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In this paper, we report our calculations of the triple-differential cross section (TDCS) for the relativistic (e, 2e)
process with a twisted electron beam on Cu and Ag atomic targets in coplanar asymmetric geometry mode. The
theoretical formalism has been developed in the first Born approximation, in which we use the Dirac plane wave
as well as the twisted electron wave for the incident electron beam to study the effect of various parameters of the
twisted electron beam on the (e, 2e) process. We use a Dirac plane-wave function, semirelativistic Coulomb wave
function, and Darwin wave function for the scattered, ejected, and K-shell electron, respectively. We compare
the angular profiles of the TDCS of the twisted electron impact (e, 2e) process with that of the plane wave. We
segregate the TDCS for charge-charge interaction and current-current interaction with their interference term
and study the effect of different parameters of the twisted electron beam on them. The study is also extended to
the macroscopic Cu and Ag targets to further investigate the effect of the opening angle of the twisted electron
beam on TDCS. The spin asymmetry in TDCS caused by the polarized incident electron beam is also studied to
elucidate the effects of the twisted electron beam on the (e, 2e) process.
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I. INTRODUCTION

Coincidence (e, 2e) studies on numerous atomic and
molecular targets have been explored for the last five decades
for impact energies ranging from low energy to relativistic
energy. The (e, 2e) field has a long history in atomic and
molecular physics [1]. Originally derived for (p, 2p) spec-
troscopy in nuclear physics [2], where p represents a proton,
it was proposed in 1966 by Smirnov and Neudachin to use
the (e, 2e) processes on atoms for the investigation of atomic
wave functions [3,4]. Since then, it has enjoyed widespread
application, such as in electron momentum spectroscopy in
condensed matter physics [5]. In many branches of physics,
such as astrophysics and plasma physics, there has been con-
siderable interest in the study of ionization processes by a
charged particle. The electron impact single ionization, called
the (e, 2e) process, has thus become a powerful tool for in-
vestigation of the dynamics of the ionization process [6]. The
coincidence cross sections for the (e, 2e) process, here defined
as triple-differential cross sections (TDCSs), depend on the
momenta of two outgoing electrons (scattered and ejected
electrons). Since the first (e, 2e) measurements reported in-
dependently in the late 1960s by Ehrhardt et al. [7] and
Amaldi et al. [8], experimental and theoretical activities in
the nonrelativistic energy scale have been intense (e.g., see
Refs. [9–11]). The (e, 2e) field is still an active field at the
current time with more focus on molecular targets. A short
time ago, various variants of theoretical models, based on the
3-C approach by Brauner et al. [12], were used to study the
(e, 2e) process on the argon atom and H2O, CH4, and NH3
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molecules [13]. In all the above-mentioned works, the electron
impact energy lies in an energy range typically between 10 eV
and 10 keV, wherein the spin aspects do not play a major role
except in antisymmetrization of the wave function of the in-
volved electrons. Work in the relativistic energy regime began
in 1982 with the absolute (e, 2e) experiments of Schule and
Nakel [14] at an incident energy of 500 keV on the K shell of
the silver atom. These kinematically complete experiments on
the inner shell states of high-Z atoms probe the fundamental
ionization mechanism in the regime of relativistic energies.
Later on, experiments were performed with transversely po-
larized electron beams [15] in which, apart from the momenta,
the spin of the impinging beam is also resolved. These (e, 2e)
experiments entailed the development of new theoretical and
computational methods [16].

Recently, there have been new interesting breakthroughs
to create an electron vortex beam which has the ability to
carry orbital angular momentum (OAM) along the propaga-
tion direction of the electron beam. It is termed a “twisted
electron” beam [17]. Hence, with this, now we would be able
to probe multiple sources of perturbations in a system; for
instance, it can be employed as a nanoscale probe in magnetic
materials. Initially, the concept of a twisted photon beam came
into the picture, and accordingly researchers have begun to
appreciate its implications for our basic understanding of the
way light interacts with matter for a conventional photon
beam. Researchers also realized its potential for quantum
information applications [18]. Along similar lines, there have
been intense studies of the production and application of the
twisted electron beam [19–22]. The twisted electron beam is
not a plane wave, but it is a superposition of plane waves with
a defined projection of the OAM onto the propagation axis.
This projection, which nowadays can be very high [23,24],
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determines the magnitude of the OAM induced magnetic
moment. Due to such a huge magnetic dipole moment (as op-
posed to the plane-wave electron beam), the twisted electron
beam is presently regarded as a valuable tool for studying the
magnetic properties of materials at the nanoscale [25–27].

