
PHYSICAL REVIEW A 104, 053106 (2021)

Multiphoton resonance in a driven Kerr oscillator in the presence of high-order nonlinearities
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We considered the multiphoton resonance in the periodically driven quantum oscillator with Kerr non-
linearity in the presence of weak high-order nonlinearities. Multiphoton resonance leads to the emergence
of peaks and dips in the dependence of the stationary occupations of the stable states on detuning. We
demonstrated that due to high-order nonlinearities, these peaks and dips acquire additional fine structure
and split into several closely spaced ones. Quasiclassically, multiphoton resonance is treated as tunneling
between the regions of the oscillator phase portrait, and the fine structure of the multiphoton resonance is
a consequence of a special quasienergy dependence of the tunneling rate between different regions of the
classical phase portrait. For different values of damping and high-order nonlinearity coefficients, we identified
the domain of quasienergies where tunneling strongly influences the system kinetics. The corresponding tun-
neling term in the Fokker-Planck equation in quasienergy space was derived directly from the quantum master
equation.
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I. INTRODUCTION

For decades, bistable and multistable systems attracted
researchers’ attention in many areas of physics. Bi- and
multistability has been observed in many experimental se-
tups including nonlinear-optical systems [1], lasers [2],
nanomechanical systems [3], optical cavities interacting with
ultracold atoms [4], or magnonic systems [5]. Recently, it
became possible to observe bistability in systems operating
with only a few excitation quanta [6–8]. Such systems are
promising candidates for the generation of squeezed states
which are important for decreasing the noise-signal ratio in
quantum measurements [9]. Moreover, they can be useful for
the creation of entangled states which are crucial for appli-
cations in quantum information processing and safe quantum
communications systems.

There exists a class of bistable systems that can be modeled
as a nonlinear oscillator mode with Kerr nonlinearity driven
by external resonant or parametric excitation. Such mod-
els describe a wide range of physical systems including the
Fabry-Pérot microcavities with nonlinear filling [10], whis-
pering gallery resonators, laser systems near threshold [11],
polariton microcavities, superconducting nonlinear resonators
[6–8], and systems of trapped ions [12]. On the classical
level, the model of a driven nonlinear oscillator has two stable
stationary states with different field amplitudes. With account
for thermal noise, transitions between these states become
possible. As states 1 and 2 have different field amplitudes
and intensities, they can be distinguished experimentally, for
example, via a cross-Kerr induced shift in some probe mode.
In the experiment, it is possible to observe random switching
between the stable states [8]. Thus, it is of high interest to

calculate the occupation probabilities of the stable states and
the transition rates between them.

At small or moderate numbers of quanta circulating in
the mode, quantum effects become important. Interestingly,
when the number of quanta in the mode is several dozens,
the quantum effects can be treated within the quasiclassical
approximation, and it is still possible to use the classical con-
cepts of the classical phase portrait and stable states. One of
the most pronounced quantum effects is related with tunneling
between different regions of the phase portrait of the classical
oscillator. Tunneling transitions modify the occupation prob-
abilities of the classical stable states and the transition rates,
namely, they increase the occupation of the high-amplitude
stable state and, thus, lead to enhanced excitation of the mode
[13,14]. In fact, tunneling between different regions of the
phase portrait corresponds to the quasiclassical treatment of
multiphoton transitions, namely, the excitation of the oscil-
lator with simultaneous absorption of many external field
quanta. A similar relation between multiphoton transitions
and tunneling is known in the theory of multiphoton ionization
of atoms [15].

In the model of a single oscillator mode with Kerr non-
linearity, tunneling and multiphoton transitions are especially
important when the resonance condition is fulfilled. If no
higher nonlinearities are present, this occurs when the detun-
ing between the driving field and the oscillator mode is an
integer or half-integer multiple of the Kerr frequency shift
per quantum. This property follows from a special symme-
try of the model Hamiltonian [14], and because of this, the
eigenstates of the quantum Hamiltonian correspond to su-
perpositions of quasiclassical states belonging to different
regions of the phase portrait. Because of that, the dependence
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of the higher-amplitude and lower-amplitude states popula-
tions on detuning has pronounced peaks and drops at integer
and half-integer detuning-nonlinearity ratio. However, in real
systems, small higher-order nonlinearities always exist to-
gether with Kerr nonlinearity. It is of high interest to find
out how their presence modifies the structure of multiphoton
resonance.

