
PHYSICAL REVIEW A 104, 053109 (2021)

Using optical clock transitions in Cu II and Yb III for timekeeping and search for new physics
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We study the 1S0 − 3D2 and 1S0 − 3D3 transitions in Cu II and the 1S0 − 3Po
2 transition in Yb III as possible

candidates for the optical clock transitions. A recently developed version of the configuration interaction method,
designed for a large number of electrons above the closed-shell core, is used to carry out the calculation. We
calculate excitation energies, transition rates, lifetimes, and scalar static polarizabilities of the ground, clock
states, and blackbody radiation shift. We demonstrate that the considered transitions have all features of the
clock transition leading to prospects of highly accurate measurements. A search for new physics, such as time
variation of the fine-structure constant, is also investigated.
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I. INTRODUCTION

Extremely high accuracy of the frequency measurements
for the optical clock transitions naturally lead to the use of the
transitions not only for time keeping, but also for the search
of the manifestations of new physics beyond the standard
model, such as local Lorentz invariance (LLI) violation and
time variation of the fine-structure constant (α = e2/h̄c) (see,
e.g., Refs. [1–8]). Oscillating variation of the fine-structure
constant may be produced by interaction of a low-mass scalar
dark matter field with a photon field (see, e.g., Refs. [9–13]).
Therefore, the measurement of such variation provides an
efficient method to search for dark matter using atomic clocks,
which have already provided improvement of the constraints
on the scalar-photon interaction constants up to 15 orders of
magnitude [9–13].

The search for new physics with atomic clocks usually
involves measuring the frequencies of two clock transitions
against each other over a long period of time. Both transitions
must be very narrow and not sensitive to perturbation to allow
extremely high accuracy of the measurements. They also must
have different sensitivities to new physics so that under the
studied effect, frequencies change at different rates and maybe
even in different directions. Having both transitions in the
same atom brings additional convenience.

The relative uncertainty of the frequency measurements for
the best optical clocks is on the level of 10−18. For example,
it is 9.4 × 10−19 for Al+ [4], 3.0 × 10−18 for Yb+ [6], and
1 × 10−18 for Yb [14]. Unfortunately, most of working optical
clocks are not very sensitive to new physics. Among the exam-
ples listed above, only Yb+ clock transition is highly sensitive
to a variation of the fine-structure constant [2,15,16] and to the
LLI violation [3,17]. Therefore, there is an ongoing search for
new clock transitions which may combine high accuracy of
the measurements with high sensitivity to new physics, e.g.,
to the time variation of the fine-structure constant. One way
of achieving this is to use highly charged ions [18]. This is

now a large area of research with very promising perspectives
(see, e.g., Refs. [19–21]).

Neutral or nearly neutral atoms are also considered. The
important advantage of using them is that they are very well
studied. In some cases, new promising transitions can be
found in atoms that are already used for a high accuracy
atomic clock. E.g., new transitions in Yb were recently sug-
gested [22,23] in addition to the currently used 1S0 − 3Po

0
clock transition. Clock transitions between metastable states
in Yb II have been suggested in Ref. [24]. A good guide for
finding atomic clock transitions sensitive to variations of α

is to look for metastable states which are connected to the
ground state (GS) via transitions that can be approximately
considered as s − d, s − f , or p − f single-electron transi-
tions [25]. The s − d transitions of this kind were considered
in Cu, Ag, and Au atoms in Ref. [26].

In the present paper, we consider the 1S0 − 3D2 and
1S0 − 3D3 transitions in Cu II and the 1S0 − 3Po

2 transition
in Yb III (see Figs. 1 and 2). Transitions in Cu II are the
s − d transitions, the transition in Yb III is the s − f tran-
sition. In our early work [15], we suggested to use the
4 f 14 1S0 −4 f 135d 3Po

0 in Yb III for the search of the variation
of the fine-structure constant. The prospect for precision mea-
surement of the frequency of this transition was considered in
a recent paper [27]. However, this transition has an important
drawback. There is a decay channel via magnetic dipole tran-
sition (M1) into the lower-lying state 4 f 135d 3Po

1 . This may
make the considered transition not be sufficiently narrow to
ensure high accuracy of the measurements. This problem was
not discussed in Refs. [15] or [27]. In the present paper, we
consider a different transition, a transition from the ground
state to the first excited-state 4 f 135d 3Po

2 .
This is a very narrow transition with a similar sensitivity

to the variation of the fine-structure constant. We demonstrate
that it has all features of the atomic clock transition.

Several studies have analyzed the energies and transition
probabilities for both ions, Cu II [28–30] and Yb III [31,32]
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FIG. 1. The energy diagram for the states of the Cu II ion relevant
for the optical ion clock. The electric dipole cooling transition is
shown as a solid blue line, and the clock transitions are shown as
short-dashed red lines.

theoretically and experimentally (see also Ref. [33] and refer-
ences therein). This gives us an opportunity to compare results
to have confidence in the accuracy of the analysis. None of the
previous studies focused on transitions in Cu II and Yb III in
sufficient detail to study their suitability for time keeping and
searching for new physics.

II. METHOD OF CALCULATION

As can be seen from the spectra of the Cu II and Yb III

ions, the excited states of the Cu II ion have an open 3d shell,
and the excited states of the Yb III ion have an open 4 f shell.
Therefore, to perform the electron structure calculations for
both ions, the recent version of the configuration interaction
(CI) method was used, which has been designed to deal with
a large number of valence electrons [34]. The method com-
bines CI with perturbation theory (PT) and is called the CIPT
method. The method reduces the size of the effective CI ma-
trix by neglecting the off-diagonal matrix elements between
high-energy basis states and reducing their contribution to PT
corrections to the matrix elements between low-energy basis
states.

