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Using graphene conductors to enhance the functionality of atom chips
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We show that the performance and functionality of atom chips can be transformed by using graphene-based
van der Waals heterostructures to overcome present limitations on the lifetime of the trapped atom cloud and on
its proximity to the chip surface. Our analysis involves Green’s-function calculations of the thermal (Johnson)
noise and Casimir-Polder atom-surface attraction produced by the atom chip. This enables us to determine the
lifetime limitations produced by spin flip, tunneling, and three-body collisional losses. Compared with atom
chips that use thick metallic conductors and substrates, atom-chip structures based on two-dimensional materials
reduce the minimum attainable atom-surface separation to a few hundred nanometers and increase the lifetimes
of the trapped atom clouds by orders of magnitude so that they are limited only by the quality of the background
vacuum. We predict that atom chips with two-dimensional conductors will also reduce spatial fluctuations in
the trapping potential originating from imperfections in the conductor patterns. These advantages will enhance
the performance of atom chips for quantum sensing applications and for fundamental studies of complex
quantum systems.
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I. INTRODUCTION

Cold-atom systems play a key role in both fundamental and
applied aspects of quantum sensing as they provide a well-
isolated and controllable platform while still being sensitive
to fundamentally interesting interactions such as gravity or
magnetic fields [1,2]. The high levels of uniformity and homo-
geneity of cold atomic ensembles also provide a platform for
high-accuracy time standards [3,4]. Recent experiments have
demonstrated atomic quantum sensors in precision accelerom-
eters [5], in clocks [6], and in measuring magnetic fields with
an unprecedented combination of high sensitivity (nanotesla),
spatial resolution (microns), and field of view (approximately
100 μm) [7–14]. As a result, there is now worldwide activity
on the development of cold-atom-based quantum sensing and
timing technologies [15,16].

Miniaturizing and integrating cold-atom quantum systems
for fundamental experiments and technology development
have advanced through the creation of atom chips, which
use microfabricated current-carrying wires to trap and control
the atoms in an ultrahigh vacuum, typically 1–100 μm from
the chip surface. Such chips enable coherent manipulation of
the atoms’ internal and external degrees of freedom [17,18],
leading, for example, to on-chip formation of Bose-Einstein
condensates (BECs) [19,20], atom interferometers [21,22],
and interfacing quantum gases with nanomechanical oscilla-
tors [23], carbon nanotubes [24,25], and cryogenic surfaces
[26–31]. However, commonly used metal wires with a typical

thickness of approximately 1 μm, mounted on bulk insu-
lating substrates, have adverse effects when trapped atom
clouds approach the surface. Spatial imperfections in the wires
roughen the trapping potential, Johnson noise currents in-
duce spin-flip transitions that eject atoms from the trap, and
the strong Casimir-Polder (CP) attraction between the atoms
and the chip produce tunneling losses. Together, these loss
mechanisms prevent the formation of long-lived microtraps
at distances closer than several microns from the chip surface
[32,33].

Overcoming these limitations is needed to advance both
the fundamental and technological applications of micro- and
nanoengineered environments for cold atoms. Trapping atoms
closer to the chip offers a number of advantages. Higher
magnetic field gradients and trap frequencies can be attained
for a given current, thereby facilitating fast initial cooling,
i.e., before three-body collisions become relevant, as required
for creating BECs under less stringent vacuum requirements.
Higher trapping frequencies also produce atomic gases that
are closer to the one-dimensional (1D) limit and are thus
better for studying the thermodynamics of low-dimensional
gases. Submicron trapping has been realized by utilizing
the balancing of attractive and repelling forces of light in
nanofibers [34,35] and in ferromagnetic traps [36], but has
proven difficult to achieve using current-carrying chip struc-
tures [37]. Anisotropic conductors have been suggested as a
way to reduce Johnson noise and consequently atom-surface
separations [38], as required for creating hybrid quantum
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devices comprising coherently coupled atomic and solid-state
elements [39,40].

Achieving long lifetimes for atom clouds trapped within
1 μm of the chip surface will enable quantum gases to be
controlled and addressed by potential landscapes whose spa-
tial features are finer than the intrinsic length scales of atomic
gases, for example, the healing length. Reducing atom-surface
trapping distances will also advance chip-based sensors in-
cluding the BEC microscope, which can image current flow
patterns in planar conductors with a spatial resolution limited
primarily by the distance of the BEC from the conductor
[7–9,11,12,14].

The key advantage of using trapping wires made from
graphene, or other two-dimensional conductors, is their lower
level of Johnson noise [41,42]. This low Johnson noise orig-
inates from the orders-of-magnitude lower sheet electron
density in graphene (and other 2D conductors) compared with
metals, which dominates over the tendency of the higher car-
rier mobility in 2D materials to increase current fluctuations.
We analyze and quantify this advantage in detail in Sec. III
and Appendix A 2.

Here we show that atom chips containing two-dimensional
conductors can in principle overcome the present limitations
on the atom-surface separation and lifetime of the trapped
atom cloud. Such trapping structures can be fabricated using,
for example, graphene membranes that are either free standing
or enclosed by two-dimensional insulating layers so as to
form a van der Waals heterostructure [43,44]. This opens a
route to achieving submicron trapping distances and hence
fine features in the trapping potential landscape that are not
attainable when conventional metallic wires are used. We
demonstrate that van der Waals heterostructures can be used
to form traps just a few hundred nanometers from their surface
while maintaining trap lifetimes of at least 10 s. This exceeds
the duration of most experiments on the atom clouds and of
typical active operation cycles in cold-atom quantum sensors.
In previous work on the possible use of two-dimensional elec-
tron gases as conductors in atom chips [41,42], the lifetime
of nearby atomic gases was estimated by extrapolating from
the rates of tunneling losses and Johnson-noise-induced spin
flips near metallic conductors [42]. Here we present detailed
calculations of the atom-cloud lifetimes, in which the same
Green’s-function formalism is used to determine both the CP
potential and Johnson noise lifetimes, thereby ensuring a fully
consistent picture of atom-loss rates.

The paper is organized as follows. In Sec. II we consider
how atom-chip architecture and material composition affect
the lifetime and minimum practical atom-surface separation
of trapped atom clouds. In Sec. III we compare the limiting
factors, specifically atom-cloud lifetime and spatial rough-
ness, for traps formed less than 1 μm away from the surface
of chips containing graphene or 1-μm-thick metallic trap-
ping wires. Specifically, we present detailed calculations that
quantify how two-dimensional conductors such as graphene
can reduce the spin-flip atom losses resulting from Johnson
noise in the conductor, as well as the tunneling losses due
to CP atom-surface attraction, sufficiently to enable stable
submicron trapping with atom-cloud lifetimes greater than
10 s. In Sec. IV we propose specific routes to the realization
of graphene-based atom chips that operate under realistic

FIG. 1. Schematic diagram of the proposed graphene-based atom
chip showing the Z-shaped graphene conducting channel (hexagonal
graphene lattice pattern) carrying current I (pink arrow), encased by
thin, protective, hBN cladding layers (upper and lower green slabs).
The orientations of the applied magnetic bias field and the offset
field are shown by blue and orange arrows, respectively. These fields
combine with that produced by the conducting channel (current I) to
trap a nearby atomic BEC (red).

experimental conditions. In Sec. V we conclude with an
overview of possible further device geometries and exper-
iments to demonstrate the performance and versatility of
graphene-based atom chips. Further details of the calculations
are given in the Appendixes.

II. PROPOSED ATOM-CHIP STRUCTURE

Henceforth, we consider microfabricated atom-chip struc-
tures that produce magnetic traps for clouds of 87Rb atoms,
as this approach will facilitate comparison to previous ex-
periments. The implications for other species of alkali-metal
atoms are straightforward to derive and do not differ qualita-
tively from the 87Rb case. Our proposed graphene-based atom
chip is shown schematically in Fig. 1. The chip comprises a
Z-shaped graphene wire encased by two cladding layers of
10-nm-thick hexagonal boron nitride (hBN). Electrical current
I through the Z-shaped wire generates an inhomogeneous
magnetic field, which is supplemented by a constant applied
bias field Bb and an offset (Ioffe) field B0 to create a magnetic
field minimum at r0 = (x0, y0, z0). An ultracold atom cloud
is trapped near this magnetic field minimum, whose value
is nonzero due to the offset field, which suppresses atom
losses due to Majorana spin-flip transitions [17]. The potential
energy Umag of the trapped atoms equals the interaction energy
between the atomic magnetic moment μ and the net magnetic
field B(r), where r is the spatial position with respect to the
coordinate origin, i.e.,

Umag(r) = −μ · B(r) = mF μBgF |B(r)|. (1)

Here μB is the Bohr magneton and gF is the Landé factor of
the relevant hyperfine state. For the 87Rb atoms considered
here, this is typically the |F, mF 〉 = |2, 2〉 level of the 5 2S1/2

ground state. Provided the magnetic quantum number mF is a
good quantum number, atoms in metastable low-field seeking
states, whose magnetic moment is aligned antiparallel to the
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magnetic field orientation, will be trapped near the magnetic
field minimum r0, where Umag is also minimal.

The interplay between three energy scales determines the
lifetime of the trapped atomic gas. The first energy scale is
the trap depth given by V0 = |μ · �B|, where �B is the dif-
ference between the maximum and the minimum values of the
magnetic field. The second scale is the thermal energy kBTcloud

related to the temperature Tcloud of the trapped atoms, where kB

is the Boltzmann constant. The last energy scale is the ground-
state energy of the trapped atoms E0. Provided a sufficiently
deep magnetic trap, i.e., V0 � kBTcloud, E0 is located far away
from any surface, the overall lifetime of the trapped atoms is
limited by collisions with the background gas. In typical atom-
chip experiments, pressures of 10−10–10−11 mbar or below
can be reached, for which the background pressure-limited
lifetime of the trapped atoms is of the order of tens of seconds
or better [17]. As the atom cloud approaches the chip surface,
its lifetime is reduced by modification of the trapping potential
due to CP interactions with the surface (see Figs. 7 and 8
in Appendix A) and Johnson noise in the conductor, which
can cause the atoms to undergo spin-flip transitions into un-
trapped states. Lower-frequency Johnson noise, comparable
to the trap frequencies, can also potentially cause atom losses
due to parametric heating of the atom cloud. However, the
rates of such heating are orders of magnitude lower than the
spin-flip loss rates [32]. Due to the low Johnson noise and CP
potential near graphene-based atom chips, the lifetime of atom
clouds trapped near such chips will, beyond a certain trapping
distance, be limited only by the background pressure as we
quantify below.