In this paper, we consider the model of a quantum-driven
nonlinear oscillator which includes high-order nonlinearities
as small corrections. Together with numerical simulations, we
utilize the analytical approach of the Fokker-Planck equation
in the quasienergy space with tunneling term obtained from
the full quantum master equation. We demonstrate that in the
presence of high-order nonlinearities, the multiphoton reso-
nance peaks in the occupations of the high-amplitude stable
state split into several smaller ones with different widths and
amplitudes. The magnitude of the splitting turns out to be
proportional to high-order nonlinearity coefficients. In addi-
tion, we extend the analysis of previous works [13,14] to the
case of finite damping having the order or being larger than
tunneling and multiphoton splitting between the Hamiltonian
eigenstates from different regions of the phase portrait. The
magnitude of frequency shifts induced by the high-order non-
linearity can be estimated from the following considerations.
For example, in the system of trapped Yb+ ions considered
in Ref. [12], the Kerr shift of 300 Hz/phonon was observed,
whereas the ions’ oscillation frequencies have the order of
megahertz. Therefore, the six-order nonlinearity per quantum
in this condition is on order of hertz. Due to power dependence
of the high-order shifts on the number of quanta, they could
manifest themselves when dozens of quanta are circulating in
the mode.

II. THE MODEL OF A QUANTUM-DRIVEN NONLINEAR
OSCILLATOR

We consider the model of a bistable driven system con-
sisting of a resonant mode with Kerr-like nonlinearity [16,17]
and additional higher-order nonlinearities. The effective
Hamiltonian of the system in the rotating-wave approximation
reads

Ĥ = −�â†â + α

2
(â†â)2 + V̂ + f (â + â†),

V̂ =
∞∑

q=3

αq(a†a)q. (1)

The eigenstates of this effective Hamiltonian are the approxi-
mations of the exact Floquet states of the full time-dependent
Hamiltonian, and the eigenvalues give the Floquet quasiener-
gies (see Ref. [18] for the general discussion of the properties
of periodically driven systems). The parameter � is the de-
tuning between the driving field and the resonant oscillator
frequency, α is the Kerr coefficient, αq is the 2q-order non-
linearity coefficient, and f is proportional to the amplitude of
the driving field. In the following, we will mostly focus on the
case of six-order nonlinearity, q = 3.

The statistical properties of this model with account for
weak interaction with the dissipative environment should
be studied using the quantum master equation (QME)

FIG. 1. The classical phase portrait of the nonlinear oscillator
with the Hamiltonian (1) for f / fcrit = 0.3, α3 = 0. The blue dashed
line denotes a classical trajectory in region 3 having the same
quasienergy ε1 as the stable state 1. From region 1, the system can
exhibit tunneling transitions to the subregion of region 3 enclosed by
the separatrix and this trajectory.

[16,17,19–21],

∂tρ = i[ρ, Ĥ ] + γ

2
(2âρâ† − ρa†a − a†aρ

+ 2N[[a, ρ], a†]), (2)

where γ is the coupling strength with the dissipative environ-
ment and N is the number of thermal photons at the external
field frequency. Both unitary dynamics governed by the sys-
tem Hamiltonian (1) and dissipative dynamics described by
QME (2) can be treated quasiclassically, if the Kerr nonlin-
earity is sufficiently small � � α. Although the exact unitary
dynamics of the system are described by Heisenberg equa-
tions for operators â, â†, one should replace these operators
with the c-number field amplitudes a, a∗ in the system Hamil-
tonian (1) to obtain the classical limit. The time evolution of
the classical field amplitudes a and a∗ is the motion along
the classical trajectories given by the contour lines of the
classical Hamiltonian H (a, a∗) (see Fig. 1). Also, according
to the Bohr-Sommerfeld rule, the eigenstates of the quantum
Hamiltonian correspond to a discrete set of trajectories on
the classical phase portrait in the quasiclassical limit. Impor-
tantly, the Bohr-Sommerfeld description does not take into
account quantum tunneling which will be discussed below.
For the dissipative dynamics in the same limit, the QME can
be transformed into the classical two-dimensional [22,23] or
one-dimensional (1D) Fokker-Planck equation [13,24], which
is equivalent to classical Langevin equations containing the
Hamiltonian term, the damping term and the noise term. The
quasiclassical approach demonstrates good agreement with
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FIG. 2. The eigenvalues of the Hamiltonian (1) obtained via ex-
act numerical diagonalization are shown for different ratios between
the detuning � and nonlinearity α at f /α = 4.47 (corresponding
to f / fcrit = 0.2 at 2�/α = 30) and (a) α3 = 0, (b) α3/α = 0.005.
In the absence of high-order nonlinearity, all anticrossings occur at
integer values of m and lie on a single vertical line [see the blue
dashed vertical line in (a)]. This is not the case in presence of
six-order nonlinearity when the anticrossings of quasienergy levels
occur at different values of 2�/α. In the inset, the zoomed region
of anticrossing between the levels from classical regions 1 and 3 is
shown.

the full quantum simulations even at moderate numbers of
photons (∼20) [13] circulating in the mode.