The eigenvalues E and eigenstates ψ can be found by
solving the CI equations with the effective HCI matrix,

(HCI − EI )ψ = 0, (1)

FIG. 2. The energy diagram for the states of the Yb III ion rele-
vant for the optical ion clock. The electric dipole cooling transition
is shown as a solid blue line, the clock transition is shown as a
short-dashed red line, and the purple dotted lines show the leakage
transition.

where I is the unit matrix. Matrix elements of the effective
CI matrix contain PT-type corrections from the high-energy
states,

〈a|HCI|b〉 → 〈a|HCI|b〉 +
∑

h

〈a|HCI|h〉〈h|HCI|b〉
E − Eh

. (2)

Here a and b are low-energy states, and Eh is the diagonal
matrix element between high-energy states (Eh = 〈h|HCI|h〉).

To produce a set of complete single-electron basis states
for both ions, we start the calculations with the Dirac-Hartree-
Fock (DHF) method in the V N approximation with all atomic
electrons included. It seems to be natural to start from the
[Ar]3d10 configuration for Cu II and the [Xe]4 f 14 configura-
tion for Yb III. However, such a choice of initial approximation
is good for calculating the ground states of the ions. Since we
need to calculate excited states as well, which have excitations
from the 3d or 4 f subshell, the choice of initial approximation
is not obvious, and it is dictated by the accuracy of the final
results. It turns out that the best results are obtained if we start
from the [Ar]3d94s configuration for Cu II and the [Xe]4 f 14

configuration for Yb III.
The single-electron basis states are then constructed using

B splines [35,36] with 40 B-spline states on the order of
k = 9 in a box of the radius Rmax = 40aB with orbital angular
momentum 0 � l � 4.
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To carry out the calculations of the transition amplitudes
and hyperfine structure (hfs), we use the time-dependent HF
method [37], which is equivalent to the random-phase approx-
imation (RPA). The RPA equations can be written as

(ĤRHF − εc)δψc = −(d̂ + δV N )ψc. (3)

Here, the relativistic Hartree-Fock is (RHF), d̂ refers to the
operator of an external field, which can be any field, which is
sufficiently weak to be considered in linear approximation. εc

is the energy of electron state c, ψc is the state wave function,
and δV N denotes the correction to the self-consistent potential
caused by the effect of an external field. Equation (3) is solved
self-consistently for all states c in the core. As a result, the
correction to the core potential δV N is found. Then reduced
matrix elements for valence states are calculated using the
expression,

Ab→a ≡ 〈ψa||d̂ + δV N ||ψb〉. (4)

The electric dipole (E1), magnetic dipole (M1), electric
quadrupole (E2), magnetic quadrupole (M2), and electric
octupole (E3) transition probabilities (in atomic units) from
upper state b to lower state a can be written as

TE1,M1 = 4

3
(αω)3 A2

E1,M1

2Jb + 1
, (5)

TE2,M2 = 1

15
(αω)5 A2

E2,M2

2Jb + 1
, (6)

TE3 = 0.001 69(αω)7 A2
E3

2Jb + 1
. (7)

Here α is the fine-structure constant, ω is the energy dif-
ference between the lower and the upper states, A is the
transition amplitude (4), Jb is the total angular momentum
of the upper state b. Note that magnetic amplitudes AM1,M2

contain the Bohr magneton μB (μB = α/2 ≈ 3.65 × 10−3 in
atomic units). For some strongly forbidden transitions leading
contribution comes from electromagnetic transitions mediated
by the hyperfine interaction. Clock transitions in 63,65Cu II

and 171,173Yb III are good examples of such transitions. The
transition amplitude is

Ahfs-E1,E2(b → a) =
∑

n

(
〈a|Ahfs|n〉〈n|AE1,E2|b〉

Ea − En

+〈b|Ahfs|n〉〈n|AE1,E2|a〉
Eb − En

)
. (8)

Here Ahfs is the operator of the magnetic dipole or electric
quadrupole hfs interaction, AE1,E2 are the operators of the
E1 and E2 transitions. Summation in (8) goes over a com-
plete set of intermediate states |n〉 (for more details, see, e.g.,
Refs. [29,38–40]). In practice, it is usually sufficient to include
few close states into the summation over n. For example,
the leading contribution to the transition amplitude of the
1S0 − 3D3 clock transition in Cu II comes from the electric
quadrupole transition mediated by the magnetic dipole hfs
interaction. It is sufficient to include three intermediate states
into the summation, the 3d94s 3D2,

1D2, and 3D1 states. Then

Eq. (8) becomes

Ahfs-E2(3d94s 3D3 → 3d10 1S0)

= 〈3D3|Ahfs|3D2〉〈3D2|AE2|1S0〉
E (3D3) − E (3D2)

+〈3D3|Ahfs|1D2〉〈1D2|AE2|1S0〉
E (3D3) − E (1D2)

+〈3D3|AE2|3D1〉〈3D1|Ahfs|1S0〉
E (1S0) − E (3D1)

. (9)

For the 1S0 − 3Po
2 transition in the Yb III ion, the hyperfine-

induced E1 transition amplitude is expressed as

Ahfs-E1(4 f 135d 3Po
2 → 4 f 14 1S0)

= 〈3Po
2|Ahfs|3Po

1〉〈3Po
1|AE1|1S0〉

E
(3

Po
2

) − E
(3

Po
1

) . (10)

Transition amplitudes (9) and (10) depend on the values of the
total angular momentum F of a specific hfs state (F = J + I,
where I is the nuclear spin). Detailed equations can be found
in Refs. [29,38–40]). To find corresponding transition rates,
we use Eqs. (5) and (6), replacing AE1 by Ahfs-E1 in Eq. (5),
and AE2 by Ahfs-E2 in Eq. (6).

Radiative lifetimes τb of each excited state b can be ob-
tained as

τb = 1

/ ∑
a

Tab, (11)

where the summation goes over all possible transitions to
lower states a.