As the atom-surface trapping distance decreases, the trap
frequencies must be increased in order to reduce depletion by
the CP interaction. In turn, this increases the density of the
trapped atom cloud and therefore also increases the rate of
three-body collision losses discussed in Sec. III. In order to
determine the optimal trapping distance, the interplay of three-
body losses, the minimum detection density of the atom cloud,
and the CP interaction all have to be considered, as discussed
in Sec. III.

III. LIFETIME OF A TRAPPED ATOMIC BEC

In this section we find an analytical expression for the total
loss rate of an elongated atomic BEC trapped in the vicinity of
an atom chip. We consider contributions from atom tunneling
towards the chip surface, Johnson-noise-induced losses, and
the three-body loss mechanism. Details of the loss rate calcu-
lations are given in the Appendixes.

A. Methodology

First, we consider a harmonic magnetic trapping field B(r),
formed near the surface of an atom chip in the coordinate
system shown in Fig. 1, where r = (x, y, z); ωx, ωy, and ωz are
the characteristic trapping frequencies in the x, y, and z axes,
respectively; and the trap center is located at rc = (0, yc, 0).
Regarding the interaction between the atom and the electro-
magnetic field, we take the 2D layers of the atom chip to
have infinite lateral extent, which is a good approximation
for the short atom-surface separations that are our focus here.

FIG. 2. Colormap of the atom volume density calculated for the
trapped atom cloud using the Thomas-Fermi distribution in Eq. (4).
The color bar scale is in units of m−3. The parameters are ωr = 2π ×
20 kHz, ωz = 0.006 × ωr , and N = 750.

The potential energy profile of an atom interacting with this
magnetic field is modeled by an anisotropic three-dimensional
harmonic-oscillator potential

U (x, y, z) = 1
2 m

[
ω2

x x2 + ω2
y (y − yc)2 + ω2

z z2]. (2)

Note that this magnetic potential originates from the inter-
action of the magnetic moment of the trapped atom and the
magnetic field given in Eq. (1) and that the actual potential
profile of an atom-chip trap is determined by the wire and cur-
rent configurations. Equation (2) gives a good approximation
for the potential landscape generated by the Z-shaped trapping
wires often used in atom-chip experiments.

We assume that such a magnetic trap has cylindrical sym-
metry and is elongated along the z axis so that ωr = ωx,y

and ωr � ωz, where ωr denotes the trapping frequency in the
radial direction (i.e., in the x-y plane). We also assume that ωr

is so high that the trapped atoms only occupy the ground-state
energy in the radial direction. To include the perturbing effect
of the CP potential on the effective trapping frequency in the y
direction, ωeff , henceforth we approximate the radial trapping
frequency as ωr = √

ωxωeff . An additional offset magnetic
field B0 = (0, 0, Bz ), of order millitesla, is added in the z
direction to ensure that the magnetic field is nonzero at the
trap center. Together, these assumptions enable us to treat the
magnetic potential energy landscape as a highly elongated
quasi-one-dimensional trap.

It follows from the above assumptions about the trapping
frequencies that the chemical potential μ of the condensate
must satisfy the constraints

5h̄ωz < μ < 3
2 h̄ωr, (3)

which allows us to further assume that the mean atom
density profile of the condensate can be described by a one-
dimensional Thomas-Fermi distribution in the elongated (z)
direction and by the Gaussian ground-state wave function of
a quantum harmonic oscillator in the tightly confining radial
(r) direction [45]. The atom density profile is then given by
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(see Fig. 2)

ρ0(r, z) = 1

U0

(
μeff − mω2

z

2
z2

)
e−r2/2a2

r , (4)

where U0 = 4π h̄2aT /m is the effective interaction strength for
a pair of slowly moving atoms of s-wave scattering length aT

[46], μeff = μ − h̄ωr , m = 1.44 × 10−25 kg is the mass of an
87Rb atom, r =

√
x2 + (y − yc)2 is the radial distance relative

to the center of the trap, and ar = √
h̄/mωr is the characteris-

tic harmonic-oscillator length. The number of atoms N in the
BEC follows by integrating ρ0(r, z) over all space. Integrating
Eq. (4) over the radial coordinate gives the mean line density
profile along the z axis (see the Appendixes for details)

n0(z) = 2πa2
r

U0

(
μeff − mω2

z

2
z2

)
. (5)

The chemical potential μ of the trapped atom cloud is
determined by the peak mean line density, i.e., at z = 0,
as [47]

μ = [2aT n0(0) + 1]h̄ωr, (6)

where aT = 5.6 nm is the scattering length for 87Rb atoms in
the |F, mF 〉 = |2, 2〉 state [48].

We now define the total lifetime of the trapped atom cloud
τtot to be the time taken for the initial peak atom line density
n0(z = 0) to drop below the smallest experimentally de-
tectable line density, which we take to be nmin = 3 × 106 m−1

[49]. We determine the upper limit of τtot by taking n0(z = 0)
to be the maximum possible value nmax = 14.8 × nmin satis-
fying the inequality (3).

Let us now consider the density-dependent loss rates orig-
inating from three distinct atom-loss mechanisms: Johnson-
noise-induced spin flips, quantum tunneling to the chip sur-
face, and three-body processes. The Johnson-noise-induced
loss rate is

dn0(z)

dt

∣∣∣∣
JN

= −�JNn0(z), (7)

where �JN is the Johnson-noise-induced spin-flip transition
rate given in Eq. (A13) in Appendix A. As described above,
the tunneling loss rate has a similar form

dn0(z)

dt

∣∣∣∣
tun

= −�tunn0(z), (8)

where �tun reflects the tunneling rate (see Appendix A). By
contrast, the three-body loss rate is proportional to the cube of
the mean line density [50,51]

dn0(z)

dt

∣∣∣∣
3b

= −�3bn0(z)3, (9)

where �3b = κRb/12π2a4
r and κRb = 1.8 × 10−41 m6 s−1 de-

termine the three-body recombination rate for 87Rb in the
F = mF = 2 state [52]. Combining all three distinct loss rates
gives the total loss rate

dn0(z)

dt

∣∣∣∣
tot

= −�3bn0(z)3 − (�tun + �JN)n0(z). (10)

In this paper we will only consider losses occurring at
z = 0, where the line density peaks and so the total loss rate

is maximal. Hence, we determine the lower limit on the total
lifetime given by the integral

τtot =
∫ nmin

nmax

dn0(z)

−�3bn0(z)3 − (�tun + �JN)n0(z)

∣∣∣∣
z=0

, (11)

which can be integrated analytically to yield

τtot =
ln

[
�3bn2

min+(�tun+�JN )
α2�3bn2

min+(�tun+�JN )

]
+ 2ln(α)

2(�tun + �JN)
, (12)

where α = nmax/nmin = 14.8.

B. Results

In this section we calculate and compare atom-cloud life-
times for three different surface structures: a 1-μm-thick
gold slab, a graphene monolayer, and a graphene monolayer
encased by two 10-nm-thick hBN layers. Results and compar-
isons with thinner gold wires are presented in Appendix A.
The first structure is representative of the present generation
of atom chips and provides typical lifetimes for comparison
with graphene-based devices. The second structure is the the-
oretical limit for 2D materials and exemplifies the predicted
improvements in performance and functionality. The third
atom-chip structure is within the scope of existing fabrica-
tion techniques for van der Waals heterostructures [43,44].
The graphene conductor is encased within hBN multilayers,
which support it and shield it from adsorbates. When trapping
atoms close to a surface, especially metal, stray electric fields
are produced from the polarization of adsorbed atoms [23].
Although this effect has not yet been measured for graphene
surfaces, covering the graphene layer with a dielectric layer
such as hBN is expected to suppress these effects by limiting
polarization of any adsorbates and keeping them away from
the graphene layer(s), so preventing them doping it.

Figure 3 shows the lifetimes resulting from each of the
three loss mechanisms considered in the preceding section,
together with the total lifetime, calculated versus the posi-
tion of the harmonic trap center y0 for 87Rb atoms near a
graphene monolayer [Fig. 3(a)] and the 1-μm-thick gold slab
[Fig. 3(b)]. Note that in this figure and henceforth, all the
lifetimes are calculated using Eqs. (7)–(12), which account for
the minimum experimentally detectable atom density. The un-
perturbed transverse trapping frequency ωy = 2π × 20 kHz is
used in all cases. Curves are plotted over the range of y0 values
for which the total potential energy variation normal to the
surface forms a trap (see Appendix A).

Considering Fig. 3, we first note that the three-body loss
lifetimes (red dashed curves) are identical for the two struc-
tures, as expected from Eq. (9). Second, as a consequence
of weaker CP attraction, the tunneling loss lifetime for the
graphene monolayer is longer than for the gold slab (compare
green dash-dotted curves) and the minimum atom-surface
trapping distance is lower. Third, significant improvement
in the Johnson-noise-limited lifetime is apparent for the
graphene monolayer. Whereas Johnson noise in the metal wire
limits the total atom lifetime, for graphene the three-body
lifetime of approximately 12.5 s is the limiting factor and
Johnson noise is insignificant. Physically, this is because the
areal electron density in the graphene is approximately eight
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FIG. 3. Lifetimes calculated [from Eqs. (7)–(12)] versus the po-
sition of the harmonic trap center y0 for an 87Rb quasicondensate
trapped near (a) a graphene monolayer and (b) a 1-μm-thick gold
slab, for three different loss mechanisms: three-body processes (red
dashed curves), tunneling losses (green dash-dotted curves), and
Johnson-noise-induced losses (blue solid curves). The total lifetime
is shown by the black solid curves. For the graphene monolayer, the
total lifetime is limited by three-body losses to approximately 12.5 s,
whereas for the gold slab the total lifetime is limited by Johnson
noise. The other parameter is ωy = 2π × 20 kHz.

orders of magnitude lower than in the metal wire, whereas
the mobility is only approximately four orders of magnitude
higher in graphene. Consequently, the Johnson noise produced
by the graphene is approximately four orders of magnitude
lower than for the metal wire. Further explanation and detailed
analysis of the lower Johnson noise produced by graphene
compared with the metal wire is given in Appendix A 2.