A prominent feature of the classical phase portrait is bista-
bility, which is present for field values not exceeding the
critical value fcrit =

√
4�3/27α (at V̂ = 0). In this case, there

are two stable stationary states 1 and 2. In addition, there
exists an unstable stationary state S and a self-intersecting
trajectory (separatrix) passing through S. The separatrix di-
vides the phase portrait into regions 1 and 2 containing
the corresponding stable stationary states and the outer re-
gion 3 (see Fig. 1). The classical trajectories from region 2
have quasienergies ε, such as ε2 < ε < εsep, where εr is the
quasienergy of the classical stable state r = 1, 2, and εsep is
the quasienergy of the unstable stationary state. For the tra-
jectories from region 1, εsep < ε < ε1 and for the trajectories
from region 3, ε > εsep. For additional details on the role of
different quasienergy domains, please see Fig. 2 in Ref. [14].
Also, the presence of small higher-order nonlinearities does
not change the qualitative structure of the classical phase
portrait.

According to both the quasiclassical treatment of the model
using the quasiclassical Fokker-Planck equation (FPE) [24]
and the full quantum treatment based on QME [16,17], the
system persists in the vicinity of the classical stable states 1
and 2 most of the time. Also, rare noise-induced transitions
between the stable states occur. Thus, the probabilities to find
the system close to the stable states 1 and 2, P1 and P2, can be
identified with the probabilities to find the system in regions 1
and 2 of the classical phase portrait. In the classical limit, they
can be found from the stationary solutions of the FPE as the

integrals of the probability density over the corresponding do-
main of quasienergies. Beyond the applicability of FPE, they
can be obtained from the stationary solutions of the QME.

III. TUNNELING BETWEEN THE REGIONS
OF THE CLASSICAL PHASE PORTRAIT

For each classical trajectory in region 1, there exists a
trajectory with the same value of quasienergy in region 3
(see Fig. 1). Quantum mechanics allow the system to undergo
a tunneling transition between two such classical trajecto-
ries, so the Bohr-Sommerfeld quasiclassical description of the
eigenstates of the quantum Hamiltonian should be modified
with account for tunneling. Actually, the real Hamiltonian
eigenstates can be considered as quantum superpositions of
the trajectories belonging to different regions of the phase
portrait. However, the tunneling amplitude is exponentially
small in comparison with the spacing between the quasienergy
levels within each region. Because of that, the trajectories
form superpositions only when a certain resonance condition
for the system parameters is fulfilled. In absence of high-
order nonlinearities, it was shown [14] that this happens when
the detuning � is an integer or half-integer multiple of α

independently of f . This manifests as the anticrossings of
the Hamiltonian quasienergy levels dependence on � at the
constant driving field (see the inset in Fig. 2). Moreover, a
prominent feature of the model without high-order nonlinear-
ities is that the anticrossings of many pairs of levels occur
simultaneously. This is a consequence of a special symmetry
of the system Hamiltonian, namely, the symmetry of the per-
turbation theory series for the system quasienergies εn in f .
Also, it can be seen from the results of numerical diagonaliza-
tion, which are shown in Fig. 2.

Let us note that bistability in the considered model is
not present in the absence of driving, and it appears only
in a certain range of the driving amplitude values because
driving induces the amplitude-dependent frequency shift. So,
the situation here is different from the pronounced prob-
lem of driven quantum tunneling considered, for example, in
Chap. 6 of Refs. [18,25] where the effect of driving on an orig-
inally bistable system (the particle in a double-well potential)
is examined.

Since the true eigenstates of the Hamiltonian can be super-
positions of trajectories from regions 1 and 3, it is convenient
to use the basis of states which are not the eigenstates of
the quantum Hamiltonian but correspond to a discrete set
of classical trajectories lying entirely in one of the regions
of the phase portrait. In such a basis, the Hamiltonian is
not diagonal, and matrix elements corresponding to tunneling
transitions between different regions of the classical phase
space are present. Also, when 2�/α is close to an integer,
the quasienergy levels group into pairs with very close val-
ues of quasienergy, and the tunneling matrix element can be
retained only between the states within each pair. Thus, the
Hamiltonian in the suggested basis reads

Ĥ =
∑

n

(|n, 1〉 |n, 3〉)

(
εn1 tn
tn εn3

)(|n, 1〉
|n, 3〉

)

+
∑

n

εn2|n, 2〉〈n, 2| +
∑

n

εn3′ |n, 3′〉〈n, 3′|. (3)
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Here |n, 2〉 are the states from region 2, and |n, 3′〉 are the
states from region 3 with quasienergies higher than the states
from region 1. These states are not affected by tunneling.
Then, states |n, 1〉 and |n, 3〉 form the pairs of the basis states
from regions 1 and 3 with close values of mean quasienergy
εn1 and εn3. It is necessary to take the amplitude of tunneling
tn between them, which can be estimated as [13]

tn ∼ �e−Stunn (εn ), Stunn = �

α

∫ q2

q1

acosh

{
αε
�2 + s2

2 − s4

8

s
√

2α f 2/�3

}
s ds,

(4)

In the integral in the expression for tunneling amplitude, q1

and q2 are two branching points of the acosh function.
The anticrossings of the quasienergy levels affect the statis-

tical and kinetic properties of the model because of enhanced
tunneling between the regions of the phase space. It was
shown [13] that tunneling decreases the population of the
stable state 1 and increases the population of the stable state
2 due to the presence of an additional escape channel from
classical region 1. Thus, each anticrossing decreases the pop-
ulation of the stable state 1 and increases the population of the
stable state 2 and the field intensity in the mode.