Accuracy of the calculations with the use of the CIPT
method for complicated atomic systems (open p, d , and
f shells) was studied in detail in our previous papers (see,
e.g., Refs. [34,41–44]). It is about a few percent for the en-
ergies of low-lying states and about a few tens of percent for
the matrix elements. Accuracy tends to go down for higher
states due to proximity to the high-energy states, which are
treated perturbatively. It is also lower for states of complicated
configurations involving more than two single-electron states.
This is due to a larger number of possibilities for exciting one
or two electrons to different states leading to a very large basis
of many-electron states. Only a small fraction of their states
are included in the effective CI matrix [Eq. (2)], the rest are
treated perturbatively. In principle, it is possible to improve
the accuracy of calculations by moving the boundary between
low- and high-energy states up the energy scale leading to
the increased size of the effective CI matrix. However, it is
a numerically expensive procedure, requiring large computer
power. In the end, the accuracy of present calculations is
sufficient for the purposes of present paper, which is checking
that studied atomic systems can be used as atomic clocks.

III. RESULTS

A. Energy levels, transition probabilities, and lifetimes

Table I presents calculated energy levels and lifetimes of
the low-energy states of Cu II and Yb III ions compared
with experimental data and other calculations. The lifetimes
were calculated using transition probabilities presented in
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TABLE I. Excitation energies (E , cm−1) and lifetimes (τ ) for some low states of Cu II and Yb III ions.

Energy (cm−1) Lifetime

Other Other

No. Conf. Term Present NIST [33] Cal. Present Expt. Cal.

Cu II
1 3d10 1S0 0 0 0 ∞
2 3d94s 3D3 21932 21929 22469a ∼108 s
3 3D2 22733 22847 23381a 7.8 s
4 3D1 23705 23998 24495a

5 3d94s 1D2 25833 26265 26840a

6 3d94p 3Po
2 66623 66419 66984b

7 3Po
1 67922 67917 68703b 2.2 ns 2.36 ± 0.05 nsc 2.39 ns, 2.21 nsb

Yb III
1 4 f 14 1S0 0 0 0 ∞
2 4 f 135d (7/2, 3/2)o

2 ≡ 3Po
2 29208 33386 39755d ∼2000 se 6017 sd

3 4 f 135d (7/2, 3/2)o
3 ≡ 3Do

3 33839 39141 44429d

4 4 f 136s (7/2, 1/2)o
4 ≡ 3F o

4 35000 34656 36336d

5 4 f 136s (7/2, 1/2)o
3 ≡ 1F o

3 36418 34991 36764d

6 4 f 135d (7/2, 5/2)o
1 ≡ 3Po

1 35288 39721 39762d 250 ns 230(20) nsf 166 ns, 270 nsf

181 nsd

7 4 f 135d (5/2, 5/2)o
0 ≡ 3Po

0 41059 45277 49469d 0.133 s 0.1490 sd

a Reference [29].
b Reference [30]; for the lifetime, the first value was obtained using the length gauge, and the second was obtained using the velocity gauge.
c Reference [28].
d Reference [31]; the value was obtained using the relativistic many-body perturbation theory (RMBPT) method.
e The M2 and hfs-E1 transitions are taken into account, see Tables II and III for details.
f Reference [32]; the first calculated value was obtained using the RHF method + core polarization (CP) effects, and the second calculated
value was obtained using the same procedure with including 5s, 5p, and 4 f to the CP effects.

Table II. The results for the energies are in sufficiently good
agreement with experimental data from NIST. The average
difference between the NIST and the calculated data for
Cu II is ∼100 cm−1, whereas for Yb III, the difference is
∼4000 cm−1. Note that different sources present different
state labeling for Yb III (see, e.g., Refs. [27,33]). Therefore,
for the sake of easy comparison, we present in the table state
labeling based on both commonly used schemes, the J-J and
L-S schemes.

Table II presents calculated transition amplitudes and tran-
sition rates and compares them to the experimental data and
other theoretical values. Lifetimes of the states calculated
using transition rates from Table II are presented in Table I.
As can be seen from the tables, the present results for the
Cu II ion are in good agreement with the experimental data
and other calculations. For the transition between the first
excited-state 3d94s 3D3 and the ground state, the dominating
contribution comes from the hfs-induced electric quadrupole
transition [see Eq. (9)]. This transition was studied before in
Ref. [29] using the same strategy. The results for two isotopes
of Cu are compared in Table III, indicating good agreement.
The same table shows hfs-induced transition rates for the
clock state (c.s.) of 171Yb and 173Yb.

For the transition rates of the Yb III ion, we compared
our results with the theoretical values of Safronova and
Safronova [31]. They carried out theoretical calculations us-
ing the second-order RMBPT. The results are in reasonably
good agreement with our calculations. The most noticeable
disagreement is about two times difference in the M2 transi-

tion rate between the clock and the ground states. Given that
hfs-induced E1 transition also gives a significant contribution
to the transition rate, and this contribution was not considered
in Ref. [31], the total difference in the lifetime of the clock
state is about three times (see Table I).

The data on lifetimes for the states of both ions are pre-
sented in Table I. The present results are compared with
experimental and other theoretical calculations. For the Yb III

ion, Zhang et al. [32] have obtained the lifetime result for the
4 f 135d 3Po

1 state both experimentally and theoretically. They
performed the calculations using two variations of the RHF
method of Cowan [45], which differ by the ways of inclusion
of the CP effect.

B. Polarizabilities and blackbody radiation shifts

Static scalar polarizability αv (0) of an atom in state v is
given by

αv (0) = 2

3(2Jv + 1)

∑
n

A2
vn

ωvn
, (12)

where Jv is the total angular momentum of state v, Avn

are the amplitudes (reduced matrix elements) of the elec-
tric dipole transitions, ωvn is the frequency of the transition.
Equation (12) is valid when all wave-functions v and n are
many-electron wave functions of the whole atom. It can also
be used to calculate valence contributions to the polarizability
if v and n are many-electron wave functions for the valence
electrons only. Then, the contribution from core electrons
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TABLE II. Transition amplitudes (A, a.u.) and transition probabilities (T, 1/s) evaluated with NIST frequencies for some low states of
Cu II and Yb III ions. Semi. ≡ semiempirical.

