution to these symmetry transformation issues was
found by Pisanty et al. [22]. Their solution is a generalization
of the findings of Ballantine et al. [17] and corresponds to
a form of angular momentum called TKAM [22,23]. The
symmetry transformations for bicircular bichromatic twisted
light beams are then

R(γα)E(R−1(α)r, t ) = E(r, t + τα), (17)

where τ is the time delay parameter associated with the
coordination parameter γ on the left-hand side. Above all,
bicircular bichromatic twisted light beams do not fulfill any
symmetry conditions concerning the rotation of the coordinate
system or the electric field separately. Thus, OAM and SAM
are not well defined for those superimposed beams.

The TKAM operator is then defined as

Ĵγ = L̂ + γ Ŝ. (18)

In contrast to the arbitrary γi of Eq. (11c), the superimposed
driving beam obeys Eq. (17) only for discrete values of γ ,

γ = �2ω1 − �1ω2

ω1 + ω2
= �2 p1 − �1 p2

p1 + p2
. (19)

Here, γ is defined to be equal for both LG beams and fulfills
Eq. (17). These restrictions reduce all possible coordination
parameters γi of the LG beams to a set of integer multiples of
γ . Therefore, γ defines the symmetry transformations of the
superimposed driving beam. The time delay parameter τ on
the right-hand side of Eq. (17) classifies the time shift induced
by a CR about α and αγ .

Thus, the symmetry group of the driving beam is a sub-
group of the full symmetry group of paraxial optics SO(2) ×
SO(2). Since the full symmetry group can (geometrically) be
interpreted as a tensor product of two circles, it constructs a
torus Fig. 1(f) (grey surface). While, in general, tori of higher
genus exist and are mathematically well known, only a torus

of genus g = 1 (one hole) obeys the geometric properties of
the symmetry group SO(2) × SO(2). The surface of these
tori can be parametrized by two (locally) orthogonal dimen-
sions: the poloidal dimension and the toroidal dimension. The
toroidal dimension describes the rotation around the hole,
while the poloidal dimension locally rotates orthogonally.

In general, two additional dimensions exist in our case.
However, we can reduce these by fixing the poloidal- and
toroidal radii Rpol ≡ Rpol

0 , Rtor ≡ Rtor
0 with Rpol

0 , Rtor
0 �= 0. The

remaining torus surface is two dimensional. This assumption
is physically imprinted in the restriction to the target ring of
radius r0 in Eq. (10). Furthermore, it is imprinted in the finite
time interval from t ∈ [t0, t0 + T ].

Finally, since Eq. (17) represents a subgroup of the full
group of paraxial optics, this subgroup is located within
the torus as well. If we consider discrete τ, γ and constant
rpol

0 , rtor
0 , the full four-dimensional torus of paraxial optics is

further reduced to one dimension. Therefore, the subgroup
associated with the dynamic symmetry of the driving beam
(17) is one dimensional. Each element of this one-dimensional
subgroup winds around the surface of the two-dimensional
torus. The elements of the subgroup are called torus knots
and are characterized by two integer numbers m, n [37]. The
integers m, n count the number of times the knot crosses a
fixed point corresponding to the poloidal or toroidal direction,
respectively. Note that m is a signed integer such that these
numbers build an (m, n) signed torus knot. The sign of m
denotes the orientation of the rotation about the poloidal axis.

The torus knot of the driving beam is illustrated in Fig. 1(f)
with ω1 = ω, ω2 = 2ω, and �1 = �2 = 1. For every fixed
azimuthal angle ϕ0 (toroidal direction), there are p1 + p2

electric field maxima with respect to time. These maxima
are associated with the trefoil (poloidal direction) tips of the
Lissajous figure in Fig. 1(d). If the azimuthal angle is varied,
the trefoil tips describe lines. These lines are the electric field
maxima depending on time t and the azimuthal angle ϕ. The
poloidal dimension is associated with the time t ∈ [t0, t0 + T ],
where T = 2π/ω is the period associated to the fundamental
frequency. Counting the poloidal and toroidal rotations of the
torus knot in Fig. 1(f) leads to the torus knot (m = −1, n = 3)
which corresponds to the coordination parameter γ = − 1