In the presence of nonvanishing V̂ , the anticrossings of dif-
ferent pairs of quasienergy levels occur at close but different
values of detuning [see Fig. 2(b)]. This can be explained by
considering V̂ as a small perturbation. It is convenient in the
basis introduced above because the averages of V̂ over the
basis states can be calculated as the c-function averages over
classical phase trajectories.

Let us consider a pair of levels n1 and n3 which exhibit an-
ticrossing at the detuning value �0 = m0α/2, m0 ∈ Z, when
V̂ = 0. This means that εn1 = εn3 at this value of �. When
high-order nonlinearities are present, εn1 and εn3 acquire first-
order corrections, and the anticrossing of the levels occurs
at some � = �0 + δ�. By treating δ� as a perturbation to-
gether with V̂ , one can get the expression for the quasienergy
differences,

εn1 − εn3 = −δ�
(
(a†a)11

nn − (a†a)33
nn

) + V 11
nn − V 33

nn , (5)

where 〈n, r|Ô|n′, r′〉 ≡ Orr′
nn′ for any operator Ô. The new

anticrossing position follows from the equality εn1(�0 +

δ�n, αq ) = εn3(�0 + δ�n, αq ),

δ�n = V 33
nn − V 11

nn

(â†â)33
nn − (â†â)11

nn

. (6)

When the shifts of the anticrossing positions are considerably
smaller than α/2, the anticrossings are located near the inte-
ger values of 2�/α. The number of anticrossings near each
integer m = 2�

α
is proportional to m, and their offsets from

integer values are on the order of α3m2. Basing on an accurate
analysis of the quantum master equation, we will show below
that level anticrossings give rise to a set of peaks near integer
values of 2�/α in the high-amplitude stable state occupation.

IV. MULTIPHOTON RESONANCE AND
THE POPULATIONS OF THE STATIONARY STATES

The effect of tunneling transitions on the stationary dis-
tribution of the driven nonlinear oscillator was analyzed
in Ref. [13] within the formalism of the 1D FPE in the
quasienergy space and in Ref. [14] by considering the quan-
tum rate equation in the exact eigenstates basis. It was shown
that tunneling transitions lead to the increased population of
the stationary state 2. The tunneling term in Ref. [13] was
introduced quasiclassically, and the analysis of Ref. [14] is
performed in the limit of infinitely small coupling with the
environment. In this section, we will consider tunneling tran-
sitions by means of the master equation (2) in the basis of
states |n, 1〉, |n, 2〉, |n, 3〉, and |n, 3′〉 introduced in Sec. III
[see also Eq. (3)]. Using the master equation, we find the de-
pendence of the tunneling rate on quasienergy in the 1D FPE,
which allows us to study the effect of high-order nonlinearities
and finite damping in the considered system.

Tunneling between the regions of the phase portrait is
mediated by the nondiagonal elements of the density matrix.
However, it is possible to retain only the density-matrix el-
ements ρrr′

nn′ with n = n′ (denoted hereafter as ρrr′
n ) because

ρrr′
nn′ ’s are proportional to γ /(εn1 − εn′3) and can be neglected

as long as γ is small in comparison to the quasienergy spacing
within each region of the phase portrait. Also, the matrix ele-
ments of the annihilation operator â between the states lying in
different regions of the phase portrait r �= r′ are exponentially
small and can be neglected. Under such approximations, the
master equation for regions 1 and 3 takes the form

∂tρ
rr
n = ±itn

(
ρ13

n − ρ31
n

) − γ (N + 1)

(
(a†a)rr

nnρ
rr
n −

∑
n′

arr
nn′

(
arr

nn′
)∗

ρrr
n′

)
− γ N

(
(aa†)rr

nnρ
rr
n −

∑
n′

(arr
n′n)∗arr

n′nρ
rr
n′

)
, r = 1, 3

(7)

∂tρ
13
n = −i(εn1 − εn3)ρ13

n + itn
(
ρ11

n − ρ33
n

) − γ

2
(N + 1)

(
(a†a)11

nnρ
13
n + (a†a)33

nnρ
13
n −

∑
n′

2a11
nn′

(
a33

nn′
)∗

ρ13
n′

)

− γ N

2

(
(aa†)11

nnρ
13
n + (aa†)33

nnρ
13
n −

∑
n′

2
(
a11

n′n
)∗

a33
n′nρ

13
n′

)
, (8)

and the equation for ρ22
n has the same form as (7) but

without the terms containing the nondiagonal elements of the
density matrix. Then, in the limit of large 2�/α, constant ratio
α(N + 1/2)/� and small γ /�, the system of Eqs. (7) and
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FIG. 3. For different detunings δ�, the behavior of εcrit and εres

is demonstrated by comparing two sides of the inequality (10). The
red dashed lines depict δε13(ε), and the blue solid lines depict the
tunneling amplitude t (ε) for α3/α = 10−5.