Figure 4 shows lifetimes calculated for 87Rb atoms near
the hBN-graphene heterostructure, taking the same trapping
frequency as in Fig. 3. The only noticeable difference in
the lifetimes compared with those for a graphene monolayer
alone relates to tunneling loss (green dash-dotted curve). For
given y0, the hBN-graphene structure generates a higher CP
potential and hence a shorter tunneling lifetime and a higher
minimum distance from the trap center to the surface (see
Appendix A). The Johnson noise is insensitive to the addi-
tion of the hBN cladding layers because such layers change
neither the number nor mobility of the free charge carriers
in the graphene and the total lifetime is still limited by the
three-body loss mechanism.

We have also made a preliminary analysis of the effect
of the surface temperature T on the total lifetime of the

FIG. 4. Lifetimes calculated [from Eqs. (7)–(12)] versus the
position of the harmonic trap center y0 for an 87Rb quasicon-
densate trapped near an hBN-encased graphene heterostructure for
three different loss mechanisms: three-body processes (red dashed
curve), tunneling losses (green dash-dotted curve), and Johnson-
noise-induced losses (blue solid curve). The total lifetime is shown
by the black solid curve. For y0 > 0.5 μm, where the magnetic trap
has a well-defined barrier on the side near the surface, the lifetimes
are virtually identical to those for a single layer of graphene. The pa-
rameters are ωy = 2π × 20 kHz and hBN thickness equal to 10 nm.

atom cloud. Figure 5 indicates that, for the gold slab (solid
curves), the lifetime increases several fold as T decreases
from 300 K to 50 K when y0 � 0.4 μm probably because
the mean thermal photon occupation number decreases (see
Appendix A). By contrast, for the graphene-hBN heterostruc-
ture (dashed curves), the lifetime barely changes with
temperature for atom-surface separations in this regime. Note
that, even when T = 50 K, the lifetimes calculated for the
graphene-hBN heterostructure are still several times longer
than those for the gold slab. Further work is required to in-
vestigate the temperature dependence in more detail.

Figure 6 shows colormaps of the total lifetimes, calcu-
lated versus the position of the trap center from the surface

FIG. 5. Lifetimes calculated [from Eqs. (7)–(12)] versus the
position of the harmonic trap center y0 for an 87Rb quasiconden-
sate trapped near a 1-μm-thick gold slab (solid curves) and an
hBN-encased graphene heterostructure (dashed curves) for surface
temperatures T = 50 K (green curves), 100 K (red curves), and
300 K (blue curves). Lifetimes of atom clouds near the gold slab
increase as T decreases, but are lower than for the heterostructure.
The other parameter is ωy = 2π × 20 kHz.
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FIG. 6. Colormaps of total lifetimes, calculated [from Eqs. (7)–
(12)] versus y0 and ωy/2π for (a) an hBN-encased graphene
heterostructure and (b) a 1-μm-thick gold slab with a common color
scale (right). The lifetime is not defined in the white region because
the CP potential distorts the harmonic magnetic potential (i.e., re-
duces the barrier nearest to the surface) so strongly that the trap
cannot be formed. For any given y0 and ωy/2π values, the lifetime
for the hBN-graphene structure is longer than for the thin gold slab.

and the transverse trapping frequency for the hBN-graphene
heterostructure [Fig. 6(a)] and the 1-μm-thick gold slab
[Fig. 6(b)]. The color scale is logarithmic and is applicable
to Figs. 6(a) and 6(b). Whereas the total lifetime for the thin
gold slab is mainly below 1 s (yellow-green in color scale),
for the hBN-graphene structure it exceeds 100 s (red shading)
for high-y0 and low-ωy values.

IV. POSSIBLE IMPLEMENTATIONS

In order to see whether a closed surface magnetic trap can
be realized using graphene wires, we assume a simple side
guide configuration, consisting of a graphene wire carrying a
current I and a bias magnetic field of magnitude |Bb|. This
will form a magnetic minimum at a distance

y0 = μ0

2π

I

|Bb| (13)

from the graphene sheet. Using the derivation given in [17]
and assuming that the trapping distance is larger than the
width of the graphene wire, the trapping frequency is approx-
imated by

ωy = 2π

√
μBgF mF

m|B0|
|Bb|2
μ0I

, (14)

where |B0| is the magnitude of the offset magnetic field par-
allel to the direction of current flow used to avoid Majorana
spin flips. A trap frequency of ωy ≈ 2π × 20 kHz is therefore
realizable at a distance of 400 nm with a total current of
0.7 μA in addition to a bias field of 35 μT and an offset
(Ioffe) field of 80 μT. Since exfoliated and epitaxial graphene
on bulk substrates can support current densities in excess of
approximately 1000 A/m even in an ultrahigh vacuum [53,54]
and current densities as high as approximately 700 A/m have
been reported for free-standing monolayer graphene [55], a
graphene conducting channel only 50 nm wide would be
sufficient to ensure trap operation with negligible heating.
Note that such a narrow wire would reduce the Johnson noise
below the values calculated here for an infinitely extended
graphene sheet. Wires with larger widths could increase the
possible trapping frequencies or enable trapping further from
the surface, which may assist with loading the trap. We note,
however, that such a trap could not be loaded directly but
would need to be mounted on a carrier chip featuring thick
metal wires, which generate the field used initially to cool and
trap the atoms. This carrier chip must be placed far enough
from the graphene and the atoms to produce negligible John-
son noise and CP attraction effects, but also close enough to
create a sufficiently compressed trap. Given a 50-μm separa-
tion between the atom cloud and the carrier chip, gold wires
carrying a current of 1 A could produce the transverse trap
frequency of ωr = 2π × 20 kHz needed for the traps shown
in Figs. 3, 4, and 5. Since thin van der Waals heterostructures
are almost transparent, laser light can pass through them and
be retroreflected from a metal coating on the carrier chip in
order to form a mirror magneto-optical trap. Here we note
that thin hBN is more (less) reflective than a 290-nm-thick
SiO2 wafer at wavelengths above (below) 530 nm and that
the contrast increases proportionally to the number of hBN
layers [56].

In an alternative configuration, the potential for trapping
the atoms could be provided by optical fields, for example, an
electromagnetic standing wave generated by on-chip mounted
optics. In this case, the graphene wires could be used to
perturb strongly the optical potential or act as a source of
magnetic fields to enable, for example, tuning the scattering
length via Feshbach resonances.

Graphene-based atoms chips could be fabricated by
molecular-beam epitaxy growth of graphene [57–59] or depo-
sition of exfoliated graphene on hBN, followed by selective
etching of the graphene to define the conducting channel
and finally deposition of capping layers of hBN either by
epitaxial growth or by placing exfoliated hBN layers, as now
widely done to create van der Waals heterostructures [43,44].
Such structures could be placed over deep (∼50-μm) trenches
etched into a silicon wafer on which gold control wires are
deposited to assist with the trapping procedure. This approach
would be compatible with further component integration such
as on-chip optical waveguides, sensing devices, and quantum
dots.

V. CONCLUSION

In summary, we have presented a general formalism for
calculating how the lifetime of an atomic quantum gas is
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affected by the Johnson noise and atom-surface CP attrac-
tion of van der Waals heterostructures comprising arbitrary
configurations of 2D materials such as graphene. The electro-
magnetic reflection coefficients and corresponding electrical
conductivities of the 2D layers are of crucial importance in
determining both the Johnson noise and CP potential. Since
both of these parameters are lower for graphene than for the
metal layers generally used in atom chips, so too are the
Johnson noise and CP atom-surface attraction. Consequently,
for given atom-surface separation, the spin-flip and tunneling
loss rates are both lower near graphene-based van der Waals
heterostructures than near metal wires, meaning that such het-
erostructures can improve the performance of atom chips. For
example, although high Johnson noise limits the lifetime of
atom clouds trapped between 0.4 and 2 μm from a metal wire
to less than 1 s, such noise is negligible for atoms trapped near
graphene, whose lifetime can in principle reach approximately
100 s, limited only by three-body losses and background gas
collisions. For atom-surface separations below 0.4 μm, the
lifetime of the atom cloud is limited by tunneling losses for
both metallic and 2D conductors. However, due to the weak
CP atom-surface attraction, such losses are lower near van der
Waals heterostructures and around four orders of magnitude
lower for atoms held 0.4 μm from the surface.

As a result of their favorable noise and CP characteristics,
van der Waals heterostructures offer a solid-state solution
to the long-standing challenge of holding ultracold-atom
clouds closer than 1 μm from an atom-chip surface for long
enough (up to 100 s) to perform various experiments and
measurements on the atom cloud. Moreover, van der Waals
heterostructures that enable robust submicron atom trapping
would control atomic condensates on length scales that are
smaller than presently achievable optically and below the
healing length, thereby providing access to new regimes of
quantum many-body physics. The ability to achieve long
lifetimes for ultracold atoms held as close as 400 nm to an
electronic device might also open a route to creating new
hybrid atomic–solid-state quantum systems, for example, a
Rydberg atom coupled to a quantum dot formed within a
2D conductor [60,61]. Since the micron-scale confinement
length of electrons in the quantum dot is similar to that of the
excited electron in the Rydberg atom, new types of electron
orbital, shared between the atom and the condensed matter
parts of the system, may be created. Such hybrid states may
yield new regimes of quantum control and information storage
or processing, for example, relating to sideband cooling of
graphene [62]. Realizing such devices will however be highly
challenging and require significant experimental, device fab-
rication, and technical advances. We hope that our work will
stimulate the follow-on research required to identify and over-
come these challenges.