3 .
The associated time delay parameter τ in Eq. (17) then

reads

τ = �1 + �2

ω1 + ω2
. (20)

A comparison of Eqs. (19) and (20) reveals the nature of
their dependencies on the driving beam parameters ωi, �i.
The beam parameter dependency agrees with the discussion
at the beginning of this subsection. In addition, the TKAM
eigenvalue can be rewritten as a function of the time delay
parameter τ ,

j (q)
γ = qωτ. (21)

In the past, different methods were developed to classify HHs
from bicircular LG beams [9,10]. These methods predomi-
nantly classify the HHs within photon-counting methods. The
counting methods distinguish between photons of different
beams implicitly. Therefore, the driving beam, as well as
the HHs, are treated as two separate beams. This treatment
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prohibits the construction of a well-defined angular momen-
tum operator.

The TKAM, on the other hand, approaches the bicircular
driving beam as a single beam and leads to mathematically
well-defined eigenvalues. The corresponding eigenstate is the
driving beam itself. Therefore, the eigenvalue of the TKAM
operator acts as a good quantum number that is conserved
in the HHG process and increases linearly with the harmonic
order q; see Eq. (21).

Before we continue with the discussion of explicit results,
let us briefly highlight the most important points of this sec-
tion. The temporal and azimuthal evolutions of the HHs and
the driving beam are imprinted in their time and azimuthal
angle-dependent field maxima. Therefore, the HHs and the
driving beam can be reduced to one-dimensional lines, or
knots, which represent the crucial properties of these fields.

In contrast to a monochromatic driving beam, bichromatic
bicircular driving beams cannot be characterized by their pro-
jected TAM jz. Moreover, these driving beams do not fulfill
the dynamical symmetry transformation Eq. (11c). Instead,
the explicit transformations are coupled to the driving beam
parameters (ω1, ω2) and (�1, �2) themselves. Therefore, the
superposition of different beams leads naturally to a breaking
of the dynamical symmetries associated with OAM, SAM,
and TAM. This classification issue is solved with the intro-
duction of the TKAM operator. The TKAM operator leads
to a reduced version of the dynamical symmetry concerning
the LG beams. This reduced dynamical symmetry is realized
within the discrete parameters γ and τ of the former continu-
ous parameters of the LG beams γi and τi.

III. DISCUSSION AND RESULTS

In this section, we will demonstrate how the time delay pa-
rameter τ and the coordination parameter γ can be associated
with a torus knot (Secs. III A and III B), and derive a method
to transform the respective τ and γ torus knots into each other
(Sec. III C). Within this method, we associate both tori with
the same two-dimensional representation of either the electric
field maxima of the driving beam or the HHs.

A. Classification of HHs based on their temporal evolution

In our explicit calculations, we will fix the beam intensi-
ties I01 = I02 = 4 × 1014 W/m2, the fundamental frequency
ω = 0.057, the Gaussian beam waist at the focus of both
beams, w0 = 60 μm, the atomic ionization potential Ip =
24.58 eV (He), the explicit frequencies of the LG beams
p1 = 1, p2 = 2, and the OAM of the LG beams l1 =1, l2 =1
unless stated otherwise.

The coordination parameter γ of the driving beam is
associated with a torus knot, as shown in Figs. 1(d)–1(f)
[22]. Therefore, the azimuthal dimension corresponds to the
toroidal axis of the torus and the time on the poloidal axis.
The physical dimension, which is associated with the toroidal
axis, determines the torus knot as either a spatial torus knot or
a temporal torus knot. Accordingly, Fig. 1(f) shows a spatial
torus knot since the azimuthal angle is associated with the
toroidal direction. Note that the formation of these tori is ap-
plicable since we reduce the dimensionality of the polarization

field from three to two dimensions. The knotted structure of
the polarization figure discussed in this work can therefore be
reduced from their generalized version in [38].