(8) can be transformed into continuous form by considering
the density-matrix elements ρ11

n , ρ22
n , and ρ33

n as continuous
functions P1, P2, and P3 of n and performing the gradient
expansion [13]. Thus, one results with the distribution func-
tion which is single valued at ε2 < ε < εsep and ε > ε1, and
double valued at εsep < ε < ε1. (see Fig. 4). For our pur-
poses, it is more convenient to use the quasienergy ε(n) =
(εn1 + εn3)/2 as an independent continuous variable. Also, in
the stationary case, it is possible to express the nondiagonal

FIG. 4. For the oscillator with f / fcrit = 0.2, αQ/(�γ ) = 0.1,
the theoretically predicted stationary probability distribution func-
tions over quasinergies Pr (ε), r = 1–3 are shown [see Eq. (B3)].
The distribution (a) corresponds to the case of the oscillator with
high-order nonlinearity near multiphoton resonance. The distribution
function (b) corresponds to the case of purely Kerr oscillator near
multiphoton resonance. The distribution function (c) corresponds to
the case when the oscillator detuning is far from the multiphoton
resonance.

density-matrix elements ρ13
n from (8) and to substitute them

into (7). The resulting equations for Pr (ε), r = 1, 3 in the
domain of quasienergies εsep < ε < ε1 read

1

Tr (ε)

∂

∂ε

[
γ KrPr + QDr

∂Pr

∂ε

]
± λT (P3 − P1) = 0, (9)

where Tr (ε) is the period of motion along the classical trajec-
tories, Kr (ε), Dr (ε) are the drift and diffusion coefficients in
quasienergy space in each region of the classical phase portrait
(see Appendix A), Q = γ (N + 1/2) is the noise intensity, and
λT (ε) is the rate of tunneling transitions between the regions
of the classical phase portrait.

The term with λT (ε) is the key difference between (9) and
the FPE for the classical oscillator with noise. It arises because
of the presence of nondiagonal elements of the density matrix,
and the particular form of λT (ε) follows directly from the
master equations (7) and (8). It turns out that λT (ε) has a
nontrivial dependence on ε, �, the coefficients αq in V̂ and
γ . By examining λT (ε), it is possible to explain the structure
of resonant peaks in the occupation of the classical station-
ary state 2 in presence of high-order nonlinearities and finite
damping.

Before analyzing the dependence of λT (ε) on quasienergy,
let us give the qualitative analysis of the role of tunneling
between different pairs of almost-degenerate states |n, 1〉 and
|n, 3〉. Tunneling between these states has different impor-
tance for different n: When

tn � |εn1 − εn3|, (10)

tunneling is strong and leads to the hybridization of states
|n, 1〉 and |n, 3〉. In the opposite case tn � |εn1 − εn3|, tunnel-
ing can be neglected. The inequality tn � |εn1 − εn3| holds in
two different cases. First, it is always satisfied for such n that
tn � δ�, α3 because |εn1 − εn3| is on the order of δ�, α3, see
Eq. (5). There can be many pairs of states |n, 1〉 and |n, 3〉 for
which tn � δ�, α3. Because of the exponential decay of tn
away from the separatrix, they lie in the domain of quasiener-
gies εsep < ε < εcrit , where εcrit is a new parameter depending
on δ�, α3 which we call critical quasienergy. From Eq. (10),
it follows that εcrit is a minimal value among the roots of
the two equations δε13(ε) = ±t (ε), where t (ε) and δ13(ε) are
the continuous limits of tn and εn1 − εn3 taken as functions
of the quasienergy ε (see Fig. 3). Second, even in the case
tn � δ�, α3, the inequality (10) still can be satisfied for a
single pair of the states |n, 1〉 and |n, 3〉 for some n = nres

if εn1 − εn3 passes near zero at nres. This is possible because
two terms in Eq. (5) may have different signs, and physically
this can be interpreted as resonant tunneling through a single
pair of almost-degenerate states. However, such a pair of states
exists only when higher-order nonlinearities are present.