In the recent past, the first Born approximation and Dirac’s
relativistic theory have been applied to explore the Mott scat-
tering of the high-energetic twisted electron beam by atomic
and macroscopic targets to study the effects of total angular
momentum (TAM) projection, opening angle, and the impact
parameter of the twisted electron beam [28]. A generalized
Born approximation has been used to investigate the scattering
of the vortex electron beam by atomic targets [29]. Based
on the developed theory [30–33], it has been shown that
the number of scattering events in the collisions involving
twisted electrons is comparable to that in the standard plane-
wave regime. Furthermore, a fully relativistic calculation of
the differential cross section for the bremsstrahlung, emitted
by twisted electrons in the field of bare heavy nuclei, has
been done recently by Groshev et al. [34]. In this paper, we
extend such a type of study to (e, 2e) processes on atoms
at relativistic energy. In the coincidence (e, 2e) process, we
detect all the participating particles in the continuum state
with their momenta fully resolved. Naturally, considering the
twisted electron beam in place of the standard plane-wave
beam will extract more information about the (e, 2e) processes
than is available presently. Till now, almost all the (e, 2e)
activities have been confined to the electron beam, which
carries linear momentum in its impinging direction, except
the recent studies by Harris et al. [35] and Dhankhar and
Choubisa [36], in which (e, 2e) processes have been studied
on the H atom and H2 molecule with a twisted electron beam
in the nonrelativistic energy regime. The relativistic (e, 2e)
processes on atomic targets with a conventional electron beam
have been studied extensively [37,38]. To the best of our
knowledge, a relativistic or semirelativistic (e, 2e) study with
twisted electrons has not been explored in the literature; even
the theoretical estimation is not explored. The twisted electron
carries TAM, consisting of the OAM and spin of the electrons,
in addition to its linear momentum at relativistic energy [39].
Hence it will be an interesting task to probe the effects of TAM
projection of the twisted electrons on the (e, 2e) processes on
atoms, especially in the relativistic energy regime. Further-
more, one can also probe the effect of twisted electrons on
the spin asymmetry in TDCS. This paper is intended to cover
these aspects in a theoretical manner.

In our theoretical model, we use the first Born approxi-
mation, which is a reasonably good approximation for (e, 2e)
studies on lighter atomic targets. For the conventional plane-
wave beam, we use the Dirac plane wave, and for the twisted
electron beam, we use the twisted electron wave function. We
describe the scattered, ejected, and K-shell electrons by the
Dirac plane-wave function, semirelativistic Coulomb wave
function, and Darwin wave function, respectively. We neglect
the exchange-correlation effect arising from the electron cloud
of the heavy atomic targets. In addition to this, we do not con-
sider the exchange effect between the incident and scattered
electrons because here we consider the coplanar asymmetric
geometrical mode for our study. In this geometry, the energy
of the scattered electron (Es) is sufficiently larger than that of
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FIG. 1. Schematic diagram for the (e, 2e) process on an atom A
by an incident electron ei in one photon-exchange approximation.
The electromagnetic interaction is mediated through a virtual photon
along the momentum transfer direction. The incident electron scat-
ters at angle θs, and the ejected electron ejects in the θ1 direction from
the incident direction (z axis) in the scattering plane defined in the xz
plane. The geometry used here is coplanar asymmetric (Es > E1).

the ejected electron (E1) (the ratio R = Es
E1

varies from 2.69
to 3.1 in this paper). Furthermore, Keller et al. [40] reported
that the exchange effects in the (e, 2e) process play a more
important role for the heavier target, such as Au, than for the
lighter atoms, such as the Cu and Ag targets considered here.
Generally, FBA is inadequate when the scattering involves
many electron atomic targets, although it serves as an impor-
tant baseline for comparison of more advanced calculations.
We hope that the present results may stimulate new types of
theoretical and experimental studies of the relativistic (e, 2e)
processes with twisted electron impact on atoms. Here, we
present our calculation of TDCS and spin asymmetry for K-
shell ionization of Cu and Ag targets for the twisted electron
case. We would like to point out that, in the literature, we
have better theoretical models for plane-wave incidence, for
example, the relativistic distorted-wave Born approximation
(rDWBA) [40,41], than the first Born approximation (FBA)
presented here. Therefore the results may not be as accurate
as those for the more accurate theoretical model, such as
rDWBA, for the twisted electron.

The paper is organized as follows: Following the Introduc-
tion, we describe our semirelativistic theoretical model for the
computations of TDCS and spin asymmetry in TDCS for the
(e, 2e) processes for both the plane and twisted electron beam
in Sec. II. We discuss our theoretical results of TDCS and spin
asymmetry in Sec. III. Finally, we draw conclusions from our
findings in Sec. IV.

II. THEORETICAL FORMALISM

We develop our formalism with the following assumptions:
(1) The incident electron emits a virtual photon at (x, t )

along the direction of momentum transfer which is absorbed
by the atom at (x′, t ′) (see Fig. 1). The incident electron-atom
interaction is of the first order. Due to this interaction, the
incident electron is scattered by an angle θs from the incident
electron direction.

(2) We also assume that the electromagnetic interaction,
via a virtual photon interaction, emits the K-shell bound elec-
tron into the continuum state. The ejected electron is ejected
in the θ1 direction from the direction of the incident electron.
All the electrons are in the same plane (scattering plane).
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For the incident conventional electron beam, we use the Dirac
plane-wave function. We use the Bessel wave function for the
twisted electron beam.

(3) We describe the Dirac plane-wave function, semirela-
tivistic Coulomb wave function, and Darwin wave function
for the scattered, ejected, and K-shell electron, respectively.
TDCS is computed here in the coplanar asymmetric geometry
(Es > E1).