On the other hand, the time delay parameter τ in the
symmetry transformation (17) of the electric field can also
be related to a torus knot. In Sec. II A, we demonstrated that
the intensity maxima of the HHs and the electric field of the
driving beam have an indirect relationship. This relationship is
physically imprinted as a time delay �t = t (s)

r − t (s)
i between

the ionization time of a specific target atom and the emission
of a respective harmonic photon. Based on the symmetry
transformation (17), the time delay can also be interpreted as
a CR. The explicit angle of rotation α then reads

�t = τα�t ⇒ α�t ≡ �t

τ
. (22)

In the numerical calculations below, we restrict the sum over
all saddle points in the dipole moment (5) to the saddle point
associated with the dominant contribution. In general, this
saddle point is related to the shortest trajectory in the quantum
orbit approach [39]. The finite travel time of the continuum
electron leads to a finite time delay �t between the ioniza-
tion of the active electron and the emission of a harmonic
photon. Each saddle point has characteristic ionization and
recombination times which induce the constant time delay. In
the first instance, the constant time delay can be recognized
as an angle α�t between the intensity maximum of the driving
beam and the intensity maximum of the HHs for a fixed time.
Note that the respective intensity maxima of the driving beam
and the HHs evolve identically with t and ϕ up to the constant
azimuthal shift.

Let us now focus on the temporal and azimuthal evolution
of the HHs. As other authors have already shown [7], HHs
generated from bicircular driving beams exhibit a helical in-
tensity distribution [40]. Due to their geometry, these helical
structures are called light springs.

We will further discuss the origin and shape of these light
springs in detail. In Figs. 2(c)–2(f), we present the intensity
distribution of the driving beam (�1 =�2 =1; ω1 =ω2/2 = ω)
near the focus. The small Lissajous figures demonstrate how
the orientation of the local polarization changes along the
azimuthal angle. Each Lissajous figure denotes the electric
field vector as it evolves over one period T of the fundamental
frequency. The black dots indicate the electric field for a fixed
time t = t0. Figure 2(b) shows the modulus of the electric field
as a function of time for different values of the azimuthal an-
gles. For ϕ = 0, the electric field is maximized at t = 0, which
is also indicated by the blue dot in (c). At distinct azimuthal
angles, the electric field has distinct values for t = 0, as
demonstrated by the position of the black dot in the Lissajous
figures which changes along the azimuthal angle. According
to Eq. (17), a rotation of α0 in the azimuthal direction causes
a delay in time of τα0. As discussed in Sec. II A, the leading
contribution of the HHs is related to a narrow region around
the modulus of the electric field maximum.

In general, HHG driven by bicircular counter-rotating
beams leads to the emission of p1 + p2 separate attosecond
pules per fundamental period T . Thus, the maxima of the APT
are separated in time by 2π

(p1+p2 )ω . Furthermore, a change of
the azimuthal angle of the superimposed beam leads to a time
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FIG. 3. (a), (b) Temporal evolution of the light springs formed by the HHs. The figures display the contour obtained at 80% of the
maximum electric field strength. Therefore, we included the 16th up to the 25th harmonics. The parameters of the driving beam are (a)
�1 = �2 = 1, ω1 = ω2/2 = ω and (b) �1 = 2, �2 = 1, ω1 = ω2/2 = ω. (c)–(k) Intensity distribution of (a) for the times t = j T

9 with the
integers j ∈ [1, 9], so that t increases from (c) t = T

9 to (k) t = T .

delay of 2π �1+�2
(p1+p2 )ω . Consequently, there are exactly �1 + �2

maxima along the azimuthal direction. These �1 + �2 maxima
simultaneously lead to the emission of an attosecond pulse
which ensures that the light spring consists of �1 + �2 helices.
Note, in the case of �1 = −�2 the temporal translation decou-
ples from the azimuthal rotation in the dynamical symmetry.
Therefore, the harmonic emission is synchronized throughout
the azimuthal profile of the beam. The phase fronts of the
driving beam become flat planes similar to the not-twisted
scenario.