Although following the steps necessary for derivation of
the Eq. (9) from Eqs. (7) and (8), which is presented in
Appendix A, one finds the tunneling rate as

λT (ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ13(ε)t2(ε)

δε13(ε)2 + γ 2
13(ε)

4

, εsep < ε < εcrit,

γ̃ 13
nres

t2(εres)

δε2
13res + (γ̃ 13

nres )2

4

δ(ε − εres)

T (ε)
, εcrit < ε < ε1,

(11)
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where t (ε) and δ13(ε) are the continuous limits of tn and εn1 −
εn3 taken as functions of the quasienergy ε, and

γn13 = γ (N + 1)

(
(a†a)11

nn + (a†a)33
nn − 2Re

∑
n′

a11
nn′

(
a33

nn′
)∗
)

+ γ N

(
(aa†)11

nn + (aa†)33
nn − 2Re

∑
n′

(
a11

n′n
)∗

a33
nn′

)
(12)

γ̃n13 = γ (N + 1)
(
(a†a)11

nn + (a†a)33
nn − 2Re a11

nn(a33
nn)∗

)
+ γ N

(
(aa†)11

nn + (aa†)33
nn − 2Re (a11

nn)∗a33
nn

)
. (13)

According to the arguments above, the δ-function term in
(11) exists only when higher-order nonlinearities are present.
Below, we will show that it leads to emergence of the fine
structure of the multiphoton resonance peak in P2, namely,
several additional narrow side peaks.

After we described the behavior of λT (ε), let us analyze
the stationary distribution Pr (ε) over quasienergies. In each of
the domains εsep < ε < εcrit, εcrit < ε < εres, εres < ε < ε1,
different analytical expressions for the stationary distribution
function can be obtained. Due to strong tunneling in the do-
main εsep < ε < εcrit , the probability distributions in regions 1
and 3 become almost equal, P1 ≈ P3. By considering the sum
of Eqs. (9) for P1 and P3, one can obtain a single first-order
differential equation for distribution functions P1,3. The details
of the calculation are given in Appendix A. The resulting
distribution function in the domain εsep < ε < εcrit turns out to
decay exponentially away from the separatrix. This in contrast
with the case of the purely classical oscillator for which the
distribution function P1(ε) grows exponentially away from the
separatrix. In the domain εcrit < ε < ε1, tunneling transitions
occur only for the quasienergy ε ≈ εres due to a δ-function
peak in λT (ε). Because of that, the stationary distributions
in the domain εcrit < ε < εres are the solutions of (9) with
nonzero probability flow. The flow can be obtained from
boundary conditions at εres obtained by integrating (9) in the
vicinity of εres. The presence of the quasienergy domain with
the constant probability flow in the stationary distribution is
the special feature of the model with high-order nonlinearity.
Finally, for ε > εres, the stationary distributions in regions 1
and 3 coincide with the solutions of (9) without the tunneling
term and with zero probability flow. The example of such an
analytical solution of the FPE is shown in Fig. 4, and the
detailed calculation is given in Appendix B.

Now let us analyze how the obtained solutions depend on
�, γ , and α3. For that, let us first consider the behavior of
εcrit . Taking its definition as the minimal root of δε13(ε) =
±t (ε), one deduces that εcrit has a sharp peak at some value
of δ� and decays to εsep away from it. The more εcrit is,
the more pairs of states |n, 1〉 and |n, 3〉 with quasienergies
εsep < εn < εcrit strongly contribute to tunneling between the
regions of the classical phase portrait. Thus, the maximum in
εcrit results in a peak of the probability P2 to find the system
in the classical region 2. In addition, the δ-function term in
λT (ε) is present when the condition (10) is satisfied for nres

such as tnres � δ�, α3. As discussed in Sec. III, the condition
εnres1 = εnres3 is the condition of level anticrossing which is sat-
isfied at δ� = δ�nres defined by Eq. (6). So, at each δ� = δ�n

FIG. 5. The dependence of the occupation of the higher-
amplitude stable state of the quantum-driven nonlinear oscillator
with six-order nonlinearity on 2�/α is shown in (a) for f /α =
8.94, α3/α = 10−4. In this range of �, f / fcrit is close to 0.4. In (b),
the differences between the pairs of anticrossing quasienergy levels
are shown. Each peak in P2(�) corresponds to an anticrossing of two
quasienergy levels.

being much larger than the tunneling amplitude tnres , there is
also a narrow peak in P2.

Thus, the peaks in the population of the high-amplitude
stable state dependence on � acquire a fine structure due to
high-order nonlinearity. Namely, a sequence of narrow side
peaks with the spacing of order α3�/α arise near the main
resonance, and the number of these peaks is ∼�/α. This qual-
itative picture holds until the width of the whole sequence of
peaks (∼α3�

2/α2) becomes comparable with α and different
sequences of peaks start to overlap.

These predictions are in good correspondence with the
results of numerical solution of the full quantum master equa-
tion (2), see Figs. 5 and 6. In Fig. 5, P2 is shown as a function
of � together with the differences of the quasienergies of
the Hamiltonian eigenstates which exhibit anticrossings. Each
peak in the probability P2 of the stable state 2 occupation is lo-
cated at the value of � corresponding to a minimal difference
between the eigenstates quasienergies.