A. Plane-wave ionization

In the coincidence ionization processes on any target (e.g.,
atom, ion, cluster, etc.), we calculate the differential cross
sections for various kinematic arrangements of the outgoing
electrons involved in the ionization process. The ionization of
an atomic target by an electron may be framed as

e−
i (λ) + A −→ A+ + e−

s + e−
1 , (1)

where i, s, and 1 represent the incident, scattered, and ejected
electron with A being the target. λ is the helicity of the incident
electron. In the coincident (e, 2e) experiment, the momenta
of the scattered and ejected electrons in the continuum state
are resolved, and hence the coincidence cross section (here,
TDCS) depends on the energy of either of the two electrons
and directions of the electrons. We compute the TDCS corre-
sponding to an (e, 2e) process in the first Born approximation
as

d3σ (λ)

d�sd�1dEs
= (2π )4 ksk1

ki

EiEsE1

c6

∑
μb

∑
λsμ1

|〈 f |̂S|i〉|2. (2)

Here, for the case of the (e, 2e) process, Ŝ is the S-matrix
operator. λs is the helicity of the scattered electron. μb and
μ1 are the spin projections of the bound (K-shell) and ejected
electrons in the continuum state, respectively. Ei, Es, E1 and
ki, ks, k1 are the on-shell total energies and momenta of the
unbound particles. The spin projections are taken with respect
to the propagation direction of the incident electron beam
(also defined as the z axis).

Here, TDCS in Eq. (2) is calculated as an average over
the bound electron and a sum over the final-state spins of
the scattered and ejected electrons. The main task here is to
calculate the S-matrix element in the following form [42]:

〈 f |̂S|i〉 = −1

c

∫
Aμ(r1)Jμ(r1)d3r1, (3)

where Aμ(r1) can be expressed as

Aμ(r1) = 4π

(2π )3

[
uks,λγ

μuki,λ

][
q2 − (

�E
c

)2] [eiq·r1 ]. (4)

Here, r1 is the position vector of the ejected electron with
respect to the target, q = ki − ks is the momentum transfer,
�E = Ei − Es, γ μ are Dirac matrices, and uki,λ and uks,λ

are Dirac spinors. We describe the Dirac spinor for the free
electron, characterized by the momentum k and the helicity
λ, by

uk,λ =
( √

ε + c2 wλ(n̂)
2λ

√
ε − c2 wλ(n̂)

)
. (5)

We describe ε = √
c4 + k2c2 (in atomic units) and n̂ = k

k
as the total energy and the propagation direction, respec-
tively, for the free electron. wλ(n̂) is the eigenfunction of
the helicity operator σ̂ ·n̂

2 , and σ̂ is the standard vector of
Pauli matrices. The wλ(n̂) in Eq. (5) can be constructed
for the electron’s propagation in any arbitrary direction n̂ =
(sin θp cos φp, sin θp sin φp, cos θp) with respect to the quan-
tization axis (here, the propagation direction of the incident
electron is taken along the z axis) for the given polar angle θp

and azimuthal angle φp [43,44]. It can be described as

wλ(n̂) =
1
2∑

σ=− 1
2

e−iσφp d
1
2
σλ(θp) wσ (ez ). (6)

Here, d
1
2
σλ = δσ,λ cos( θP

2 ) − 2 σ δσ,−λ sin( θP
2 ), and wσ (ez ) is

the standard Pauli’s spinor defined as w
1
2 (ez ) = (1

0) and

w− 1
2 (ez ) = (0

1). On substitution of wλ(n̂) in expression (5), we
can express the Dirac spinor as

uk,λ =
1
2∑

σ=− 1
2

e−iσφp d
1
2
σλ(θp) ×

( √
ε + c2 wσ (ez )

2λ
√

ε − c2 wσ (ez )

)
. (7)

The quantum number + 1
2 and − 1

2 values of λ are the helicity
of the electron and represent right-handed and left-handed
polarization, respectively, of the electrons (projection of spin
along the beam direction).

We describe the atomic transition four-current density for
the electron transition from the K shell to the continuum state
by Jμ(r1) in the following form:

Jμ(r1) = cψ f (r1)γ μψi(r1), (8)

where ψ f is the semirelativistic Coulomb wave function [45],

ψ f (r1) = N1φk1(Z, r1)uk1,μ1 , (9)

where N1 = [1 + k1
2

4c2 ]−1/2 and φk1 (Z, r1) is Coulomb wave
function defined as

φk1 (Z, r1) = 1

(2π )3/2
eik1·r1 exp

(
πZ

2k1

)


(
1 + i

Z

k1

)

1F1

(−iZ

k1
, 1,−i(k1r1 + k1 · r1)

)
, (10)

where Z is the atomic number.
ψi(r1) is the Darwin wave function for the K-shell electrons

[46]. It is of the form

ψi(r1) = Nk
Z ′3/2

√
π

[
asb (μb)

]
e−Z ′r1 . (11)

Here, Nk = [1 + Z ′α2

4 ]−1/2, α = 1
c = 1

137 (in atomic units) be-
ing the fine-structure constant and Z ′ = Z − 0.3 being the
effective nuclear charge. The Darwin matrix [46] asb is of the
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following form:

asb (↑) =

⎛⎜⎜⎜⎝
1
0

1
2ic

δ
δz

1
2ic

(
δ
δx + i δ

δy

)
⎞⎟⎟⎟⎠, (12)

asb (↓) =

⎛⎜⎜⎜⎝
0
1

1
2ic

(
δ
δx − i δ

δy

)
1

2ic
δ
δz

⎞⎟⎟⎟⎠. (13)

The advantage of the present FBA model is that it makes
our approach analytic for the computation of the 〈 f |̂S|i〉
matrix element. In the literature, the Darwin wave func-
tion was used by numerous groups in the description of
the inner shell ionization process on atoms (e.g., see the
works by Davidovic and Moiseiwitsch [47], Sud and Moat-
tar [48], Jakubaßa-Amundsen [49], Bhullar and Sud [45],
etc.). Jacubassa-Amundsen [50] used an improved hydrogenic
relativistic wave function by replacing the Darwin wave func-
tion. It has been observed that it improves the results of
(e, 2e) processes considerably for a Au target. In this paper,
we use Cu and Ag targets wherein, as per the conclusion
made by Jacubassa-Amundsen [50], the improved bound state
wave function does not lead to a significant change to the
Darwin-wave-function-based results. The matrix element for
charge-charge interaction can be described as