The light spring is visualized in Fig. 2(g) for the specific
parameters �1 = �2 = 1, ω1 = ω2/2 = ω. If the open ends of
the light spring are connected similarly as shown in Fig. 1(c),
they form the torus knot displayed in Fig. 2(h). As before, this
knot can be projected onto the surface of a torus, which is
shown in Fig. 2(i). This torus knot is classified by the winding
number around the toroidal and poloidal axis, respectively.
Therefore, the torus knot visualized in Fig. 2(i) is an (m =
3, n = 2) torus knot. We designate this knot as a temporal
torus knot, in analogy to its spatial counterpart above.

If we compare the numbers m = 3 and n = 2 to the general
scenario outlined in the previous two paragraphs, we can
deduce the dependencies

n = �1 + �2, (23a)

m = p1 + p2. (23b)

These relations allow one to determine the time delay
parameter with regard to the geometric representation of the
light spring:

τ = n

mω
= �1 + �2

ω1 + ω2
. (24)

For the special torus knot depicted in Figs. 2(g)–2(i), the
time delay parameter thus follows as τ = 2

3ω
.

Note that Eqs. (23a) and (23b) contain no information
about the respective parameters li and pi of the two individual
LG beams. However, this is not surprising since the TKAM
treats the driving beam as a single object. Therefore, the driv-
ing beam itself is not characterized by single parameters of the
driving beam more than by the parameters that characterize
their composition.

The time delay parameter can be simply read off of the light
spring, by utilizing the geometric relation between τ and the
HHs. Subsequently, the eigenvalue of the TKAM operator can
be calculated without knowledge of the explicit initial beam
configuration via

j (q)
γ = q

n

m
. (25)

Furthermore, the light springs may exhibit a nontrivial helix
topology. Therefore, the different helices connect nontrivially
while extended over one period T . This nontrivial topology
manifests itself for fractional beam parameter combinations
of p1+p2

�1+�2
. In detail, the azimuthal shift induced by a time delay

can be defined with Eq. (17) to be

α�t = �t

τ

⇒ T

τ
= 2π

p1 + p2

�1 + �2
. (26)

Therefore, each helix rotates p1+p2

�1+�2
times in the azimuthal

direction for a time delay of �t = T .
We present explicit numerical results in Fig. 3. Here, the

driving beam parameters are (a) �1 = �2 = 1, ω1 = ω2/2 =
ω and (b) �1 = 2, �2 = 1, ω1 = ω2/2 = ω, where the har-
monic order ranges from 16 to 25. The limitation of the
harmonic orders used is the attempt to retain the numeri-
cal calculation time within a feasible time frame. However,
expanding the range of the used harmonic orders does not
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FIG. 4. (a) Absolute value of the electric field of the driving beam (blue) and the superimposed electric fields of the HHs at a fixed position
(black). (b) Temporal evolution of the HHs in the near field and their associated two-dimensional projections where the changing color indicates
the temporal evolution. (c) Spatial evolution of the emitted HHs with resolved angle-dependent polarization. The polarization figure is also
shown in (b) as projection onto the Ex-Ey plane.

affect the results significantly. These plots are in excellent
agreement with the properties of the light springs introduced
above. Figures 3(a) and 3(b) display two and three helices,
respectively, which agree with our discussion above. In partic-
ular, the light spring displayed in (a) offers a nontrivial helix
topology, while the topology in (b) is trivial. Figures 3(c)–3(k)
illustrate the intensity distribution of the HHs for uniform time
steps. Note that, for every point in time, the number of helices
is �1 + �2 = 2 in (a) and (c)–(k), and �1 + �2 = 3 in (b). The
intensity distributions are identical for three separate times,
which is linked to the fixed number p1 + p2 = 3 of temporal
maxima. Thus, this representation contains no information
about the polarization of the HHs.