In addition, let us analyze the effect of finite damping on
the described fine structure of the multiphoton resonance. This
can be performed simply by analyzing the equations (11)
because they are derived from the master equations (7) and
(8) which already accounts for the effect of damping and the
nondiagonal elements of the density matrix. First, the role of
the δ peak in (11) corresponding to the resonance between the
nresth pair of levels depends on the ratio between tnres and the
corresponding decay constant γ̃n13. Thus, at increasing γ , the
side peaks disappear in the order of increasing t (εn). No side
peaks are left when γ reaches the value of t (εmax

crit ), where εmax
crit

is the maximum value of εcrit depending on δ�. At larger γ ,
the depth of the main peak also becomes γ dependent because
λT (ε) can be neglected for the quasienergies t (ε) � γ .
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FIG. 6. For the quantum-driven nonlinear oscillator with six-
order nonlinearity, the dependence of the probability P2 to find the
system in the classical region 2 on � is shown in the limit of γ → 0
for f /α = 8.94, N = 3, and for different values of α3/α. The po-
sition of each of the peaks corresponding to multiphoton resonance
depends linearly on α3/α, and at α3/α = 0 the peaks merge.

At α3 = 0, there are no side peaks, and only one multipho-
ton resonance peak is present. It has a steplike structure, and
the steps which constitute the peak subsequently disappear at
increasing γ (see Fig. 7).

V. CONCLUSIONS

In conclusion, we analyzed the effect of multiphoton res-
onance on the populations of the stable states of the quantum

FIG. 7. For the quantum-driven nonlinear oscillator with α3 =
0, f /α = 4.16, the probability to be in the classical region 2 is
shown as a function of 2�/α for different values of γ . In this range
of �, f / fcrit is close to 0.4. At γ = 0, there are sharp peaks at the
integer corresponding to multiphoton resonance. At increasing γ , the
drops become smoother. In the inset, the zoomed part of the plot
containing the resonance peak is shown.

nonlinear oscillator in resonant driving field. By including the
tunneling term into one-dimensional quasiclassical Fokker-
Planck equation in quasienergy space, we demonstrated that
the mean-field intensity exhibits peaks near the values of
external field frequency corresponding to multiphoton reso-
nance. These peaks were associated with the anticrossings of
the quasienergy levels of the oscillator. Also, we considered
the effect of the higher-order nonlinearities on the structure
of these peaks. We showed that due to high-order nonlin-
earities, the intensity peaks corresponding to multiphoton
resonance acquire additional fine structure and split into sev-
eral closely spaced side peaks which could be observed for
modes with ultra-high-quality factor. The reason for that
splitting is that high-order nonlinearities break the special
symmetry specific for purely Kerr nonlinearity. Such structure
of the multiphoton resonance intensity peak is explained by
a special dependence of the tunneling rate on quasienergy
which is derived from the full master equation. The pre-
dicted structure of multiphoton resonances could be observed
in currently available systems described by the model of a
Kerr oscillator with high-order nonlinearities, for example,
the plasmon modes of Josephson junction array resonators or
vibrational modes in systems of trapped ions.
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APPENDIX A: THE CONTINUOUS LIMIT
OF THE QUANTUM MASTER EQUATION

In this Appendix, we derive the Fokker-Planck equation
with tunneling term (9) from the approximate form of the
quantum master equations (7) and (8). The first step is to
express ρ13

n through ρ11
n and ρ33

n using Eq. (8). This should
be performed differently in the quasienergy domains εsep <

ε < εcrit and εcrit < ε < ε1.
To express ρ13

n in the domain εsep < ε < εcrit , one should
perform the gradient expansion of the γ -dependent term in
(8). It results in the following expression:

ρn13 = tn
(
ρ11

n − ρ33
n

)
εn1 − εn3 − iγn13

2

, (A1)

where

γn13 = γ (N + 1)

(
(a†a)11

nn + (a†a)33
nn − 2Re

∑
n′

a11
nn′

(
a33

nn′
)∗

)

+ γ N

(
(aa†)11

nn + (aa†)33
nn − 2Re

∑
n′

(
a11

n′n
)∗

a33
nn′

)
.

(A2)

In the domain εcrit < ε < ε1, the only nondiagonal element
of the density matrix which should be taken into account is the
element corresponding to the transition between the pair of
resonant states ρ13

nres
, and all others can be neglected. Because
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FIG. 8. The coefficients (A5) of the classical Fokker-Planck
equation (9) are shown as functions of quasienergy ε for f / fcrit =
0.3. Note that the drift and diffusion coefficients have two branches
in the quasienergy domain corresponding to the classical region
1, whereas the period has only one branch. The latter is because
T1(ε) = T3(ε).

of that, ρ13
nres

can be immediately be expressed from (8),

ρ13
nres

= tnres

(
ρ11

nres
− ρ33

nres

)
εnres1 − εnres3 − iγ̃13

2

, (A3)

γ̃n13 = γ (N + 1)
(
(a†a)11

nresnres
+ (a†a)33

nresnres

− 2Re a11
nresnres

(
a33

nresnres

)∗) + γ N
(
(aa†)11

nresnres

+ (aa†)33
nresnres

− 2Re (a11
nresnres

)∗a33
nresnres

)
.