〈 f |̂S|i〉0 = −1

c

∫
A0(r1)J0(r1)d3r1. (14)

Similarly, the matrix element for current-current interaction
becomes

〈 f |̂S|i〉J = −1

c

∫
A(r1) · J(r1)d3r1. (15)

The total contribution 〈 f |̂S|i〉 can be written as

〈 f |̂S|i〉 = 〈 f |̂S|i〉0 − 〈 f |̂S|i〉J . (16)

We can compute (TDCS)0, (TDCS)J , and (TDCS)T from
Eqs. (14)–(16), respectively, by squaring the corresponding
S-matrix element.

In the calculation of matrix element 〈 f |̂S|i〉, we encounter
certain types of spatial integrals, as listed in Ref. [42], which
are analytical in nature. In the calculation of TDCS, we
consider all 16 possible combinations of spins of partici-
pating electrons. We separately calculate TDCS with right-
handed helicity [TDCS(λ = + 1

2 )] and left-handed helicity
[TDCS(λ = − 1

2 )] of the incident electron. The unpolarized
TDCS can be calculated as

(TDCS)unpolarized = 1
2

[
TDCS

(+ 1
2

) + TDCS
(− 1

2

)]
. (17)

B. Twisted electron ionization

After having briefly discussed the basic theory used to
describe the relativistic (e, 2e) processes for a plane-wave
electron beam, we describe the same for a twisted electron
beam. Starting with Bessel beams, we explain the twisted
electron wave function and calculation of the scattering am-
plitude. Twisted electron beams are conventionally different

from a plane-wave beam. They consist of a superposition of
plane waves (such as a Bessel beam) with a defined projec-
tion of the orbital angular momentum onto the propagation
axis, each with a φ-dependent phase. This phase leads to the
characteristic twisted beam with OAM defined by the operator
L̂z = −ih̄∂φ with eigenvalue h̄ l , where l is the OAM projec-
tion [51]. For the nonrelativistic case, since the Hamiltonian
H commutes with the L̂z, l is a good quantum number, and the
twisted electron wave function is an eigenstate of both H and
L̂z. However, for relativistic energy, the Dirac Hamiltonian
for the free electron commutes only with the total angular
momentum operator Ĵz = L̂z + �̂z [52], where �̂z is the spin
operator with eigenvalue h̄ s. Therefore, in our case, TAM
is a good quantum number, defined as an eigenvalue of the
operator Ĵz with eigenstate ψk,m, i.e., Ĵzψk,m = mh̄ ψk,m. The
simplest form of Bessel beam is provided by the solution of
the Schrödinger equation in cylindrical coordinates [31,53].
For the nonrelativistic case, this exact solution encloses the
beam features, which are the quantized (projected) OAM h̄ l
and the longitudinal and transverse momenta h̄ kz and h̄ k⊥.
The form of the Bessel beam is

ψki,l (r) =
√

κeilφr

√
2π

Jl (κr⊥)eikzz, (18)

where φr is the azimuthal angle of r, k⊥ is the transverse
momentum, and κ = |k⊥| is the absolute value of the trans-
verse momentum. In terms of its momentum components, the
Bessel beam shows that this state is a ring of tilted plane
waves in momentum space. This representation has been used
to calculate the elastic Coulomb scattering amplitude [53] and
further in the potential scattering of electrons in a framework
of the generalized Born approximation [31]. For the twisted
electron part, we use the same formalism as used in the last
section for plane-wave ionization except that we replace the
plane wave for the incident electron with a twisted electron
beam. We describe the momentum vector, ki, of the incident
electron as

ki = (ki sin θp cos φp)x̂ + (ki sin θp sin φp)ŷ + (ki cos θp)ẑ,
(19)

where θp and φp are the polar and azimuthal angles of ki as-
suming that the electron beam propagates along the z direction
(Fig. 2).

Here, we define the longitudinal momentum along the z
axis, with the atomic target on the axis. Note that the polar
angle is also defined as the opening angle θp = tan−1 ki⊥

kiz
,

which can be defined as the angle that the momentum vector
makes with the z axis. ki⊥ and kiz represent the perpendicular
and the longitudinal components of the momentum ki.

We use the Bessel beam in terms of its momentum compo-
nents. It is defined as a superposition of the plane waves [28],

ψki,m(ri) =
∫

d2ki⊥
(2π )2

aκm(ki⊥)eiki·ri , (20)

with the amplitude

aκm(ki⊥) = (−i)m

√
2π

κ

eimφp δ(ki⊥ − κ), (21)
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FIG. 2. Schematic diagram of the electron impact ionization of
an atom by a Bessel beam in which the momentum of the beam is on
the surface of a cone with opening angle θp. The angular positions
of the scattered and ejected electron are represented by θs and θ1.
The quantization (z) axis is chosen along the propagation direction
of the incoming beam. The inset shows the top view of the incident
twisted electron beam. The beam propagates into the page and twists
around the propagation direction (clockwise) with phase angle φp.
Other kinematical conditions are the same as shown in Fig. 1.