B. Classification of HHs based on their spatial evolution

In the previous subsection, the light spring was associated
with the time delay parameter τ . Here, we show that the
coordination parameter γ can similarly be associated with the
HHs. The method to do so is similar to the one illustrated
in Figs. 1(d)–1(f). In contrast to Figs. 1(d)–1(f), however,
there is no analytic formula that describes the time-dependent
HH maxima. Fortunately, the explicit times t̄ that maximize
the HHs in the saddle-point approximation (5) of the dipole
moment need not be known explicitly. Instead, the following
discussion will be based on the symmetric properties of the
driving beam and the emitted HHs, similar to the seminal
paper of Alon et al. [41]. As discussed in Sec. II B, the time
delay �t between the ionization and recombination times
of the active electron remains constant if the recombination
time and azimuthal angle are varied, respectively. Again, this
constant time delay allows one to couple each electric field
vector of the driving beam to an unknown HH dipole vector.
Additionally, identical electric field strengths induce identical

HH dipole strengths which induce only a difference in the po-
larization. Thus, even if the explicit dependency is not known,
each HH dipole maximum can be associated with an electric
field maximum.

Moreover, since HHG is a parametric process, the HHs
need to preserve the symmetric structure of the electric field
with respect to time [32]. Therefore, since the electric field of
the driving beam has p1 + p2 field maxima within one period
of the fundamental frequency T , the polarization figure of
the electric field has p1 + p2 separate leaves. The HH electric
field can than be understood as an element of the cyclic group
Cp1+p2 of order p1 + p2. A multiple of a 2π

p1+p2
rotation in

the polarization plane leaves the polarization figure of the
driving beam invariant. This invariance implies that the HHs
need to preserve the symmetry as well. Therefore, the HH
maxima mimic the polarization orientation of the Lissajous
figure induced by the driving beam [33].

Since the polarization orientation of the HHs mim-
ics the temporal and azimuthal evolution of the driving
beam, the spatial torus knot can be constructed as illus-
trated in Fig. 1(f). This qualitative analysis of the HHs
yields an explanation for the conservation of TKAM (and
especially γ ).

To underscore the above explanation, we present explicit
numerical calculations in Fig. 4 for the same beam parameters
that we used in Sec. III A. Here, we included harmonic orders
from the 16th to the 50th. The constant time shift �t between
the emission of two HH pulse maxima Fig. 4(a) demonstrates
the association of each HH pulse with a certain intensity max-
imum of the driving beam. The explicit temporal evolution
of the HHs in the near field is shown in Fig. 4(b). The thin
gray lines display the respective projected contribution of the
HHs and the color scheme denotes the increasing time. The
conservation of the polarization symmetry can be seen in

053116-9



MINNEKER, BÖNING, WEBER, AND FRITZSCHE PHYSICAL REVIEW A 104, 053116 (2021)

2

0
20

(b)(a) (c)

t

0 20

100 52

2

0

t

~

~

FIG. 5. Schematic two-dimensional representation of the elec-
tric field maxima of the superimposed HHs generated from electric
field maxima of the driving beams with (a), (b) �1 = �2 = 1, ω1 =
ω2/2 = ω and (c), (d) �1 = −2, �2 = 1, ω1 = ω2/2 = ω. (a) and
(c) are associated with the temporal torus knot (light spring) and
correspond to the parameters τ = 2/3 ω−1, γ = −1/3, and α̃max =
π while (b) and (d) are associated with the spatial torus knot and
the corresponding parameters τ = −1/3 ω−1, γ = 5/3, and α̃max =
10π . Panels (b) and (c) are obtained by keeping only the respective
left sides of the dashed line in panels (a) and (d). In order to guide
the eye, equal colors represent equal toroidal coordinates of the
resulting torus knot. Therefore, the dimension with evolving color is
associated with the toroidal axis and the remaining dimension with
the poloidal axis.

the Ex-Ey plane for t = 0. Note that the polarization figure has
six peaks instead of three since we do not take the modulus of
the HH electric field. A comparison of Fig. 1(b) with Fig. 4(c)
reveals the conservation of γ and further agrees with the
discussion above. The polarization figure of the HHs rotates
by an angle of 2πγ = − 2π

3 on the target while the azimuthal
angle ϕ is increased from 0 to 2π . This is explicitly imprinted
in the rotation of the green dots of the polarization figure in
Fig. 4(c) that marks a specific maximum of the HHs.