APPENDIX A: INFLUENCE OF THE ATOM CHIP ON
TRAPPED ATOMS

1. CP potential and resulting atom tunneling towards
the chip surface

The Casimir-Polder potential is essentially a position-
dependent shift of the atomic energy level structure, induced

FIG. 7. Schematic diagram of a dipole (electric in the case of our
CP potential calculation but magnetic for our Johnson-noise analysis)
near an n-layer system, where each layer is designated by index
l = 1, 2, . . . , n. Each layer is characterized by thickness tl , perme-
ability μl , and permittivity εl . The top surface of upper material
layer 2 (yellow) coincides with the origin of the y coordinate. The
dipole (depicted by the arrow labeled d) is located at r′ = (x′, y′, z′)
in layer 1, above the solid material layers, and acts as a point source.
The arrow labeled E represents the orientation of the electric field of
frequency ω at point r, which is related to the dipole d via a total
Green’s tensor. Note also that t1 and tn are infinite, corresponding to
semi-infinite top and bottom layers.

by the interaction of the atom with the surrounding surface-
modified electromagnetic radiation [63,64]. In general, the
presence of an object modifies a system’s electromagnetic
density of states, due to the boundary conditions that the field
has to satisfy on the surface of the object. The extent of the
modification, and therefore the strength of the CP potential,
depends on the object’s specific position in space, on its form,
and on the material(s) from which it is made, in particular the
layer composition, shown schematically in Fig. 7.

Generally, an atom experiences an attractive CP force to-
wards metallic and dielectric surfaces (Fig. 8). In atom-chip

FIG. 8. CP potential UCP calculated versus the position y′ of an
87Rb atom from the surface of a graphene monolayer (red dashed
curve), a heterostructure comprising a graphene monolayer encased
by two 10-nm-thick hBN layers (green solid curve), and a 125-nm-
thick gold slab (yellow solid curve) at temperature T = 300 K.
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FIG. 9. Total potential Utot calculated versus distance y of an
87Rb atom from the surface of a free-standing graphene monolayer
(red dashed curve), a graphene monolayer encased on each side by a
10-nm-thick hBN sheet (green solid curve), and a 125-nm-thick gold
sheet (yellow solid curve). The total potential is the sum of the CP po-
tential and the harmonic model trapping potential, which is centered
at y = 0.5 μm with radial trapping frequency ωr = 2π × 20 kHz.
All curves are for T = 300 K.

systems this behavior effectively lowers the barrier at the side
of a magnetic trap that is nearest the surface, as shown in
Fig. 9. In turn, this enables atoms to tunnel out of the trap
and be lost from the atom cloud. Tunneling losses induced by
the CP potential affect key atom-chip performance parameters
such as the integration time for sensor applications and the
coherence time for quantum memories. In the present genera-
tion of atom chips, metal wires used to generate the magnetic
field lead to a large CP attraction on trapped atoms located
within approximately 1 μm of the surface. This imposes a
minimum trapping distance of 10–100 μm for typical atom-
chip experiments [17,65,66]. Our proposed 2D material-based
atom chips are expected to exert very low CP attraction, due
to their extremely small (less than 100 nm) thickness and their
specific material properties, thereby opening a different route
to entering the submicron atom-surface trapping regime.

For a system in equilibrium at a temperature T consisting
of an atom located at position r′ from a nearby material body
(see Fig. 7), both interacting with the electromagnetic field,
the CP potential is given by [67,68]

UCP(r′) = μ0kBT
∞∑′

j=0

ξ 2
j α(iξ j )tr[G(1)(r′, r′, iξ j )], (A1)

where μ0 is the permeability of vacuum, h̄ is the reduced
Planck constant, α(ω) is the atomic polarizability, and ξ j =
2πkBT j/h̄ is commonly known as the Matsubara frequency
[69]. The prime on the Matsubara sum in Eq. (A1) indicates
that the j = 0 term carries half weight [68]. In Eq. (A1),
G(1)(r′, r′, ω) is the scattering Green’s tensor, which contains
the information about the material’s optical properties and the
geometry of the system.

For atom-surface separations shorter than the size of the
components of an actual atom chip (typically of the order
of a few tens of microns or larger) we can consider that the
atoms are interacting with a large layered surface. In this
case the expression for the Green’s tensor is known and we

present it explicitly in Appendix B. As shown there, in order
to determine the expression of the Green’s tensor we need to
evaluate the reflection coefficients of the electromagnetic field
incident on the atom-chip structure. In our case, the multilayer
configurations allow their determination using the scattering
or the transfer-matrix approach [70,71] in combination with
models describing the optical properties of graphene, hBN,
and gold (see Appendix C for details). In this work we take
the Fermi energy and electron relaxation rate of graphene to
be EF = 0.1 eV and γ = 4 THz, respectively, corresponding
to typical values found both theoretically [72–75] and in ex-
periments [76].

In this paper we consider a simple model of alkali-metal
atoms with atomic polarizability of the form [68,77]

α(iξ j ) = α0
ω2

T

ω2
T + ξ 2

j

, (A2)

where α0 is the ground-state static polarizability and ωT is
the frequency of the dominant atomic transition. In the case
of 87Rb atoms, α0 = 5.27 × 10−39 F m2 [78] and ωT = 2π ×
384 THz is the D2 line transition frequency corresponding to
a wavelength of 780 nm [79].

Equation (A1) is sufficiently generic to enable the CP
potential to be calculated for our atom-chip system and com-
pared consistently with other materials and structures. In
Fig. 8 we compare the CP potential UCP calculated versus
the separation y′ of an 87Rb atom from three different ma-
terial systems: a graphene monolayer (red dashed curve) for
which CP potential calculations have been reported previously
[77,80–85], a heterostructure comprising a graphene mono-
layer encased by two 10-nm-thick hBN layers (green solid
curve), and a 125-nm-thick gold slab (yellow solid curve),
all at T = 300 K. We choose the thickness of the gold slab
to be 125 nm because this is among the smallest reported
thicknesses at which gold wires in atom-chip experiments [86]
have a conductivity that still behaves as bulk. Even in this
limit of metallic conductor thickness, at y′ ≈ 1 μm, the CP
potential for the heterostructure is approximately 40% of that
for the thin gold slab.

The effect of the CP potential on the total trapping potential
Utot can be illustrated by modeling the magnetic trapping
potential UH as simple harmonic and adding the CP potential,
giving

Utot (y) = UH(y) + UCP(y). (A3)

The simple harmonic potential takes the form

UH(y) = 1
2 mω2

r (y − yc)2, (A4)

where m is the mass of the trapped atom, ωr is the radial
trapping frequency, and yc is the position of the center of the
simple harmonic trap measured from the surface; note that yc

is not necessarily equal to the minimum of the total potential.
Figure 9 shows the resulting total trapping potential Utot

calculated versus distance y of an 87Rb atom from a graphene
monolayer (red dashed curve), an hBN-graphene monolayer-
hBN heterostructure (green solid curve) and a 125-nm-thick
gold slab (yellow solid curve) calculated taking [see Eq. (A4)]
ωr = 2π × 20 kHz, yc = 0.5 μm, T = 300 K, and the mass
of an 87Rb atom m = 1.44 × 10−25 kg. It is apparent that the
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FIG. 10. Schematic diagram of the total trapping potential Utot (y)
(black solid curve) plotted versus distance y of an 87Rb atom from
an atom-chip surface. The blue solid line indicates the ground-state
energy of the quantum harmonic oscillator E = h̄ωeff/2, where ωeff

is the effective characteristic frequency of the simple harmonic trap
(red dashed curve), which is perturbed by the CP potential, as de-
scribed in the text, and approximates Utot (y) near the minimum.
The positions y0, y1, and y2, indicated by arrows, are, respectively,
the actual trap center and the two classical turning points for the
left-hand potential energy barrier, where U (y1) − U (y0 ) = U (y2 ) −
U (y0 ) = h̄ωeff/2. The yellow dash-dotted curve is the potential of the
unperturbed simple harmonic trap.

CP potential distorts the simple harmonic trap: An energy
barrier of finite height and width appears near the surface for
y < yc. The height and width effectively scale with the dis-
tance of the trap center from the surface, thereby giving rise to
tunneling losses, which deplete the trapped atom cloud. Since
graphene creates a weaker CP attraction than even the thin
gold conductor, the tunneling loss rates for graphene-based
atom chips are lower than for conventional atom chips and
we quantify this benefit below. Consequently, graphene-based
atom chips offer a performance advantage over the present
generation of atom chips, which use metallic conductors as
current-carrying wires.

In order to estimate the tunneling loss rate �tun of an atom
cloud trapped in the finite potential well shown schematically
by the black solid curve in Fig. 10, we employ Gamow’s
theory of α decay [87]. In this model, the atom is considered to
oscillate inside the potential well and can escape by tunneling
through the finite barrier nearest the surface each time it is
incident on that barrier. The tunneling rate is determined by
the frequency at which the atom approaches the barrier f and
the transmission probability T̃ that the atom tunnels out at
each attempt. Mathematically, we have

�tun = f × T̃ . (A5)

Figure 10 shows that the deformation of the unperturbed
harmonic magnetic potential (yellow dash-dotted curve) by
the CP interaction also yields an effective perturbed harmonic
potential (red dashed curve) with a lower trapping frequency,
ωeff , and whose minimum shifts from y = yc to a new position

FIG. 11. Tunneling lifetime τtun calculated versus the position of
the harmonic trap center y0 for an 87Rb atom trapped near a graphene
monolayer (red dashed curve) and a 125-nm-thick gold slab (yellow
solid curve). The weaker CP attraction for graphene gives rise to
a higher, wider tunnel barrier and consequently a higher tunneling
lifetime. The parameters are T = 300 K and ωr = 2π × 20 kHz.

y0. The perturbed harmonic potential therefore takes the form

Ueff (y) = 1
2 mω2

eff (y − y0)2, (A6)

where a Taylor expansion of Utot (y) about y = y0 yields

y0 ≈ yc + U ′
CP(yc)

mω2
r

, ω2
eff ≈ ω2

r + U ′′
CP(y0). (A7)

Atoms in the ground state of this effective potential have an
energy E = h̄ωeff/2 and approach the barrier at frequency
f = ωeff/2π . Using the Wentzel-Kramers-Brillouin approxi-
mation, the transmission probability through the tunnel barrier
is given by [88–90]

T̃ = exp

(
− 2

∫ y2

y1

κ (y)dy

)
, (A8)

where y1 and y2 are the two classical turning points for the
potential barrier, κ (y) = √

2m[Utot (y) − E ]/h̄, and Utot (y) is
the form of the barrier in the total potential energy curve.