where κ is the absolute value of the transverse momentum
and m is the TAM projection. For the relativistic case, the
wave function for the twisted electron can be described as a
superposition of the Dirac plane wave. The wave function for
the twisted electron beam can be defined as

ψ (tw)
κm (ri) =

∫
d2ki⊥
(2π )2

aκm(ki⊥)uki,λeiki·ri . (22)

Using Eqs. (20) and (22) for the incident twisted electron, we
can write the twisted wave transition amplitude, Stw

f i , in terms
of the plane-wave transition amplitude as

Stw
f i (κ, q) = (−i)m

2π

√
κ

2π

∫
dφp

2π
eimφp−iki⊥·b〈 f |̂S|i〉, (23)

where b is the impact parameter that defines the transverse
orientation of the incident twisted electron beam with re-
spect to the atom and ki⊥ · b = κb cos(φp − φb) and φb is
the azimuthal angle of the impact parameter b. 〈 f |̂S|i〉 is the
transition amplitude for the incident plane-wave scattering for
an atom, given by Eq. (3), for the given q = ki − ks.

In terms of magnitude, the momentum transfer to the target
atom by an incident twisted electron beam is

q2 = k2
i + k2

s − 2kiks cos θ, (24)

where

cos θ = cos θp cos θs + sin θp sin θs cos(φp − φs). (25)

Here, θs and φs are the polar and azimuthal angles of the ks.
For the coplanar geometry, φs = 180◦. For the computation
of the TDCS for the twisted electron, we need to compute
〈 f |̂S|i〉 from Eq. (3) for given φp. We use Eq. (23) to compute
Stw

f i (κ, q) by integrating over angle φp.
Till now, we have discussed the theoretical formalism

for the (e, 2e) cross section for the impinging twisted elec-
tron colliding with a single and well-localized atomic target.

However, this type of experimental realization is hard to
achieve. In the experiment, thin foils are usually used. Such
types of solid targets can be described by an ensemble of
randomly and uniformly distributed identical atoms over the
transverse extent of the incident beam. In this case, we can
find the average TDCS [(TDCS)av], d3σ

d�s d�1dE1
, after integrat-

ing the number of events over all the impact parameters b and
dividing it by the total number of particles (given by Karlovets
et al. [29]). The average differential cross section can be found
as

d3σ (λ)

d�s d�1dE1
= (2π )4 kSk1

ki

EiESE1

c6

×
∑
μb

∑
λs,μ1

∫ 2π

0
|〈 f |Ŝ|i〉|2 dφp

2π cos θp
, (26)

where 〈 f |Ŝ|i〉 stands for the plane-wave S-matrix element as
defined by Eq. (16). Note that the average TDCS does not
depend on the TAM projection m. However, it depends on the
opening angle θp of the incident twisted electron.

We also calculate the asymmetry AL in (TDCS)av as

AL = (TDCS)av(+ 1
2 ) − (TDCS)av

(− 1
2

)
(TDCS)av(+ 1

2 ) + (TDCS)av
(− 1

2

) . (27)

The spin asymmetry in the K-shell ionization process is
caused by the spin-dependent forces, i.e., by Mott scattering
(due to the spin-orbit interaction of the continuum electrons
moving with relativistic energies in the Coulomb field of the
atomic nucleus).

For the nonrelativistic energy case, we benchmark our cal-
culation with that of Harris et al. [35]. For the twisted electron
beam impact (e, 2e) process, the matrix element T tw

f i can be
expressed as [35]

T tw
f i = (−1)l

2π

∫ 2π

0
dφp eilφ T PW

f i (q) e−iki·b. (28)

Here, l is the orbital angular momentum (OAM) projection
of the twisted electron beam. Furthermore, the average TDCS
can be calculated by integrating the |T tw

f i (q)|2 over the impact
parameter b in the transverse plane.

The average cross section can be expressed as

d3σ

d�s d�1dEs
= 1

2π cos θp

∫ 2π

0
dφp

(
d3σ (q)

d�s d�1dEs

)
PW

.

(29)

III. RESULTS AND DISCUSSION

We present the results of our calculations of TDCS for
an incoming plane-wave electron beam in Fig. 3 for the
charge-charge interaction (TDCS)0, the sum of the charge-
charge and current-current interaction parts [(TDCS)0J =
(TDCS)0 + (TDCS)J ], and total contributions, which in-
cludes the interference term of the matrix elements of
the above contributions [(TDCS)T = (TDCS)0 + (TDCS)J +
(TDCS)INT]. We describe (TDCS)0, (TDCS)0J , and (TDCS)T

by dotted, dashed, and solid curves, respectively. The exper-
imental data are described by solid circles, and the rDWBA
calculations are described by a dash-dotted curve. We present
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FIG. 3. (TDCS)T , (TDCS)0, (TDCS)0J , and the rDWBA calculations are plotted as a function of the ejected electron angle θ1 in the
coplanar asymmetric geometry mode. The experimental data points (from Refs. [41,54]) are plotted as solid circles. rDWBA calculations
are represented by the dash-dotted curve (Refs. [40,41]). (TDCS)T , (TDCS)0, (TDCS)0J are represented by solid, dotted, and dashed curves,
respectively. Kinematics: For (a), which shows Cu, Ei = 300 keV, Es = 220 keV, E1 = 71 keV, and θs = 9◦; for (b), which shows Ag, Ei =
300 keV, Es = 200 keV, E1 = 74.5 keV, and θs = 10◦; and for (c), which shows Ag, Ei = 500 keV, Es = 375 keV, E1 = 100 keV, and θs = 15◦.
The arrow at θq represents the direction of momentum transfer. In all the cases, φs = 180◦.