(ω), NIST [33] Present Other, T (s−1)

Transition Type (cm−1) (a.u.) A (a.u.) T (s−1) Expt. [28] Semi. [30] Cal.

Cu II
2 ↔ 1 hfs-E2 21929 0.0999 ∼2 × 10−4 ∼10−8a

3 ↔ 1 E2 22847 0.1041 0.890 0.110 0.104, 0.157b

3 ↔ 2 M1 918 0.0042 2.070μB 1.790 × 10−2 1.70 × 10−2c

5 ↔ 1 E2 26265 0.1197 −2.727 2.080 1.937, 2.687b

7 ↔ 1 E1 67917 0.3095 −0.182 6.689 × 10+6 11.3 × 10+6 8.5 × 10+6 7.6 × 10+6, 7.7 × 10+6d

7 ↔ 2 E3 45988 0.2095 −0.346 5.459 × 10−8

7 ↔ 3 E1 45069 0.2054 2.489 3.826 × 10+8 3.419 × 10+8 3.474 × 10+8 3.425 × 10+8, 3.628 × 10+8d

7 ↔ 4 E1 43918 0.2001 1.097 6.875 × 10+7 6.29 × 10+7 6.35 × 10+7 6.29 × 10+7, 7.16 × 10+7d

7 ↔ 5 E1 41652 0.1898 0.379 7.014 × 10+6 7.7 × 10+6 8.5 × 10+6 6.8 × 10+6, 7.6 × 10+6d

7 ↔ 6 E2 1498 0.0068 0.656 1.211 × 10−7

Yb III
2 ↔ 1 M2 33386 0.1521 5.612μB 3.895 × 10−4 1.662 × 10−4e

2 ↔ 1 hfs-E1 33386 0.1521 ∼10−6 ∼10−4a

6 ↔ 1 E1 39721 0.1810 0.308 4.015 × 10+6 5.524 × 10+6e

6 ↔ 2 M1 6335 0.0289 1.583μB 5.726 5.702e

6 ↔ 3 E2 580 0.0026 0.909 2.017 × 10−9

6 ↔ 5 E2 4730 0.0216 7.202 4.579 × 10−3 3.516 × 10−2e

7 ↔ 2 E2 11891 0.0542 0.529 7.442 × 10−3 5.209 × 10−3e

7 ↔ 6 M1 5556 0.0253 1.275μB 7.523 6.706e

aSee Table III for details.
b Reference [29]; the first value was obtained using the Babushkin gauge, and the second value was obtained using the Coulomb gauge.
c Reference [46].
d Reference [30]; the first value was obtained using the length gauge, and the second value was obtained using the velocity gauge.
e Reference [31]; the value was obtained using the RMBPT method.

should be calculated separately. For the closed-shell core (or
closed-shell atom or ion, such as Cu II or Yb III in the ground
state), Eq. (12) can be reduced to

αv (0) = 2

3

∑
c

〈v|d̂|δψc〉, (13)

where d̂ is the operator of the electric dipole moment
and δψc is the RPA correction to the core state c [see
Eq. (3)]. The summation goes over all states in the core. We

TABLE III. Rates in s−1 for hfs-induced transitions from the
clock states of Cu II and Yb III to the ground state.

Isotope F This paper Reference [29]

63Cu II 7/2 8.06 × 10−9 9.19 × 10−9

I = 3/2, μ = 2.2233 5/2 7.64 × 10−9 8.72 × 10−9

3/2 3.76 × 10−9 4.29 × 10−9

65Cu II 7/2 9.25 × 10−9 1.06 × 10−8

I = 3/2, μ = 2.3817 5/2 8.77 × 10−9 1.00 × 10−8

3/2 4.32 × 10−9 4.93 × 10−9

171Yb III 3/2 1.23 × 10−4

I = 1/2, μ = 0.4919
173Yb III 7/2 8.41 × 10−5

I = 5/2, μ = −0.6776 5/2 7.97 × 10−5

3/2 3.92 × 10−5

neglect the change in the RPA corrections to the core states
due to the excitation of an electron from the ground to the
upper clock state. This is a small effect which is beyond the
accuracy of our calculations.

To calculate the polarizabilities of the clock states, we use
the approach developed in Ref. [47] for atoms or ions with
open shells. It is based on Eq. (12) and the Dalgarno-Lewis
method [48], which reduces the summation over the complete
set of states to solving a matrix equation (see Ref. [47] for
details). This approach treats the 3d electrons in Cu II and
4 f electrons in Yb III as valence electrons. To calculate the
contributions of the core electrons below the 3d or 4 f shells,
we use Eq. (13) in which the summation over the core state
is limited to states below 3d or 4 f . To minimize the error in
the difference between the ground state and the clock state
polarizabilities, we use the same approach for both states of
both ions.

The results are presented in Table IV. Our results for the
ground-state polarizabilities are in excellent agreement with
previous calculations. The polarizabilities of the excited states
of Cu II and Yb III ions are calculated here.

The shift in the frequency of the clock transition due to
blackbody radiation (BBR) is given by [51]

δνBBR = −1.6065 × 10−6 × T 4	α(0), (14)

where T is a temperature (e.g., room-temperature T =
300 K), 	α(0) = α0(c.s.) − α0(g.s.) is the difference be-
tween the clock state and the ground-state polarizabilities.
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TABLE IV. Scalar static polarizabilities of the ground states α0(g.s.s) and clock states α0(c.s.s.) and BBR frequency shifts for the clock
transition of 63Cu II and 171Yb III. δνBBR/ω is the fractional contribution of the BBR shift; where ω is the clock transition frequency.

α0(g.s.s)
(
a3

B

)
α0(c.s.s.)