The average tunneling-limited lifetime of a trapped atom is
then defined by

τtun(y0) = 1

�tun(y0)
. (A9)

We calculated the tunneling loss rates for our model sys-
tems using the Gamow formalism described above. Figure 11
shows the resulting lifetimes τtun calculated versus the posi-
tion of the trap center y0 from a graphene monolayer (red
dashed curve) and a thin gold slab (yellow solid curve).
The minimum distance that atoms can be trapped from the
surface is marked by the left-hand ends of the two curves,
where the tunnel barrier vanishes. Comparison of the curves
shows that using a graphene monolayer reduces this distance
to approximately 0.3 μm compared to the value of approx-
imately 0.45 μm for the gold layer. For y0 > 0.5 μm, the
tunneling lifetime for the single layer of graphene is orders of
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magnitude higher than for the gold slab due to the weaker CP
potential.

2. Atom losses due to Johnson noise

Magnetically trapped atoms only remain trapped when
they are in a low-field seeking state with the magnetic moment
aligned antiparallel to the direction of the magnetic field. In
order to keep mF a good quantum number, an offset magnetic
field of a few gauss is typically maintained at the trapping
position in atom-chip experiments [33]. Given a Zeeman
splitting of, for example, 0.7 MHz/G for the 87Rb ground
state, this produces transition frequencies of a few megahertz
between hyperfine states with different mF values, thus mak-
ing the trapped atoms susceptible to magnetic fields in that
frequency range and therefore to noise in the radio-frequency
domain.

Johnson noise arises from electrical noise currents within a
conductor, which produce fluctuations of the magnetic field
[91]. For near-surface traps formed between approximately
1 μm and 1 mm from a metallic conductor on a conventional
atom chip, Johnson noise is usually the main limitation on
the lifetime of the atom cloud [33,65,66]. For example, the
measured lifetime of atoms trapped approximately 1 μm from
thick metallic conductors is limited to only approximately
0.1 s by the effects of Johnson noise [33].

We now analyze and quantify the low Johnson noise pro-
duced by graphene, compared with metals, by using two
models of increasing sophistication. First is a crude estimate
based on previous models for metallic conductors and derived
using the fluctuation-dissipation theorem [33,91,92]. Second,
we present a rigorous quantum field theoretical calculation for
2D materials involving the full Green’s function for the sys-
tem, determined from the reflection coefficients for graphene
and 2D multilayers.

Comparing graphene and gold wires with a given top
surface area A, the ratio of the number of free electrons in
graphene NG to that in gold NAu is NG/NAu = nG/nAutAu,
where tAu is the thickness of the gold wire and nG and nAu

are, respectively, the sheet and volume electron densities of
undoped graphene and gold. Taking nAu = 5.9 × 1028 m−3

for bulk gold and typical values of tAu = 1 μm and nG = 9 ×
1014 m−2 [93] gives NG/NAu = 1.5 × 10−8. The carrier mo-
bility of gold is μAu ≈ 4.3 × 10−3 m2/V s and, in graphene,
mobilities up to μG ≈ 20 m2/V s have been reported in free-
standing membranes [94,95]. For graphene on a substrate, the
electron mobility is typically at least an order of magnitude
lower, leading to the estimate μAu/μG � 2 × 10−4.

These results allow us to anticipate that the Johnson noise
will be far smaller in graphene than in gold. Indeed, to make
a rough initial estimate of this intuitive advantage, we now
use the model presented in [33,91,92] to evaluate the ex-
pected spin-flip lifetime enhancement. For an atom trapped
at distance d from a metal film of width w � t , where t is
the thickness of the film, and resistivity ρ at temperature T ,
the |F, m〉 → |F, m − 1〉 spin-flip rate, given in s−1, is � =
C(T/ρ) × [d (1 + d/t )(1 + 2d/w)]−1, where C is a constant
that depends on the Clebsch-Gordon coefficient for the tran-
sition and on the transition frequency [33,91,92]. Assuming,
as a crude initial approximation, that this formula can also be

used to estimate the rate of spin flips induced by electrons
in graphene, the ratio of the lifetimes τG and τAu of atom
clouds trapped at a distance d above graphene and gold wires,
respectively, is

τG

τAu
= �Au

�G
= ρG

ρAu

1 + d
tG

1 + d
tAu

, (A10)

where tG = 0.345 nm is the thickness of a graphene mono-
layer, ρAu = 1/nAueμAu and ρG = tG/nGeμG are the resis-
tivities of the gold and graphene, respectively, and e is the
electron charge.

Since d � tG, it follows that

τG

τAu
≈

(
nAu

nG

)(
μAu

μG

)
tAud

d + tAu

=
(

NAu

NG

)(
μAu

μG

)
d

d + tAu
. (A11)

Unless d 
 t, which is not the case for presently attainable
trapping distances, the final term in the above equation is of
order unity and so τG/τAu depends primarily on the relative
number of free electrons in gold and in graphene and on their
mobility ratio.

Using the values for the carrier mobility and density given
above, we arrive at τG/τAu � 1.3 × 104d/(d + tAu). We thus
predict that for atoms trapped approximately 1 μm away from
a conductor, the lifetime will increase from approximately
0.1 s for a 1-μm-thick metallic wire, similar to that reported in
[33], to greater than or approximately 600 s for graphene, i.e.,
an increase by a factor of τG/τAu � 6.3 × 103. The physical
reason for this is that although electrons in graphene have a
higher mobility than in a metal, and so produce more Johnson
noise per carrier, this is more than compensated by the far
lower number of charge carriers in the graphene.

Below, we derive an expression for the Johnson noise
produced by van der Waals heterostructures. To quantify the
advantages of using 2D conductors, rather than metal wires, to
reduce noise in atom chips we consider the particular case of
graphene conduction channels. However, similar advantages
are expected from other 2D materials due to their low number
of electric current carriers.

The magnetic moment vector associated with the transition
|i〉 → | f 〉 of an atom is given by [96,97]

μ = −〈i| μB

h̄

(
gSŜ + gLL̂ − gI

me

mnuc
Î
)

| f 〉 , (A12)

where Ŝ, L̂, and Î are the electron spin operator, the electron
orbital angular momentum operator, and the total nuclear
angular momentum operator, respectively, with their corre-
sponding Landé g factors gS , gL, and gI ; me is the electron
mass; and mnuc is the nuclear mass. Here the magnitude of the
angular momentum, for example, Ŝ, is

√
S(S + 1)h̄ and the

eigenvalue of the z component of Ŝ, i.e., Ŝz, is mSh̄, where S
and mS are the corresponding quantum numbers for Ŝ and Ŝz,
respectively.

Taking L = 0 for the electronic ground state and neglect-
ing the term containing the total nuclear angular momentum
operator Î in Eq. (A12) because me 
 mnuc, the magnetic mo-
ment vector becomes μ = −μBgS 〈i| Ŝ | f 〉/h̄, where gS = 2,
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and the rate of magnetic spin-flip transitions from an ini-
tial hyperfine magnetic state |i〉 to another state | f 〉 is given
by [97]

�JN = μ0
2(μBgS )2

h̄2

∑
j,k

{〈 f | Ŝ j |i〉〈i| Ŝk | f 〉

× Im[∇ × ∇ × G(r0, r0, ωi f )] jk (n̄th + 1)}, (A13)

where Ŝ j,k denotes the j and k components of the electron
spin operator Ŝ and G(r0, r0, ωi f ) is the total dyadic Green’s
function describing the electromagnetic field of the transition
frequency ωi f at r0 due to a magnetic dipole located at r0 (see
Appendix B). The mean thermal photon occupation number is
given by

n̄th = 1

eh̄ωi f /kBT − 1
, (A14)

where T is the temperature of the electromagnetic field system
that causes the spin-flip transitions, rather than of the trapped
atoms, and ωi f is the angular frequency of the radiation due to
magnetic spin-flip transitions. The Johnson-noise lifetime of
a single atom is defined as

τ = 1

�JN
. (A15)

Note that, mathematically, G(r0, r0, ωi f ) can be written as
the sum of a Green’s tensor, describing the field due to a dipole
in an infinitely extended homogeneous bulk medium, vacuum
for example, and a scattering Green’s tensor describing the
reflected field in the presence of reflective bodies so that

G(r0, r0, ωi f ) = G(0)(r0, r0, ωi f ) + G(1)(r0, r0, ωi f ).
(A16)

The explicit forms of G(0)(r0, r0, ωi f ) can be found in [98,99]
and are summarized in Appendix B. Owing to the general
properties of a Green’s tensor, we have

Im[∇ × ∇ × G(r, r0, ω)] = ω2

c2
Im[ε(ω)μ(ω)G(r, r0, ω)],

(A17)
where ε(ω) and μ(ω) are, respectively, the permittivity and
permeability of the medium in which the field and source
points are located. The imaginary part of the Green’s tensor
in vacuum has a simple form

Im[G(0)(r0, r0, ω)] jk = 1

6π

ω

c
δ jk, (A18)

where δ jk is the Kronecker delta, which allows us to determine
the spin-flip rates in vacuum.

In this Appendix we use Eq. (1) to determine an appro-
priate value of the atomic transition frequency for input into
our Johnson-noise lifetime calculations in the presence of
the magnetic trapping field. For the |F, mF 〉 = |2, 2〉, 5 2S1/2

ground state of the 87Rb atoms considered here, gF = 1
2

[79,96]. Here we only consider the Zeeman transition from
|2, 2〉 to |2, 1〉 to facilitate direct comparison with the results
of Ref. [33]. The angular frequency of the radiation is then
given by

ωi f = μB|B(r0)|
2h̄

. (A19)

FIG. 12. Johnson-noise lifetimes τ calculated [using Eqs. (A13)
and (A15)] versus the position of the harmonic trap center y0 for
an ultracold gas of 87Rb atoms trapped above: an undoped graphene
monolayer (blue dashed curve), a doped graphene monolayer with
Fermi energy EF = 0.1 eV (red dashed curve), an hBN-encased
graphene-based heterostructure (black solid curve), a 1-μm-thick
gold slab (yellow solid curve), and a 125-nm-thick gold slab (green
solid curve). The graphene monolayers yield orders of magnitude
longer lifetimes than the 1-μm-thick gold slab because they have
far lower electromagnetic reflectance than gold (see the text). The
parameters are T = 300 K and ω = 2π × 560 kHz.