the results of TDCS for Cu and Ag targets for an incident
energy Ei = 300 keV (Cu and Ag) and Ei = 500 keV (Ag)
in the coplanar asymmetric geometrical mode. We provide
the other kinematical variables of the calculation of TDCS in
the caption of Fig. 3. We normalize the experimental and our
FBA results to the rDWBA calculation of Keller et al. [40]
for Cu and to that of Keller et al. [41] for Ag. We normalize
our calculation to rDWBA as it predicts correct cross sections
for the present kinematics. We found that for Cu [Fig. 3(a)],
our theoretical results follow the experimental and rDWBA
results reasonably well in the binary peak region (see the
peak around the θ1 = θq region, i.e., in the momentum transfer
direction). We also note that the angular profiles of (TDCS)0

(dotted curve) and (TDCS)0J peak around θ1 = θq. However,
because of the interference of the scattering amplitudes of
the charge density and current density terms, the (TDCS)T

is reduced, and the binary peak is shifted to a higher angle
(see solid curve). Furthermore, we found that the interfer-
ence term is responsible for the additional small maximum
in the backward region (see solid curves in the region near
θ1 = ±180◦). However, for the Ag target, we found that our
present FBA calculation differs strongly from the rDWBA and
experimental trends in the recoil peak region [see Fig. 3(b)].
This is expected as our FBA calculation is good for a lighter
target, such as Cu. The FBA calculation is not accurate for

heavier targets. The FBA fails for heavy targets as it neglects
the action of the target field on the projectile electron in both
the entrance and exit channels (see Keller et al. [40]). Further-
more, the FBA result in the recoil peak region is poor as it
does not take into account the scattered wave contribution in
the plane-wave representation of the incident electron. Despite
this, the FBA calculation in the binary peak region follows the
experimental and rDWBA results [see solid and dash-dotted
curves in the binary peak region and their comparison with
the experimental data in Figs. 3(a) and 3(b)]. In the present
scenario, we compare our theoretical results with the exper-
imental data and rDWBA calculation to ascertain that they
reproduce the main trends of the angular profile of the TDCS
of the experimental data and rDWBA model in the dominant
binary peak region. In Fig. 3(c), for the Ag target, our theory
has been normalized to the absolute TDCS of the experimental
data by a factor of 8.2, and our results underestimate the
plane-wave Born approximation (PWBA) result of Ref. [54]
roughly by a factor of 3.56.

Before we discuss the effects of TAM projection m and
opening angle θp on the relativistic (e, 2e) process, we discuss
the (e, 2e) process on a hydrogen atom in the nonrelativistic
energy regime. In the literature, Harris et al. [35] discussed the
twisted electron impact (e, 2e) process on a hydrogen atom
for the incident energies 500 eV and 1 keV in the coplanar
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asymmetric geometry. They took the ejected electron energy
as 20, 50, and 100 eV with different scattering angles and
opening angles of the incident electron (1, 10, and 100 mrad).
Furthermore, they presented the results for two different val-
ues of orbital angular momentum (OAM) number, viz., l = 1
and l = 2. Here, we present the results of our calculation
of TDCS for 1 keV impact energy for θs = 10 mrad with
three different values of θp, i.e., θp = 1, 10, and 100 mrad.
We choose l = 1 and the ejected electron’s energy as 20,
50, and 100 eV. The purpose of the recalculation of TDCS
in the nonrelativistic case for hydrogen is to benchmark our
calculation with the existing results of Harris et al. [35] so
that we can justify our semirelativistic model calculation for
the relativistic (e, 2e) process for the twisted electron beam.
Harris et al. [35] used a plane wave for the ejected electron,
whereas we used a Coulomb wave for the ejected electron,
which is a better wave function for the low-energy ejected
electron.

We present the results of our calculation in Fig. 4. Fig-
ures 4(a)–4(c) depict the angular profiles of TDCS of our
calculation for the ejected electron energies E1 of 20, 50,
and 100 eV, respectively. The scattered electron is detected
at a fixed value of 10 mrad. We further compute TDCS for
the (e, 2e) process on hydrogen by a plane wave and twisted
electron by taking the average over the impact parameter with
opening angles of 1, 10, and 100 mrad. We keep the scatter-
ing angle θs = 10 mrad. The averaged-over-impact-parameter
TDCS results mimic the realistic scenario for the present-day
experimental setup as it is very difficult to do the experiment
with a single atom with the twisted electron beam incidence.
We depict the results of the TDCS averaged over the impact
parameter in Figs. 4(d)–4(f) for E1 = 20, 50, and 100 eV,
respectively.

We confirm that our calculation of TDCS for θp = 1, 10,
and 100 mrad, respectively, reproduces the salient features
given by Harris et al. [35]. The position of the peaks in TDCS
for various values of θp is more or less peaked in the directions
as predicted by Harris et al. [35] [see Figs. 4(a)–4(c)]. This is
also true for the TDCS averaged over the impact parameter.
For example, in Figs. 4(d)–4(f), TDCS for the plane wave
(solid curve) almost overlaps with that of twisted electrons
for θp = 1 mrad (dotted curve) and almost follows the same
pattern as that for θp = 10 mrad (dashed curve). We further
confirm that the binary and recoil peaks for θp = 100 mrad
shift a lot from their respective positions for the plane-wave
case (see dash-dotted curve). Our calculated TDCS is smaller
than the TDCS of Harris et al. [35].