(
a3

B

)
BBR (T = 300 K)

Transition Present Other cal. Present paper 	α(0) δνBBR (Hz) ω (Hz) δνBBR/ω

Cu II
2 ↔ 1 5.36 5.36a 24.12 18.76 −0.1616 6.57 × 10+14 −2.46 × 10−16

3 ↔ 1 5.36 5.36a 24.05 18.69 −0.1610 6.85 × 10+14 −2.35 × 10−16

Yb III
2 ↔ 1 6.39 6.55b 13.29 6.90 −0.0595 1.00 × 10+15 −5.95 × 10−17

a Reference [49].
b Reference [50].

The calculated frequency shifts are presented in Table IV.
The fractional BBR shifts for our Cu II are close in value to
those of Zn: −2.5 × 10−16, Cd: −2.8 × 10−16 [52], and Cu:
−3.4 × 10−16 [26] and smaller than some other atomic clocks,
such as Ca [53] and Sr [54] where the fractional BBR shift is
at the level of 10−15. As for the BBR shift in the Yb III clock
transition, its fractional value of −5.95 × 10−17 is one of the
smallest among optical clock transitions.

C. Zeeman shift and electric quadrupole shift

Clock transition frequencies might be affected by external
magnetic and electric fields. Zeeman shift caused by magnetic
field strongly depends on whether the atom or ion has a hyper-
fine structure. Both stable isotopes of copper (63Cu and 65Cu)
have nonzero nuclear spin (I = 3/2) and nonzero hfs. On the
other hand, five stable isotopes of Yb have zero nuclear spins
and in two isotopes, spin is not zero (for 171Yb I = 1/2 for
173Yb I = 5/2). For atoms with zero nuclear spin, the first-
order Zeeman shift can be avoided by considering transitions
between states with Jz = 0, whereas the second-order Zeeman
shift is small due to the absence of the hfs.

Below we consider isotopes with nonzero nuclear spin,
63Cu and 171Yb.

The linear Zeeman shift is given by

	EF,Fz = �F μBBFz, (15)

where �F is the � factor of a particular hfs state. It is related
to the electron �J factor by

�F = �J〈F, Fz = F, I, J|Ĵz|F, Fz = F, I, J〉/F. (16)

Electron �J factors have values of �3 = 1.32, �2 = 1.16 for
Cu II [33], and �2 = 1.46 for Yb III (calculated value). The
linear Zeeman shift can be suppressed by averaging over the
transition frequencies with positive and negative Fz.

The second-order Zeeman shift for transition between def-
inite hfs components is strongly dominated by transitions
within the same hfs multiplet. Note that in this approximation,
the shift is zero for the ground state (because J = 0). For the
clock states, the shift is given by

δEF,Fz =
∑

F ′=F±1,F ′
z

|〈F ′F ′
z IJ|Ĵz|FFzIJ〉x|2
	Ehfs(F, F ′)

, (17)

where x = �JμBBm (in which �J is electron � factors, μB is
the electron magnetic moment, and Bm is a magnetic field),
and 	Ehfs(F, F ′) = E (FIJ ) − E (F ′IJ ) is the hfs interval. For
more details, see Ref. [26].

To calculate this shift, we need to know the hfs of the
clock states. We calculated the hfs using the CIPT and RPA
methods as described above. The results for magnetic dipole
hfs constants A and electric quadrupole hfs constants B are
presented in Table V. Using these numbers and Eq. (17) we
calculate the second-order Zeeman shift for all hfs compo-
nents of the clock states of the 63Cu II and 171Yb III ions.
The results are presented in Table VI. The shift is small and
only slightly larger than in clock transitions of Cu, Ag, and
Au [26]. As in the case considered in Ref. [26], the shift can
be further suppressed by taking appropriate combinations of
the transition frequencies. It might be even easier here since
we need to worry only about suppressing the Zeeman shift
for the clock state whereas it is already strongly suppressed
for the ground state. The electric quadrupole shift is due to
the interaction of the atomic quadrupole moment Q with the
trapping the electric-field gradient and a corresponding term
in the Hamiltonian is

HQ = −1

2
Q̂0

∂Ez

∂z
. (18)

Here z is the quantization axis determined by the externally
applied B field. The spherical components of the quadrupole
moment operator Q̂m = |e|r2C(2)

m are the same as for the elec-
tric quadrupole (E2) transition. The energy shift of a state

TABLE V. Hyperfine structure constants A and B in (megahertz)
of 63Cu II and 171Yb III ions. Nuclear spin I of (63Cu) = 3/2 and I of
(171Yb) = 1/2, nuclear magnetic moment μ(63Cu) = 2.2236(4)μN ,
and μ(171Yb) = 0.49367(1)μN [55]; nuclear electric quadrupole
moment Q(63Cu) = −0.220(15)b [56] and Q(171Yb) = 0.

No. Conf. Term E (cm−1) hfs A hfs B

63Cu II
1 3d94s 3D3 21932 −186.46 −1.970
2 3d94s 3D2 22733 −34.62 −1.097

171Yb III
1 4 f 135d 3Po

2 29208 −41.46 0
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TABLE VI. Second-order Zeeman shifts Ec [mHz/(μT)2] for the clock states of 171Yb III and 63Cu II.

(	Ec )/B2
m

63Cu II 171Yb III

No. Fc Fcz
3D3

3D2
3Po

2

1 1/2 ±1/2 9.127
2 3/2 ±1/2 0.8687 −5.967 1.021
3 3/2 ±3/2 0.5792 2.107 0.6807
4 5/2 ±1/2 −0.3555 −2.265 −1.021
5 5/2 ±3/2 −0.1515 −1.360 −0.6807
6 5/2 ±5/2 0.2566 0.4478 0.000
7 7/2 ±1/2 −0.3087 −0.8957
8 7/2 ±3/2 −0.2436 −0.7464
9 7/2 ±5/2 −0.1134 −0.4478
10 7/2 ±7/2 0.0818 0.000
11 9/2 ±1/2 −0.2045
12 9/2 ±3/2 −0.1841
13 9/2 ±5/2 −0.1432
14 9/2 ±7/2 −0.0818
15 9/2 ±9/2 0.000

with total angular momentum J is proportional to the atomic
quadrupole moment of this state. It is defined as twice the
expectation value of the spherical component Q0 = Qzz/2 of
the quadrupole operator in the stretched state,

QJ = 2〈J, Jz = J|Q̂0|J, Jz = J〉. (19)

We calculate the values of QJ using the CIPT and RPA
methods. The results are Q3 = 0.537 a.u. for the 3D3 clock
state of Cu II, Q2 = 0.299 a.u. for the 3D2 clock state of Cu
II, Q2 = −2.369 a.u. for the clock state of Yb III. Note that
Q = 0 for the ground states of both ions because of the zero
value of the total angular momentum J .