Taking |B(r0)| = 0.8 × 10−4 T gives ωi f = 2π × 560 kHz.
Comparing with the hyperfine splitting frequency for the
ground state of the 87Rb atom, which is 2π × 6.83 GHz, we
now see that our assumption that mF is a good quantum
number is justified. The method for calculating the Clebsch-
Gordon coefficients associated with the spin-flip transition
matrix elements 〈 f | Ŝ j,k |i〉 can be found in [100]. For com-
pleteness, we note that these matrix elements are

〈2, 2| Ŝx |2, 1〉 = 〈2, 1| Ŝx |2, 2〉 = 1

4
,

〈2, 2| Ŝy |2, 1〉 = − 〈2, 1| Ŝy |2, 2〉 = i

4
,

〈2, 2| Ŝz |2, 1〉 = 〈2, 1| Ŝz |2, 2〉 = 0. (A20)

To proceed with our calculations of the transition rates and
comparisons for different surface materials, we consider the
typical thickness of the metallic wires used to generate the
magnetic field in atom chips, which is approximately 1 μm
[33]. Figure 12 shows the Johnson-noise-limited lifetimes
of the atom cloud τ calculated versus atom-surface distance
y0 for a 1-μm-thick gold slab (yellow solid curve), a 125-
nm-thick gold slab (green solid curve), a doped graphene
monolayer with EF = 0.1 eV (red dashed curve), an undoped
graphene monolayer (blue dashed curve), and a heterostruc-
ture consisting of a graphene monolayer encased by two
10-nm-thick hBN layers (black solid curve). Note that to facil-
itate comparison with the lifetimes reported in [33], Fig. 12 is
calculated using Eqs. (A13) and (A15). The graphene mono-
layers yield far longer lifetimes than the gold wires do, even
for a small wire thickness of 125 nm. Making gold wires
thinner than 125 nm is possible, but their resistivities then
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become higher than for bulk gold [86]. Silver wires a few tens
of nanometers thick have been made [101], but exhibit graini-
ness on length scales comparable to the film thickness, varying
from approximately 8 nm for 20-nm-thick films to approxi-
mately 40 nm when the film size reaches 60 nm. Moreover,
wires made from silver would be prone to oxidization, which
would affect their conductivity. At y0 = 1 μm, the lifetimes
for the undoped graphene monolayer and the 1-μm-thick gold
slab are approximately 2500 and 0.34 s, respectively, giving a
lifetime ratio of approximately 7.4 × 103, which is broadly
consistent with the estimate of approximately 6.3 × 103 ob-
tained from Eq. (A10). The lifetime for the heterostructure is
slightly longer than that for the doped graphene layer.

We conclude that Johnson noise in graphene conductors
will produce negligible spin-flip losses compared to the thick
(tAu ∼ 1 μm) metal wires typically used in atom chips, where
it dominates the loss rate. Consequently, our analysis of
graphene atom chips will henceforth focus on the effects
of tunneling and three-body losses and of spatial imperfec-
tions. We note, however, from Eq. (A10) that the lifetime
above metallic conductors can be increased by decreasing
their thickness tAu and hence NAu. For wires with tAu =
125 nm, τG/τAu ∼ 1400. Taking the limit of the gold layer
thickness to its lattice constant, 0.4 nm, gives τG/τAu ∼ 5. So
the advantage of graphene over metallic conductors persists
even if the metal wire could be thinned close to the theo-
retical limit of a monolayer. However, graphene and other
exfoliated van der Waals materials are the only monolayers
so far produced. Moreover, their hexagonal crystal structure
and resulting lightlike linear energy band dispersion relations
ensure that they can carry high currents despite their low
thickness and carrier density. However, if high-quality metal-
lic monolayers could be produced, their low electron density
may reduce the Johnson noise and Casimir-Polder potential to
levels comparable to exfoliated 2D materials.

3. Negligible corrugation effects

Spatial meandering of the current stream lines can in
principle be created in four ways: deviation from strictly
two-dimensional current flow (analogous to surface roughness
of 3D conductors), edge roughness resulting from imperfect
lithography, electrons scattering from one another or from
phonons, and spatial variations in the electron potential en-
ergy created by impurities or imperfections in or near the
conducting channel [41,42,102–104]. We now consider the
importance of each potential source of roughness in turn.

When graphene is encapsulated in hBN, the surface rough-
ness and non-two-dimensionality in graphene is only of order
12 pm [105] because the hBN provides an ultraflat surface for
the graphene and is closely lattice matched to it [106–108].
Such low roughness is consistent with that of an individual
graphene layer in bulk graphite and will have a negligible ef-
fect on the atom-trapping potential landscape. Edge roughness
will be determined by the quality of the lithography used to
define and create the conducting channels. Since graphene is
two dimensional, there will be negligible vertical fluctuations
in the channel wall. Edge fluctuations along the channel will
be determined by the lithographic process used and compara-
ble to those in existing atom chips with metallic conductors.

For electron beam lithography, the edge fluctuations will be
of order 35 nm [109], whereas for helium ion beams, values
below 5 nm are attainable [110].

In metallic conductors, grain boundaries give rise to local
electron scattering processes, which can be detected via their
effect on the current flow pattern and resulting modulation of
the trapping potential and BEC atom density [41,42,110,111].
By contrast, graphene monolayers contain no grains to in-
duce position-specific scattering processes and resulting atom
density fluctuations. Electron-electron and electron-phonon
scattering events do occur, but these are spatiotemporally
stochastic, rather than occurring at particular fixed positions
within the conducting channel, and therefore will not produce
roughness in the trapping potential and BEC density profile
because of time averaging. Moreover, since their character-
istic length scales are shorter than the typical dimensions
of atom-chip wires, ballistic transport effects do not need to
be considered. However, electron scattering mechanisms do
affect the diffusive electron mobility and hence the Johnson-
noise-limited spin-flip lifetime of the trapped atom cloud.

Spatial fluctuations in the electronic potential energy cre-
ated by imperfections and impurities that either are within
the graphene or accumulate at interfaces in hBN-encased
graphene structures have been studied theoretically and
measured in resonant-tunneling experiments [107,112–116].
Self-consistent calculations [114,115], which give excellent
quantitative agreement with measurements of graphene’s elec-
tron mobility μG versus impurity density and with scanning
probe surface studies [113], predict that the correlation length
of these potential fluctuations is approximately 10 nm. Recent
experiments on graphene and boron nitride tunnel transistors
have shown that for graphene monolayers encased by several
layers of hBN, the correlation length is approximately 12 nm
[112,117]. Consequently, the associated small-angle current
meander will have negligible effect on the potential landscape
of atoms trapped even as close as 150 nm from the graphene
and will therefore not influence the minimum atom-surface
trapping distance.

When graphene is placed or grown epitaxially on hBN, the
small lattice mismatch between the two materials gives rise
to a strain-induced moiré pattern and superlattice potential,
which can modify the electronic properties of electrons within
the graphene. Moiré periods up to 80 nm have been realized
[118] and further increases in period may modulate the current
flow on a length scale long enough to produce detectable
variation in the density profile of a BEC trapped nearby.
Such variations could yield information about the superlattice
potential and the underlying strain mechanisms.

APPENDIX B: DYADIC GREEN’S FUNCTION

In this Appendix we discuss the Green’s tensors for planar
multilayer systems, like those considered in the main text.
We will start by considering the general characteristics of an
electric field in a homogeneous space, in order to provide an
intuitive explanation of the Green’s tensors.

1. General definition

Let us recall the inhomogeneous Helmholtz equation de-
scribing the relationship between an electric field E and a
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current density j of angular frequency ω at position r with
respect to a linear, isotropic, inhomogeneous medium, with
relative magnetic permeability μ(ω) and relative permittivity
ε(ω) [119,120]:

∇ × ∇ × E(ω, r) − k2E(ω, r) = iωμ0μj(ω, r). (B1)

Here k =
√

ε(ω)μ(ω)ω2/c2 is the magnitude of the wave
vector associated with the electromagnetic wave, μ0 is the
permeability of free space, and

j(ω, r) = jx(ω, r)ex + jy(ω, r)ey + jz(ω, r)ez, (B2)

where ex, ey, and ez are the unit vectors in the x, y, and z
directions, respectively, with jx, jy, and jz the corresponding
current density components.

The classical Green’s tensor G = (Gx, Gy, Gz ), as a func-
tion of the field point position r, the source point position r′,
and the wave angular frequency ω, is the unique solution to
the differential equations

∇ × ∇ × Gx(r, r′, ω) − k2Gx(r, r′, ω) = δ(r − r′)ex, (B3)

∇ × ∇ × Gy(r, r′, ω) − k2Gy(r, r′, ω) = δ(r − r′)ey, (B4)

∇ × ∇ × Gz(r, r′, ω) − k2Gz(r, r′, ω) = δ(r − r′)ez, (B5)

where δ(r − r′) is the Dirac delta function. These three
Green’s functions, in a column vector form, can be combined
into a single tensor, giving the general definition of the dyadic
Green’s function (Green’s tensor) for the electric field

∇ × ∇ × G(r, r′, ω) − k2G(r, r′, ω) = Iδ(r − r′), (B6)

where I is the unit dyad (unit tensor).
We can see that each column of the tensor G can be

mathematically treated individually: The curl operators can be
applied to any column of the Green’s tensor as if they were to
act on a single column vector. In addition, each column can be
interpreted separately: The first column of the Green’s tensor
describes the field due to a point source in the x direction,
the second column the field due to a point source in the y di-
rection, and the third column the field due to a point source in
the z direction. Consequently, a particular solution of Eq. (B1)
defined by the dyadic Green’s function is

E(ω, r) = iωμμ0

∫
V

G(r, r′, ω)j(ω, r′)d3r′, (B7)

where the integral is evaluated over the volume V of the
current source body (see Fig. 13).

2. Green’s tensor for planar multilayer systems

Let us consider the situation shown in Fig. 7, where a
radiating electric dipole is located above a layered substrate.
We assume that the upper half space is vacuum, while the
lower half space (atom-chip substrate) is optically denser.