Now, in order to investigate the effects of the different m
on the angular profile of spin-averaged TDCS in the rela-
tivistic (e, 2e) process, we present the results of (TDCS)0 and
(TDCS)T for l = 0, 1, 2, and 3 in Fig. 5 for which m can be
|l − 1/2| and |l + 1/2| for given l . The spin-averaged TDCS
can be written as TDCS = [TDCS(l + 1/2) + TDCS(l −
1/2)]/2 = [TDCS(m) + TDCS(m − 1)]/2. We choose the
same targets as used in Fig. 3 with the same kinematics used
there for the plane-wave (e, 2e) case. For each set of kinemat-
ics, we keep the opening angle θp equal to the scattering angle
θs with the atom located on the beam direction (b = 0). For
example, we used θs = 9◦ for the Cu target at 300 keV for
the plane-wave case. We keep θp = 9◦ for the present case.

We present the results of spin-averaged (TDCS)0 in Figs. 5(a)
and 5(c) and (TDCS)T in Figs. 5(b) and 5(d) for Cu and Ag
targets, respectively, at Ei = 300 keV incident energy. We use
solid, dotted, dashed, and dash-dotted curves for l = 0, 1, 2,
and 3, respectively. From now onwards, we follow the same
representation of different curves in this paper unless other-
wise stated. We plot (TDCS)0 and (TDCS)T for different l in
different frames to investigate the effects of l (and hence the
TAM projection m) on charge-charge interaction [(TDCS)0]
and that for the charge-charge and current-current interaction
terms [(TDCS)T ]. At relativistic energy, we expect that the
current-current interaction term also dominates. In contrast,
in the nonrelativistic regime, it will be sufficient to consider
only (TDCS)0.

For 300 keV impact energy, we observe that the binary
peak of (TDCS)0 shifts from the binary peak direction for l �=
0 even for our first Born approximation results. Furthermore,
we observe that as l increases, the position of the prominent
peak in the binary region shifts to the forward direction for
both the targets (e.g., see the peak position of the l = 3 case).
For l = 2, we observe a two-peak structure [see dashed curves
in Figs. 5(a) and 5(c)]. We also observe that the magnitude
of (TDCS)0 decreases with l . For l = 3, we observe that the
binary peak completely vanishes and there is a prominent peak
in the forward direction [see dash-dotted curves in Figs. 5(a)
and 5(c) around the θ = 0◦ direction].

Having seen the angular profiles of (TDCS)0, we now
discuss the angular profile of (TDCS)T for l = 0, 1, 2, and
3 in Figs. 5(b) and 5(d) for Cu and Ag targets, respectively.
When we compare (TDCS)T with (TDCS)0 for different val-
ues of l , we observe that the binary peak of (TDCS)T shifts
to larger angles which are similar to what we observed for the
plane-wave calculation earlier (see Fig. 3). Apart from this, we
observe that the angular profiles of (TDCS)T follow the same
patterns as we get for (TDCS)0; for instance, the dominant
peaks for l = 0 and l = 1 are still found for (TDCS)T [see
solid and dotted curves of Figs. 5(b) and 5(d)]. We again
observe a dominant peak in the forward direction for larger
l [see dashed and dash-dotted curves in the forward direction
in Figs. 5(b) and 5(d)]. For l = 2, we observe that the binary
peak splits [see dashed curve in Figs. 5(b) and 5(d)]. For both
the targets, we observe a significant change in the angular
profile of (TDCS)0 when compared with that of (TDCS)T for
l = 2 in the binary region [see dashed curves of Figs. 5(a)
and 5(c) and compare with Figs. 5(b) and 5(d)]. We find
that the magnitude of (TDCS)0 and (TDCS)T decreases as l
increases.

Having discussed the results of the TDCS for 300 keV, we
now discuss the angular profile of TDCS for the Ag target
for given l’s for 500 keV. We also increase the scattering
angle and hence the opening angle (θs = 15◦ and θp = 15◦)
to investigate the effect of larger momentum transfer (larger
scattering angle here) and the opening angle of the twisted
beam on the angular profile of TDCS. The angular profiles
of (TDCS)T for different values of l are plotted in Fig. 6.
As we did in Fig. 5, we depict the various calculations of
different l with the same representative curves. For the Ag
case, we found that the binary peak for the plane wave is
shifted by larger angles from the momentum transfer direction
(see the solid curve in Fig. 6). When we gradually increase l
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FIG. 4. TDCS for ionization of hydrogen for the impact energy Ei = 1 keV plotted as a function of the angle of the ejected electron in the
coplanar asymmetric geometry. The solid curve represents plane-wave and on-axis electron vortex beam projectiles with opening angles of
1 mrad (dotted curve), 10 mrad (dashed curve), and 100 mrad (dash-dotted curve) with projectile scattering angle 10 mrad and OAM l = 1 in
(a), (b), and (c). Averaged-over-impact-parameter TDCS for ionization of hydrogen for the impact energy Ei = 1 keV plotted as a function of
the angle of the ejected electron in the coplanar asymmetric geometry by plane-wave (solid curve) and on-axis electron vortex beam projectiles
with opening angles of 1 mrad (dotted curve), 10 mrad (dashed curve), and 100 mrad (dash-dotted curve) with projectile scattering angle 10
mrad and OAM l = 1 in (d), (e), and (f).

from 1 to 3, as found in the previous calculation, the binary
peak in (TDCS)T shifts towards the forward direction. The
binary peak split marginally for l = 2 and prominently for
l = 3 leading to a two-peak pattern in (TDCS)T in the binary
region (see the dash-dotted curve in Fig. 6). Furthermore, we
observe that the magnitude of (TDCS)T is more enhanced for

l = 1 when compared with the plane wave (see the solid and
dotted curves of Fig. 6).