C. Geometric relation between spatial
and temporal representations

In Secs. III A and III B the invariance parameters τ and
γ of the TKAM operator were associated with the HHs.
Both derivations are based on the maxima of the HHs and in
the latter case also their local polarization. In particular, the
derivation is focused on the temporal and azimuthal evolution
of the HH maxima. As discussed above, the HHG process con-
serves the symmetric structure of the driving beam. Therefore,
the following investigations are valid not only for the driving
beam but also for the HHs. The evolution of the electric field
maxima can be represented as a pattern of tilted straight lines
as illustrated in Fig. 5. This two-dimensional representation of
the electric field maxima classifies the time delay parameter τ ,
see Figs. 5(a) and 5(c), as well as the coordination parameter
γ , see Figs. 5(b) and 5(d). In the case of the time delay
parameter we can read n and m as defined in Eqs. (23) from

panels (a) and (c) separately. Here, the number of times a
colored line crosses the solid border gives n (ϕ axis) and m
(t axis), respectively. Below we will discuss a similar relation
for the coordination parameter.

The time interval between two field maxima of the HHs is
given by

�T = 2π

ω1 + ω2
= T

p1 + p2
. (27)

If we use the symmetry transformation (17) and the angle
of rotation (22), the time shift can be transformed into the
azimuthal shift α�T = �T

τ
= 2π

�1+�2
. The explicit values for

�1 = �2 = 1, ω1 = ω2/2 = ω are then α�T = π and �T =
T
3 . These values can be recognized in Fig. 2 with (c) for time
t = 0 and (f) for time t = T

3 . In (c) the colored dots denote the
explicit electric field maxima for azimuthal angles ϕ = 0, π

at time t = 0. Here, we can see that the colored dotes are
separated by α�T = π . In addition, the time shift �T is found
by the comparison of the colored dots on the dashed Lissajous
figure in Figs. 2(c) and 2(f).

Inserting α�T into Eq. (17) leads to the specific rotation
angle 2π

�1+�2
γ of the Lissajous figure. In Figs. 2(c)–2(f) this

rotation angle is α�T γ = −π
3 and therefore the symmetry

transformation reads

R(α�T γ )E(R−1(α�T )r, t ) = E(r, t + �T ). (28)

However, one needs to carefully consider the boundary condi-
tions of the spatial torus knot. To do so, we use the periodicity
of the electric field regarding the fundamental frequency T .
Hence, the time shift and the associated azimuthal shift are
given by T = (p1 + p2)�T and αT = (p1 + p2)α�T , respec-
tively. The polarization rotation concerning the temporal shift
can be interpreted within a simple geometric context. The
angle αT γ describes the rotation of the Lissajous figure in-
duced by increasing (or decreasing) the azimuthal angle on
the target for αT . We start from an electric field maximum at
α(1) = 0 until we reach the (p1 + p2)th maximum at α(p1+p2 ).
Therefore, a translation in time from t0 to t0 + T induces a
polarization rotation of T γ

τ
. This evolution of the Lissajous

figure can be seen in Fig. 1(d).
We are now able to relate the temporal as well as the spatial

torus knot to the two-dimensional representation of the field
maxima in Fig. 5. Note that both tori consist of a temporal
dimension but not the same spatial dimension (target plane
and polarization plane). As demonstrated above, the polariza-
tion vector of the HHs rotates T γ

τ
times within one period

of the fundamental frequency. Therefore the two-dimensional
representation of the field maxima needs to be scaled from the
azimuthal angle α ∈ [0, 2π ] to α̃ ∈ [0, |T γ

τ
|]. Thus the upper

limit of the angle α̃ with regard to the spatial torus knot reads

α̃max =
∣∣∣∣2π

ω

�2 p1 − �1 p2

�1 + �2

∣∣∣∣ =
∣∣∣∣T γ

τ

∣∣∣∣. (29)