Since the electric field in layer 1 is the superposition
of the field directly radiated from the dipole and the field
scattered by the material layers, the Green’s function can,
correspondingly, be decomposed into two contributions: a
Green’s function for homogeneous space and a scattering
Green’s function reflecting dielectric inhomogeneity. In order
to find the primary dyadic Green’s function G(0)(r, r′, ω)

FIG. 13. Illustration of the dyadic Green’s function G(r, r′, ω).
The Green’s function relates the local current source j at point r′ and
the associated electric field E at point r. The total electric field is the
superposition of every field corresponding to each point source in the
source body of volume V .

(sometimes called the free-space Green’s function), we re-
move the interfaces in Fig. 7 and assume that the electric
dipole d, located at r′ = (x′, y′, z′), is in a homogeneous, lin-
ear, and isotropic medium, characterized by permittivity and
permeability functions ε1(ω) and μ1(ω). The superscript (0)
here is to remind us that this Green’s function is the primary
Green’s function. The associated electric field at r = (x, y, z)
and its corresponding wave vectors are

E(r, ω) = ω2μ0μ1G(0)(r, r′, ω)d(r′, ω), (B8)

k1(ω) = kxex + ky1ey + kzez = k‖ek‖ + ky1ey, (B9)

respectively, where kx and kz are the x and z components of
the wave vector k‖ek‖ = kxex + kzez in the x-z plane, which
are the same in every layer, and ky1 is the y component of the
wave vector in layer 1.

The primary Green’s tensor can be written in the form
[74,98,99]

G(0)(r, r′, ω) = i

8π2

∫∫ ∞

−∞

1

ky1
M(0)(kx, kz )

× ei[kx (x−x′ )+kz (z−z′ )+ky1|y−y′|]dkxdkz, (B10)

in which

M(0)(kx, kz ) = (es± ⊗ es±) + (ep± ⊗ ep±), (B11)

where ⊗ represents a tensor product. Here the polarization
unit vectors for s- and p-polarized waves in layer 1 are defined
as (see Fig. 14)

es± = ek‖ × ey, (B12)

ep± = 1

k1
(k‖ey ∓ ky1ek‖ ), (B13)

where k1 = √
ε1(ω)μ1(ω)ω/c = (k2

y1 + k‖2)1/2 is the wave
number and the upper (−) sign applies for y > y′ (i.e., waves
propagating in the positive y direction), while the lower (+)
sign applies for y < y′ (i.e., waves propagating in the negative
y direction).

Let us now consider what happens to the electric field
described by the above primary Green’s function when a re-
flective planar layered structure is added to the system below
the dipole, as depicted in Fig. 7. Physically, the role of the
layered structure is to reflect back the electromagnetic wave
radiated from the dipole. Therefore, mathematically, multi-
plying the individual incident plane waves in G(0) with the
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FIG. 14. Definition of the polarization unit vectors. The plane
spanned by the vector ey, pointing in the positive y direction, and
the vector ek‖ = (kx, 0, kz )/k‖ defines the plane of incidence. The
s-polarization unit vectors es± are perpendicular to the plane of
incidence, while the p-polarization unit vectors ep± are parallel to the
plane of incidence and perpendicular to the directions of propagation
(blue arrows).

corresponding generalized Fresnel reflection coefficients r (1)
s

and r (1)
p , along with changing the phase factor (the exponential

term) accordingly, yields the scattering Green’s tensor

G(1)(r, r′, ω) = i

8π2

∫∫ ∞

−∞

1

ky1
M(1)(kx, kz )

× ei[kx (x−x′ )+kz (z−z′ )+ky1(y+y′ )]dkxdkz, (B14)

where

M(1)(kx, kz ) = r (1)
s (es+ ⊗ es−) + r (1)

p (ep+ ⊗ ep−). (B15)

Here the superscript (1) is to remind us that the Green’s tensor
is the scattering Green’s tensor for layer 1.

The total electric field due to a radiating electric dipole
above a planar structure can now be written as

E(r, ω) = ω2μ0μ1GE (r, r′, ω)d(r′, ω), (B16)

where GE (r, r′, ω) = G(0)(r, r′, ω) + G(1)(r, r′, ω) and we
introduce a subscript E to emphasize that this Green’s func-
tion is for an electric dipole. In order to obtain a scattering
Green’s tensor for a magnetic dipole, we interchange the
Fresnel reflection coefficients in (B11).

The relevant Green’s tensors for calculating the CP poten-
tial and the Johnson noise must be evaluated at r = r′ = r0,
where r0 = (x0, y0, z0) is the position of the center of the
magnetic trap. After straightforward manipulation of the polar
coordinates, the equal-position scattering Green’s tensor is
therefore given by [75,99]

G(1)(r0, r0, ω) = i

8π

∫ ∞

0
dk‖ k‖

ky1
e2iky1y0

×
[

Mαr (1)
s (k‖, ω) + c2

ω2
Mβr (1)

p (k‖, ω)

]
,

(B17)

where y0 is the shortest distance between the surface and the
center of the magnetic trap and

ky1 =
(

μ1ε1
ω2

c2
− k‖2

)1/2

, (B18)

with k‖2 = k2
x + k2

z . The tensors Mα and Mβ in Eq. (B17) are
given by

Mα =
⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠, (B19)

Mβ =
⎛
⎝−k2

y1 0 0
0 2k‖2 0
0 0 −k2

y1

⎞
⎠. (B20)

Note that the forms of Mα and Mβ depend on the coordinate
system used and that Eq. (B17) only describes an electromag-
netic field with a real frequency, created by a radiating electric
dipole.

For a purely imaginary frequency ω = iξ , where ξ is real,
e.g., the Matsubara frequencies that appear in the CP potential
calculations, the wave vector in the direction perpendicular to
the surface is always purely imaginary, ky1 = iκ⊥

1 , with

κ⊥
1 (μ1, ε1, iξ ) =

√
μ1(iξ )ε1(iξ )

ξ 2

c2
+ k‖2 (B21)

and

k‖ =
√

κ⊥2
1 − μ1ε1

ξ 2

c2
=

√
κ⊥2

l − μlεl
ξ 2

c2
, (B22)

where the subscript l denotes the layer index corresponding to
each wave vector. Equations (B21) and (B22) tell us that the
wave numbers in the direction perpendicular to the surface
are functions of the optical properties of the materials and
the incident wave frequencies, whereas the wave numbers in
the direction parallel to the surface are constant for a given
κ⊥

l . The equal-position Green’s tensor for purely imaginary
frequencies is then given by [98,99,120]

G(1)(r0, r0, iξ ) = 1

8π

∫ ∞

ξ/c
dκ⊥

1 e−2κ⊥
1 y0

×
[

Mαr (1)
s (k‖, iξ ) − c2

ξ 2
Mβr (1)

p (k‖, iξ )

]
.

(B23)

Finally, we note that the Green’s tensor for a magnetic dipole,
which is needed for the Johnson-noise calculations, can be
readily obtained by interchanging the reflection coefficients
in (B17).

APPENDIX C: OPTICAL PROPERTIES OF MATERIALS

In this Appendix we briefly introduce the optical properties
of graphene, hBN, and bulk gold. They are used in order to
determine the behavior of the reflection coefficients of our
system (see Appendix D).

Graphene’s optical conductivity can be split into two
distinct contributions. The first describes how the charge car-
riers respond to electromagnetic radiation by transitioning
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to higher-energy states within the same energy bands with-
out conserving momentum [intraband transitions σintra (ω)].
The second accounts for vertical momentum-conserving tran-
sitions from the valence band to the conduction band,
induced by the electromagnetic radiation [interband transi-
tions σinter (ω)], where ω is the angular frequency of the
electromagnetic field to which the graphene is exposed.

The expression for graphene’s conductivity has been
considered using multiple approaches and limits (see, for
example, [121,122]) and the choice of a specific description
depends on the features of the system under analysis and/or
on the particular aspect under investigation (see, for example,
[123–126] and the references below). For our systems and its
parameters we can use the expression derived from the Kubo
formula [74,127,128], which gives

σintra (ω) = σ0

π

4

h̄γ − ih̄ω
[EF + 2kBT ln(1 + e−EF /kBT )],

(C1)

σinter (ω) = σ0

[
G

(
h̄ω

2

)
+ i

4h̄ω

π

∫ ∞

0
dE

G(E ) − G( h̄ω
2 )

(h̄ω)2 − 4E2

]
,

(C2)

in which

G(X ) = sinh
(

X
kBT

)
cosh

( EF
kBT

) + cosh
(

X
kBT

) , (C3)

where σ0 = e2/4h̄ is the universal alternating-current con-
ductivity of graphene, γ is the electron relaxation rate in
graphene, EF is the Fermi energy, and T is the temperature
of the graphene layer.

Within the four-parameter semiquantum model [129–132],
the in-plane optical conductivity of an ultrathin hBN slab
comprising a few monolayers is

σhBN(iξ j ) = iε0ξ jthBN[εz,hBN(iξ j ) − εz(∞)]. (C4)

Here the frequency-dependent permittivity of hBN is given by

ε f ,hBN(iξ j ) = ε f (∞) + sν, f ω
2
ν, f

ω2
ν, f + γν, f ξ j + ξ 2

j

, (C5)

where f = x, y, z; ων,z = 2.58 × 1014 rad/s; γν,z = 1.319 ×
1012 rad/s; sν,z = 1.83; εz(∞) = 4.87 (see the supplementary
information of [133]); and thBN is the thickness of the hBN
slab. For metals, in particular gold, we use the Drude model
for the permittivity

εmetal(iξ j ) = 1 + ω2
p

ξ 2
j + �Dξ j

, (C6)

where, for gold, ωp = 1.38 × 1016 rad/s is the plasma fre-
quency and �D = 1.075 × 1014 rad/s is the electron relax-
ation rate [98,134].

APPENDIX D: REFLECTION COEFFICIENTS

Typical atom chips can be modeled as planar multilayer
structures (see Fig. 7) with generalized Fresnel reflection co-
efficients given by the recursive relations [99,135]

r (l )
s = r (l )

s (k‖, ω = iξ j )

= a + {
b exp(2ik⊥

yl+1tl+1)r (l+1)
s

}
b + {

a exp(2ik⊥
yl+1tl+1)r (l+1)

s
} ,

(D1)

r (l )
p = r (l )

p (k‖, ω = iξ j )

= c + {
d exp(2ik⊥

yl+1tl+1)r (l+1)
p

}
d + {

c exp(2ik⊥
yl+1tl+1)r (l+1)

p
} ,

(D2)

where a = (μl+1kyl − μl kyl+1), b = (μl+1kyl + μl kyl+1),
c = (εl+1kyl − εl kyl+1), and d = (εl+1kyl + εl kyl+1) for
l = 1, . . . , n − 1 with μl = μl (iξ ), εl = εl (iξ ), and a
termination condition rn

s,p = 0. Here kyl is defined in the same
manner as Eqs. (B21) and (B22). Note that the superscripts (l )
on rs and rp are indices denoting which layers the reflection
coefficients correspond to. We use this method to calculate
the reflection coefficients of the metallic conducting wires.