(A4)

Then, ρ13
n from (A1) and (A3) should be substituted in (7).

They are present in the term ±itn(ρ13
nn − ρ31

nn ).
Now, let us focus on the part containing the diagonal

elements of the density-matrices ρ11
n and ρ33

n . To transform
the quantum master equation in the continuous form, one
should consider ρ11

n and ρ33
n as the continuous functions Pr (n)

of the index n. Then, in the equation for each matrix ele-

ment ρrr
n , the gradient expansion of ρrr

n′ ≡ Pr (n′) should be
performed: Pr (n′) ≈ Pr (n) + (n − n′) ∂Pr

∂n + 1
2 (n − n′)2 ∂2Pr

∂n2 +
· · · . After truncating the expansion up to the second order,
one gets the Fokker-Planck equation with the tunneling term
(9). The resulting drift and diffusion coefficients Kr (ε), Dr (ε)
and the period Tr (ε) can be found as the contour integrals over
classical trajectories of the nonlinear oscillator,

Kr (ε) = i

2

∮
a da∗ − a∗da, Dr (ε) = i

2

∮
∂H

∂a
da − ∂H

∂a∗ da∗,

Tr (ε) =
∫

da∗da δ[ε − H (a∗, a)]. (A5)

These contour integrals can be expressed through elliptic in-
tegrals [13]. Their dependence on quasienergy is shown in
Fig. 8.

APPENDIX B: THE STATIONARY SOLUTION
OF THE FOKKER-PLANCK EQUATION WITH

A TUNNELING TERM

In this Appendix, we present the accurate calculation of
the stationary distribution function which follows from Eq. (9)
where the tunneling rate λT (ε) is given by Eq. (11). First of
all, let us consider the domain εsep < ε < εcrit . In this domain,
tunneling leads to the equilibration of distribution functions
in regions 1 and 3. So, P1(ε) ≈ P3(ε), and the equation for
stationary distribution can be obtained by taking the sum of
the equations for P1 and P3,[

γ (K1 + K3)P1,3 + Q(D1 + D3)
∂P1,3

∂ε

]
= 0, (B1)

Then, let us consider the domain εcrit < ε < ε1. The prob-
ability flow in the quasienergy domain εcrit < ε < εres is
nonzero due to the presence of the δ-like peak in λT (ε) at εres

(see Fig. 4). Thus, the distribution functions P1 and P3 obey
the equations,

γ

[
γ K1,3P1,3 + QD1,3

∂P1,3

∂ε

]
=

{∓J, εcrit < ε < εres,

0, ε > εres.

(B2)
The flow J is defined from the boundary condition J =
λT (εres)[P1(εres) − P3(εres)] which can be obtained by inte-
grating Eq. (9) in the vicinity of εres. As a result, the stationary
distribution function determined from the solutions of (B1)
and (B2) read

Pr (ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(εsep) exp

{
− γ

Q

∫ ε

εsep

K1(ε′) + K3(ε′)
D1(ε′) + D3(ε′)

dε′
}
, εsep < ε � εcrit,

P(εcrit ) exp

{
− γ

Q

∫ ε

εcrit

Kr (ε′)
Dr (ε′)

dε′
}

∓ J
Q

∫ ε

εcrit

dε′

Dr (ε′)
exp

{
− γ

Q

∫ ε

ε′

Kr (ε̃)

Dr (ε̃)
d ε̃

}
, εcrit < ε � εres, r = 1, 3

Pr (εres) exp

{
− γ

Q

∫ ε

εcrit

Kr (ε′)
Dr (ε′)

dε′
}
, εres < ε < ε1, r = 1, 3,

(B3)

J =
γ̃13t2(εres)P(εcrit )

(
exp

{− γ

Q

∫ εres

εcrit

K1(ε̃)
D1(ε̃) d ε̃

} − exp
{− γ

Q

∫ εres

εcrit

K3(ε̃)
D3(ε̃) d ε̃

})
δε2

13res + γ̃ 2
13
4 + γ̃13t2(εres )

Q

(∫ εres

εcrit

dε′
D1(ε′ ) exp

{− γ

Q

∫ ε

ε′
K1(ε̃)
D1(ε̃) d ε̃

} + ∫ εres

εcrit

dε′
D3(ε′ ) exp

{− γ

Q

∫ ε

ε′
K3(ε̃)
D3(ε̃) d ε̃

}) . (B4)
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When the detuning � is close to one of the values δ�n, the flow J has a sharp peak because the quasienergy difference δε13res

between the resonant pair of states passes through zero. Because of this, the probability density in the classical region 1 drops,
which results in a peak in the occupation of the classical region 2.
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