D. Sensitivity of the clock transitions to variation of the
fine-structure constant

Dependence of frequencies of atomic transitions on the
fine-structure constant in the vicinity of their physical values
can be presented as

ω = ω0 + q
[( α

α0

)2
− 1

]
, (20)

where α0 and ω0 are the present-day values of the fine-
structure constant and the frequency of the transition and q are
sensitivity coefficients that come from the calculations [15].
When one atomic frequency is measured against another over
a long period of time, their relative time change is related to
the time change of α by

ω̇1

ω1
− ω̇2

ω2
= (K1 − K2)

α̇

α
. (21)

The dimensionless value K = 2q/ω is usually called the
enhancement factor. To calculate q (and K), we run computer
codes at two different values of α and calculate the numerical
derivative,

q = ω(δ) − ω(−δ)

2δ
, (22)

where δ = (α/α0)2 − 1 [see Eq. (20)]. The value of δ must
be small to ensure linear behavior but sufficiently large to
suppress numerical noise. Using δ = 0.01 usually gives ac-
curate results. The calculated values of q and K for clock
transitions of Cu II and Yb III are presented in Table VII. As
one can see, the sensitivity of the clock transitions of Cu II

to variation of α is not very high, so they may be used as
anchor lines for a comparison with a high-K transition [see
Eq. (21)]. The sensitivity of the Yb III clock transition is one
of the highest among the systems considered so far. It is close
to the sensitivities of recently suggested clock transitions in
Yb [22] and Au [26] and slightly smaller than the sensitivity
of the most sensitive clock transitions in Yb II and Hg II [15].

IV. CONCLUSION

We have investigated a possibility to use Cu II and
Yb III ions as optical ion clocks of high accuracy. Energy
levels, lifetimes, transition rates, scalar static polarizabilities
of the ground and clock states, and the BBR shifts have been
calculated using the CIPT method. We have obtained a good
agreement with previous data that are available to compare.
Sensitivity to “new physics,” such as variation of the funda-
mental constants has been studied. The uncertainty estimates

TABLE VII. Sensitivity of clock transitions to the variation of
the fine-structure constant (q and K = 2q/E ) for clock transitions in
Cu II and Yb III.

No. Conf. Term Eexp. (cm−1) q (cm−1) K

Cu II
1 3d94s 3D3 21929 −4350 −0.40
2 3d94s 3D2 22847 −3700 −0.32

Yb III
1 4 f 135d 3Po

2 33386 −42750 −2.56
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for the Yb III ion and its high sensitivity to new physics
indicate that Yb III atomic clock may successfully compete
with the latest generation of clocks.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Coun-
cil Grants No. DP190100974 and No. DP200100150.

[1] Boulder Atomic Clock Optical Network [(BACON) Collabora-
tion], Frequency ratio measurements at 18-digit accuracy using
an optical clock network, Nature (London) 591, 564 (2021).

[2] R. Lange, N. Huntemann, J. M. Rahm, C. Sanner, H. Shao, B.
Lipphardt, C. Tamm, S. Weyers, and E. Peik, Improved Limits
for Violations of Local Position Invariance from Atomic Clock
Comparisons, Phys. Rev. Lett. 126, 011102 (2021).

[3] C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S.
Safronova, and S. G. Porsev, Optical clock comparison for
Lorentz symmetry testing, Nature (London) 567, 204 (2019).

[4] S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W.
Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, 27Al+

Quantum-Logic Clock with a Systematic Uncertainty below
10−18, Phys. Rev. Lett. 123, 033201 (2019).

[5] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L.
Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, JILA SrI optical
lattice clock with uncertainty of 2.0 ×10−18, Metrologia 56,
065004 (2019).

[6] N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik,
Single-ion Atomic Clock with 3 ×10−18 Systematic Uncer-
tainty, Phys. Rev. Lett. 116, 063001 (2016).

[7] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti,
B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.
Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Systematic
evaluation of an atomic clock at 2 × 10−18 total uncertainty,
Nat. Commun. 6, 6896 (2015).

[8] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell,
M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, An
optical lattice clock with accuracy and stability at the 10−18

level, Nature (London) 506, 71 (2014).
[9] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Search

for Ultralight Scalar Dark Matter with Atomic Spectroscopy,
Phys. Rev. Lett. 115, 011802 (2015).

[10] Y. V. Stadnik and V. V. Flambaum, Can Dark Matter In-
duce Cosmological Evolution of the Fundamental Constants of
Nature? Phys. Rev. Lett. 115, 201301 (2015).

[11] Y. V. Stadnik and V. V. Flambaum, Improved limits on in-
teractions of low-mass spin-0 dark matter from atomic clock
spectroscopy, Phys. Rev. A 94, 022111 (2016).

[12] A. Hees, J. Guena, M. Abgrall, S. Bize, and P. Wolf, Searching
for an Oscillating Massive Scalar Field as a Dark Matter Can-
didate Using Atomic Hyperfine Frequency Comparisons, Phys.
Rev. Lett. 117, 061301 (2016)

[13] N. Leefer, A. Gerhardus, D. Budker, V. V. Flambaum, and Y. V.
Stadnik, Search for the Effect of Massive Bodies on Atomic
Spectra and Constraints on Yukawa-Type Interactions of Scalar
Particles, Phys. Rev. Lett. 117, 271601 (2016).