Another way to determine the reflection coefficients is to
use a transfer-matrix method (see, for example, [71]). We
use this as a convenient method to calculate the reflection
coefficients of the structures that incorporate graphene lay-
ers. We now present a concise description of this method.
There are two basic elements in this formalism, namely, trans-
mission matrices and propagation matrices: A transmission
matrix describes the change of the wave amplitudes when
the wave crosses an interface between two media, whereas a
propagation matrix captures the phase change when the wave
propagates through a medium. Important physical quantities
in this method are the conductivities of the ultrathin layers
and the permittivities of thick media.

Let us consider the scattering of electromagnetic waves
of frequency ω, scatter from a planar structure consisting of
a monolayer graphene, cladded by two semi-infinite dielec-
tric media of relative permittivities ε1 and ε2, as shown in
Fig. 15. The graphene sheet is located in the y = 0 plane
and is assumed to be infinitesimally thin such that medium
1 (characterized by a relative permittivity ε1) occupies the
region defined by y > 0 and medium 2 (characterized by a
relative permittivity ε2) occupies the region defined by y < 0.
Let us further assume that the waves are plane waves, that
their B field only has an x component, and that their E field
is parallel to the plane of incidence, which coincides with the
y-z plane (commonly known as transverse magnetic waves or
p-polarized waves). Therefore, the B fields can be written as

B( j)
x (r, t) = (Aje

−ik j,yy + Bje
ik j,yy)ei(k j,zz−ωt )x̂, (D3)

where j = 1, 2 are for the waves in medium 1 and medium 2,
respectively; Aj and Bj are the amplitudes of the waves prop-
agating in the negative and positive y directions, respectively;
subscripts x, y, and z denote the components associated with
the coordinate axes; t is time; x̂ is a unit vector pointing in the
positive x direction (out of the page); and the relation between
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FIG. 15. Schematic diagram of electromagnetic scattering in a
structure composed of a single graphene sheet (green) sandwiched
by two semi-infinite dielectric media of relative permittivities ε1

(orange) and ε2 (blue). The graphene sheet is located at the plane
defined by y = 0 and its electromagnetic properties are encompassed
by a conductivity σ . Arrows, all lying in a plane called the plane of
incidence, which coincides with the y-z plane, indicate the propaga-
tion directions of the electromagnetic waves (denoted by A1 and A2

for traveling towards the negative y direction and by B1 and B2 for
the positive y direction). Here θ1 and θ2 are the incident and refracted
angles, respectively.

the y and z components of the wave vector is given by

k2
j,y = ε j

ω2

c2
− k2

j,z. (D4)

In dielectric media, the relation between B and E fields is
given by the Maxwell equation

∇ × B = −i
εω

c2
E. (D5)

Using the equation given above, the z component of the E
fields is found to be

E( j)
z (r, t) = −k j,yc2

ωε j
(Aje

−ik j,yy − Bje
ik j,yy)ei(k j,zz−ωt )ẑ, (D6)

where ẑ is a unit vector pointing in the positive z direction.
In order to find the relations between the amplitudes of

the waves in medium 1 and medium 2, we need to invoke
the boundary conditions at the interface between the two
dielectric media for the parallel components of E and B fields,
which are

n̂ × (E(1) − E(2) ) = 0, (D7)

n̂ × (B(1) − B(2) ) = μ0Js, (D8)

where n̂ is a normal unit vector pointing from medium 2 into
medium 1 (equivalent to ŷ) and Js is the free surface current
density at the boundary, which is the graphene sheet in this
case. Writing out only the relevant components and using the
generalized Ohm law J = σE, we obtain

E (1)
z (y = 0) = E (2)

z (y = 0), (D9)

B(1)
x (y = 0) − B(2)

x (y = 0) = μ0σE (1)
z (y = 0), (D10)

where σ is the optical conductivity of the 2D material at the
interface (graphene). Substituting Eqs. (D3) and (D6) into the
above boundary conditions yields

A1 − B1 = ε1k2,y

ε2k1,y
(A2 − B2), (D11)

A1 + B1 = (A2 + B2) + σk2,y

ωε0ε2
(A2 − B2). (D12)

Converting (D11) and (D12) into a matrix equation yields(
1 −1
1 1

)(
A1

B1

)
=

(
ηp −ηp

1 + ξp 1 − ξp

)(
A2

B2

)
, (D13)

where the following functions have been introduced to sim-
plify our notation:

ηp = ε1k2,y

ε2k1,y
, ξp = σk2,y

ωε0ε2
. (D14)

Multiplying (D13) by the inverse of the leftmost matrix of
(D13), we obtain a transfer-matrix equation(

A1

B1

)
= 1

2

(
1 + ηp + ξp 1 − ηp − ξp

1 − ηp + ξp 1 + ηp − ξp

)(
A2

B2

)
(D15)

= Tp

(
A2

B2

)
, (D16)

where

Tp = 1

2

(
1 + ηp + ξp 1 − ηp − ξp

1 − ηp + ξp 1 + ηp − ξp

)
. (D17)

Here Tp is a transmission matrix for p-polarized electromag-
netic waves. By following the same procedure, a transmission
matrix for s-polarized waves (transverse electric waves) is
found to be

Ts = 1

2

(
1 + ηs + ξs 1 − ηs + ξs

1 − ηs − ξs 1 + ηs − ξs

)
, (D18)

where

ηs = k2,y

k1,y
, ξs = σμ0ω

k1,y
. (D19)

The propagation matrix can easily be derived by recalling
the fact that an electromagnetic wave with y component of
wave vector ky propagating through a distance d in the y
direction in a uniform medium only changes its phase by kyd .
Hence, the propagation matrix is given by

P(d ) =
(

e−ikyd 0
0 eikyd

)
. (D20)

Now that we have obtained explicit forms for both trans-
mission and propagation matrices, a transfer matrix for
calculating the reflection coefficients can be constructed from
a series of matrix multiplications in reverse chronological
order of the scattering events that the matrices correspond to.
Writing the transfer matrix in the form M = (M11 M12

M21 M22

)
, the

reflection coefficients can be straightforwardly obtained from
two of the matrix elements via

rs,p = M21

M11
. (D21)
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For the atom-chip structure shown in Fig. 1, the associated
transfer matrix can be written as

M = ThBNP(thBN)TGrP(thBN)ThBN, (D22)

where ThBN and TGr are, respectively, associated with trans-
mission across the hBN interface and the graphene interface,
while P(thBN) corresponds to propagation through the thick-
ness thBN of the hBN layer.

APPENDIX E: THREE-BODY LOSS RATE IN 1D BECs

In this Appendix we provide a more detailed derivation of
the three-body loss rate considered in the main text, which
mainly follows [45,50,51,136]. We start by considering an
87Rb quasicondensate with a mean atomic volume density
ρ0(r, t ) at time t , where r = (x, y, z) denotes the center of
a cell of volume �, which is small enough for the conden-
sate to be considered homogeneous throughout the cell [i.e.,
∂ρ0(r, t )/∂� ≈ 0], but also large enough to accommodate
many atoms. Assuming that the condensate is subject to a
three-body loss process, its mean volume density evolves in
time according to [50,51]

dρ0

dt
= −κRbρ

3
0 , (E1)

where κRb = 1.8 × 10−41 m6 s−1 is the three-body recombi-
nation rate for 87Rb atoms in the F = mF = 2 state [52] and
we have dropped the explicit dependence of ρ0 on (r, t ) for
simplicity. Henceforth, we derive the three-body loss rate at
the center of the trap (z = 0) for a 1D quasicondensate by
integrating the loss rate for a 3D quasicondensate given in
Eq. (E1) over the radial coordinate.

However, first let us assume that this condensate is greatly
elongated in one dimension, i.e., that it is trapped in a
smoothly varying anisotropic harmonic potential with radial
trapping frequency ωr = ωx = ωy and axial trapping fre-
quency ωz, where ωr � ωz. Consequently, the density profile

of the condensate can be described by a one-dimensional
Thomas-Fermi distribution in the z direction, multiplied by
the Gaussian ground-state quantum harmonic-oscillator wave
functions in the x and y directions [45],

ρ0(r, z) = 1

U0

(
μeff − mω2

z

2
z2

)
e−r2/2a2

r , (E2)

where U0 = 4π h̄2aT /m, aT = 5.6 nm is the s-wave scattering
length [48], μeff = μ − h̄ωr , μ is the chemical potential of
the condensate, m = 1.44 × 10−25 kg is the mass of an 87Rb
atom, ar = √

h̄/mωr , and r =
√

x2 + (y − yc)2 is the radial
distance measured from the mean positions of the harmonic-
oscillator states at x = 0 and y = yc. It can be seen that in the
z direction, the mean volume density peaks at the trap center,
where z = 0.

We can obtain the mean line density n0(z) by integrating
Eq. (E2) radially from r = 0 to r = ∞:∫ ∞

0
ρ02πr dr = 1

U0

(
μeff − mω2

z

2
z2

)∫ ∞

0
e−r2/2a2

r 2πr dr,

n0(z) = 1

U0

(
μeff − mω2

z

2
z2

)[
0 + 2πa2

r

]
,

n0(z) = 2πa2
r

U0

(
μeff − mω2

z

2
z2

)
. (E3)

Performing a radial integration on Eq. (E1) in the same man-
ner, we obtain the time evolution of the mean line density as

∫ ∞

0

dρ0

dt
2πr dr = −

∫ ∞

0
κRbρ

3
0 2πr dr,

dn0(z)

dt
= − κRb

12π2a4
r

n0(z)3,

(E4)

where we have used Eqs. (E2) and (E3) to convert from a
volume to a line atomic density.
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