The change of the upper angle boundary is necessary since the
inherent rotation of the electric field vector and the coordinate
system need to be considered as well. In Fig. 5, τ indicates
the gradient with respect to the angles α and α̃. This relation
provides a geometrical explanation for the change of the upper
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boundary of α̃ in Eq. (29),

max[EH (̃α(t ))] = τ α̃(t ) = tγ , (30)

where max[EH ] denotes the electric field maxima of the HHs.
Here, we can see explicitly that the electric field maxima
rotate γ times in the polarization plane for t ∈ [t0, t0 + T ].
This results in a generalization of the approach of Pisanty
et al. [22,23] to relate the polarization rotation regarding a
2π azimuthal rotation to the coordination parameter γ .

Figure 5 shows two examples of these two-dimensional
representations. To explicitly form a temporal or spatial torus
knot, respectively, the dimension with constant color need to
be bent and connected to form a cylinder. Note that in Fig. 5(c)
no dimension with constant color seems to exist. Here we see
that the line color changes with time and therefore cannot
be constant. Thus, in this example, the azimuthal dimension
need to be connected. Afterwards, the remaining open ends
of the cylinder need to be connected to form the respective
torus knot. These operations are the geometric representation
of periodic boundary conditions. In Figs. 5(a) and 5(c) the
associated boundary conditions are related to the time and the
azimuthal angle. On the other hand, the boundary conditions
associated with (b) and (d) are identified with time and the
rotation angle in the polarization plane.

Bending and connecting the azimuthal dimension of the
flat two-dimensional representation in Figs. 5(a) and 5(c)
leads to a cylinder which represents the light spring. The
connection of both open ends yields the temporal torus knot
that determines the time delay parameter τ .

If we consider Figs. 5(b) and 5(d) and interchange the
order of connection, we obtain the spatial torus knot which
determines the coordination parameter γ . Spatial and tempo-
ral torus knots are classified within their evolution based on
the azimuthal angle and time. Therefore, it is not surprising
that the invariance parameters τ and γ are determined by the
factors ωi and �i which appear in front of these respective
dimensions (ωit , �iϕ) in Eq. (10).

The geometric approach pursued in this work provides an
explicit explanation for the dependence of τ and γ with regard
to the beam parameters ωi and �i. The geometric approach
demonstrated here to classify TKAM is in good agreement
with previous findings [17,22,23]. In addition, our approach
provides a vivid model to illustrate and intuitively understand
TKAM.

IV. CONCLUSION

The generation of high harmonics within bicircular twisted
light beams has considerably improved in recent years. There-
fore, a proper theoretical description of this process and the
associated models is necessary. In this work, we developed
a geometric method to determine the time delay parameter τ

associated with the TKAM in the context of HHG of planar
atomic gas targets.

We showed that the time delay parameter τ can be read
off of the temporal evolution of the intensity distribution of
the high harmonic radiation. This temporal evolution yields a
helical structure of the electric field of the emitted radiation,
also called a light spring. The developed method allows us
to determine the TKAM from the high harmonic radiation, as
well as from the driving beam.

In addition, we demonstrated that the polarization rotation
of the high harmonic radiation mirrors the one of the driv-
ing beam. Therefore, we explicitly presented a model which
explains the conservation of TKAM and especially the con-
servation of the so-called coordination parameter γ .

Finally, we calculated and visualized the geometric relation
between τ and γ . Both parameters τ and γ are associated with
torus knots. The underlying tori can be constructed from the
same initial high harmonic field with a minor adaption to the
boundary conditions. Therefore, the high harmonic radiation,
as well as the driving beam, can be reduced to their temporal
and azimuthal angle-dependent electric field maxima. The
evolution of these maxima determines the TKAM and further
forms a spatial torus knot or a temporal torus knot associated
with τ or γ , respectively.

Investigations in the future may consider three-
dimensional targets and finite driving pulse durations to
analyze the symmetry properties of TKAM in specific
experimental setups. Furthermore, interesting properties of
the TKAM may be found while increasing the harmonic
order of the HHs beyond the classical cutoff region or by
investigating LG beams with radial node number p �= 0.
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