[14] A. D. Ludlow, W. F. McGrew, X. Zhang et al., Optical Fre-
quency Measurements at 1 × 10−18 Uncertainty with Ytterbium
Optical Lattice Clocks, Conference on Precision Electromag-
netic Measurements (CPEM), Paris, France, JUL 08-13 (IEEE,
Piscataway, NJ, 2018).

[15] V. V. Flambaum and V. A. Dzuba, Search for variation of the
fundamental constants in atomic, molecular, and nuclear spec-
tra, Can. J. Phys. 87, 25 (2009).

[16] R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King,
L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea,
K. Bongs, and P. Gill, Frequency Ratio of Two Optical Clock
Transitions in 171Yb+ and Constraints on the Time Variation of
Fundamental Constants, Phys. Rev. Lett. 113, 210801 (2014).

[17] V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev,
T. Pruttivarasin, M. A. Hohensee, and H. Haffner, Strongly
enhanced effects of Lorentz symmetry violation in entangled
Yb+ ions, Nat. Phys. 12, 465 (2016).

[18] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Enhanced
Laboratory Sensitivity to Variation of the Fine-Structure Con-
stant Using Highly-Charged Ions, Phys. Rev. Lett. 105, 120801
(2010).

[19] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova,
S. G. Porsev, and M. G. Kozlov, Highly Charged Ions for
Atomic Clocks, Quantum Information, and Search for α vari-
ation, Phys. Rev. Lett. 113, 030801 (2014).

[20] V. A. Dzuba and V. V. Flambaum, Highly charged ions for
atomic clocks and search for variation of the fine structure
constant, Hyperfine Interact. 236, 79 (2015).

[21] M. S. Safronova, The Search for Variation of Fundamental
Constants with Clocks, Ann. Phys. (Berlin) 531, 1800364
(2019).

[22] V. A. Dzuba, V. V. Flambaum, and S. Schiller, Testing
physics beyond the standard model through additional clock
transitions in neutral ytterbium, Phys. Rev. A 98, 022501
(2018).

[23] M. S. Safronova, S. G. Porsev, C. Sanner, and J. Ye, Two
Clock Transitions in Neutral Yb for the Highest Sensitivity to
Variations of the Fine-Structure Constant, Phys. Rev. Lett. 120,
173001 (2018).

[24] S. G. Porsev, V. V. Flambaum, and J. R. Torgerson, Transition
frequency shifts with fine-structure constant variation for Yb II,
Phys. Rev. A 80, 042503 (2009).

[25] V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Calculations
of the relativistic effects in many-electron atoms and space-
time variation of fundamental constants, Phys. Rev. A 59, 230
(1999).

[26] V. A. Dzuba, S. O. Allehabi, V. V. Flambaum, J. Li, and S.
Schiller, Time keeping and searching for new physics using
metastable states of Cu, Ag, and Au, Phys. Rev. A 103, 022822
(2021).

[27] N. Kimura and M. Kajita, Prospect for precision measurement
of the Yb2+ 1S0 − 3Po

0 transition frequency, J. Phys. Soc. Jpn.
90, 064302 (2021).

[28] E. H. Pinnington, G. Rieger, J. A. Kernahan, and E. Biemont,
Beam-laser measurements and relativistic Hartree-Fock calcu-
lations of the lifetimes of the 3d94p levels in Cu II, Can. J. Phys.
75, 1 (1997).

053109-8

https://doi.org/10.1038/s41586-021-03253-4
https://doi.org/10.1103/PhysRevLett.126.011102
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1103/PhysRevLett.123.033201
https://doi.org/10.1088/1681-7575/ab4089
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/nature12941
https://doi.org/10.1103/PhysRevLett.115.011802
https://doi.org/10.1103/PhysRevLett.115.201301
https://doi.org/10.1103/PhysRevA.94.022111
https://doi.org/10.1103/PhysRevLett.117.061301
https://doi.org/10.1103/PhysRevLett.117.271601
https://doi.org/10.1139/p08-072
https://doi.org/10.1103/PhysRevLett.113.210801
https://doi.org/10.1038/nphys3610
https://doi.org/10.1103/PhysRevLett.105.120801
https://doi.org/10.1103/PhysRevLett.113.030801
https://doi.org/10.1007/s10751-015-1166-4
https://doi.org/10.1002/andp.201800364
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevLett.120.173001
https://doi.org/10.1103/PhysRevA.80.042503
https://doi.org/10.1103/PhysRevA.59.230
https://doi.org/10.1103/PhysRevA.103.022822
https://doi.org/10.7566/JPSJ.90.064302
https://doi.org/10.1139/p96-134


USING OPTICAL CLOCK TRANSITIONS IN CU … PHYSICAL REVIEW A 104, 053109 (2021)

[29] M. Andersson, K. Yao, R. Hutton, Y. Zou, C. Y. Chen, and
T. Brage, Hyperfine-state-dependent lifetimes along the Ni-like
isoelectronic sequence, Phys. Rev. A 77, 042509 (2008).

[30] C. Z. Dong and S. Fritzsche, Relativistic, relaxation, and cor-
relation effects in spectra of Cu II, Phys. Rev. A 72, 012507
(2005).

[31] U. I. Safronova and M. S. Safronova, Correlation and relativistic
effects for the 4f-nl multipole transitions in Yb III ions, Phys.
Rev. A 79, 032511 (2009).

[32] Z. G. Zhang, Z. S. Li, S. Svanberg, P. Palmeri, P. Quinet, and E.
Biémont, Experimental and theoretical lifetimes in Yb III, Eur.
Phys. J. D 15, 301 (2001).

[33] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team
(2019). NIST Atomic Spectra Database (ver. 5.7.1), [Online].
Available: https://physics.nist.gov/asd [2020, September 26].
National Institute of Standards and Technology, Gaithersburg,
MD.

[34] V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum,
Combining configuration interaction with perturbation theory
for atoms with a large number of valence electrons, Phys. Rev.
A 95, 012503 (2017).

[35] W. R. Johnson and J. Sapirstein, Computation of Second-Order
Many-Body Corrections in Relativistic Atomic Systems, Phys.
Rev. Lett. 57, 1126 (1986).

[36] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Finite basis
sets for the Dirac equation constructed from B splines, Phys.
Rev. A 37, 307 (1988).

[37] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P.
Sushkov, Correlation potential method for the calculation of
energy levels, hyperfine structure and E1 transition amplitudes
in atoms with one unpaired electron, J. Phys. B: At. Mol. Phys.
20, 1399 (1987).

[38] W. R. Johnson, Hyperfine quenching: Review of experiment and
theory, Can. J. Phys. 89, 429 (2011).

[39] S. G. Porsev and A. Derevianko, Hyperfine quenching of the
metastable 3P0,2 states in divalent atoms, Phys. Rev. A 69,
042506 (2004).

[40] V. A. Dzuba and V. V. Flambaum, Hyperfine-induced elec-
tric dipole contributions to the electric octupole and magnetic
quadrupole atomic clock transitions, Phys. Rev. A 93, 052517
(2016).

[41] B. G. C. Lackenby, V. A. Dzuba, and V. V. Flambaum, Cal-
culation of atomic spectra and transition amplitudes for the
superheavy element Db (Z = 105), Phys. Rev. A 98, 022518
(2018).

[42] J. G. Li and V. Dzuba, Theoretical study of the spectroscopic
properties of mendelevium (Z = 101), J. Quant. Spectrosc.
Radiat. Trans. 247, 106943 (2020).

[43] B. G. C. Lackenby, V. A. Dzuba, and V. V. Flambaum,
Atomic structure calculations of superheavy noble el-
ement oganesson (Z=118), Phys. Rev. A 98, 042512
(2018).

[44] B. G. C. Lackenby, V. A. Dzuba, and V. V. Flambaum, Theoret-
ical study of the electron structure of superheavy elements with
an open 6d shell: Sg, Bh, Hs, and Mt, Phys. Rev. A 99, 042509
(2019).

[45] R. D. Cowan, The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, CA, 1981).

[46] R. H. Garstang, Transition probabilities of forbidden lines,
J. Res. Nat. Bur. Stand. A. Phys. Chem. 68A, 61 (1964).

[47] V. Dzuba, Calculation of polarizabilities for atoms with open
shells, Symmetry, 12, 1950 (2020).

[48] A. Dalgarno and J. T. Lewis, The exact calculation of long-
range forces between atoms by perturbation theory, Proc. R.
Soc. London A 233, 70 (1955).

[49] W. R. Johnson, D. Kolb, and K. Huang, Electric-dipole,
quadrupole, and magnetic-dipole susceptibilities and shielding
factors for closed-shell ions of the He, Ne, Ar, Ni (Cu+), Kr,
Pb, and Xe isoelectronic, At. Data Nucl. Data Tables 28, 333
(1983).

[50] S. Harder, D. Naglav, P. Schwerdtfeger, I. Nowik, and R. H.
Herber, Metal atom dynamics in superbulky metallocenes: A
comparison of (CpBIG )2Sn and (CpBIG )2Eu, Inorg. Chem. 53,
2188 (2014).

[51] S. G. Porsev and A. Derevianko, Multipolar theory of black-
body radiation shift of atomic energy levels and its implications
for optical lattice clocks, Phy. Rev. A 74, 020502(R) (2006); 86,
029904(E) (2012).

[52] V. A. Dzuba and A. Derevianko, Blackbody radiation shift for
the 1S0 - 3P0 optical clock transition in zinc and cadmium atoms,
J. Phys. B: At., Mol. Opt. Phys. 52, 215005 (2019).

[53] G. Wilpers, C. W. Oates, S. A. Diddams et al., Absolute
frequency measurement of the neutral 40Ca optical frequency
standard at 657 nm based on microkelvin atoms, Metrologia 44,
146 (2007).

[54] S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T.
Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R.
Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong,
H. Katori, and V. V. Flambaum, New Limits on Coupling of
Fundamental Constants to Gravity Using 87Sr Optical Lattice
Clocks, Phys. Rev. Lett. 100, 140801 (2008).

[55] N. J. Stone, Table of nuclear magnetic dipole and electric
quadrupole moments, At. Data Nucl. Data Tables 90, 75
(2005).

[56] N. J. Stone, Table of nuclear electric quadrupole moments, At.
Data Nucl. Data Tables 111-112, 1 (2016).

053109-9

https://doi.org/10.1103/PhysRevA.77.042509
https://doi.org/10.1103/PhysRevA.72.012507
https://doi.org/10.1103/PhysRevA.79.032511
https://doi.org/10.1007/s100530170144
https://physics.nist.gov/asd
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1103/PhysRevLett.57.1126
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1088/0022-3700/20/7/009
https://doi.org/10.1139/p11-018
https://doi.org/10.1103/PhysRevA.69.042506
https://doi.org/10.1103/PhysRevA.93.052517
https://doi.org/10.1103/PhysRevA.98.022518
https://doi.org/10.1016/j.jqsrt.2020.106943
https://doi.org/10.1103/PhysRevA.98.042512
https://doi.org/10.1103/PhysRevA.99.042509
https://doi.org/10.6028/jres.068A.004
https://doi.org/10.3390/sym12121950
https://doi.org/10.1098/rspa.1955.0246
https://doi.org/10.1016/0092-640X(83)90020-7
https://doi.org/10.1021/ic4028546
https://doi.org/10.1103/PhysRevA.74.020502
https://doi.org/10.1103/PhysRevA.86.029904
https://doi.org/10.1088/1361-6455/ab4434
https://doi.org/10.1088/0026-1394/44/2/005
https://doi.org/10.1103/PhysRevLett.100.140801
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2015.12.002