We present the results of TDCS averaged over impact
parameter [(TDCS)av] for Cu and Ag targets in Fig. 7 for an
incident energy 300 keV in the coplanar asymmetric geom-
etry. We use the same kinematics as used in Fig. 5 for Cu
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FIG. 5. (TDCS)0 and (TDCS)T for l = 0, 1, 2, and 3 for Cu (Ei = 300 keV, Es = 220 keV, E1 = 71 keV) with θs = 9◦ and θp = 9◦ and
Ag (Ei = 300 keV, Es = 200 keV, E1 = 74.5 keV) with θs = 10◦ and θp = 10◦. (a) and (c) represent (TDCS)0 for Cu and Ag, respectively.
Similarly, (b) and (d) represent (TDCS)T for Cu and Ag, respectively.

and Ag. The advantage of the study of the angular profile of
(TDCS)av is that it mimics the experimental realization of the
(e, 2e) process on a foil target, such as Cu and Ag, wherein
there is a large collection of identical atoms in the transverse
orientation of the target. We present the angular profile of
(TDCS)av for the Cu target in Fig. 7(a) and that for the Ag
target in Fig. 7(b). We keep θs = 9◦ and 10◦ for Cu and Ag,
respectively, and vary θp as shown in Figs. 7(a) and 7(b).

FIG. 6. (TDCS)T for Ag (Ei = 500 keV, Es = 375 keV, E1 =
100 keV) for given l’s with θs = 15◦ and θp = 15◦.

We represent the (TDCS)av for the plane wave (θp = 0◦) by
a solid curve, for θp = 3◦ by a dotted curve, for θp = 6◦ by
dashed curve, and for θp = 9◦ [for Fig. 7(a)] or θp = 10◦ [for
Fig. 7(b)] by a dash-dotted curve. From the angular profile of
(TDCS)av for different θp, we observe that the binary peak po-
sition shifts when we vary θp, especially for the larger values
of θp. In both cases, the plane-wave (solid curve) and θp = 3◦
(dotted curve) (TDCS)av calculations follow almost identical
behavior. However, for other values of θp, the angular profiles
of (TDCS)av deviate significantly from that for the plane-wave
case (see dashed and dash-dotted curves and compare them
with the solid curve). The binary peak shifts to a larger angle
for larger θp. For example, the binary peak for θp = 9◦ and
θp = 10◦, used for the Cu and Ag targets, respectively, shifts
to more than 15◦ from the plane-wave peak position (see dash-
dotted curve’s binary peak positions). Furthermore, we also
observe that the magnitude of (TDCS)av for the θp = θs case is
enhanced from that for the plane wave. This also validates the
earlier finding of Serbo et al. [28] wherein they observed an
enhanced differential cross section in the angular distribution
when the scattering angle of the scattered electron equals
the opening angle of the twisted electron. We would like to
add here that Serbo et al. [28] discussed the Rutherford-like
scattering of the incident electron from the Yukawa potential.
On the other hand, we discuss here the (e, 2e) process on
an atomic target, which is different from the Rutherford-like
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FIG. 7. TDCS averaged over impact parameter at Ei = 300 keV
with θs = 9◦ and 10◦ for (a) Cu and (b) Ag with different θp as shown
in the figure. Other kinematical variables are the same as in Fig. 5.

scattering. Despite this, our calculation agrees with a similar
conclusion as discussed above.

In the quantum mechanical complete experiment, we need
to see the effect of the spin of the impinging electron on the
(e, 2e) process. In the case of the polarized incident electron
beam, the TDCS depends on the spin of the incident electron.
This can be attributed to the spin-orbit coupling of the electron
when it is seen from the rest frame of the moving electron. In
the rest frame of the moving electron, the intrinsic magnetic
moment of the incident electron due to its spin couples with
the electromagnetic field of the atomic target. This leads to
different types of coupling for λ+ = 1

2 and λ− = − 1
2 spin

states of the incident electron beam which should be reflected
in the asymmetry AL of the TDCS [see Eq. (27)].

Serbo et al. [28] used a longitudinally polarized twisted
electron beam with λ = +1/2 to investigate the polarization
of the scattered electron in the Mott scattering on the macro-
scopic targets. In this paper, we investigate the spin asymme-
try AL in the (TDCS)av for the macroscopic targets Cu and Ag.
When we investigate the asymmetry AL of the averaged-over-
impact-parameter TDCS [(TDCS)av] for the macroscopic
target for the twisted electron beam, we have to take into ac-
count the effects of opening angle θp on AL [as (TDCS)av does
not depend on the TAM projection m]. We plot spin asymme-
try AL as a function of the ejection direction of the ejected
electron for different θp. We present the results of AL in Fig. 8

FIG. 8. Spin asymmetry AL in TDCS averaged over impact pa-
rameter [(TDCS)av] as a function of the angle of the ejected electron
for (a) Cu and (b) Ag (at Ei = 300 keV). Other kinematical variables
are the same as in Fig. 5.

for Cu [Fig. 8(a)] and Ag [Fig. 8(b)] at 300 keV. We keep θp =
0◦ (plane wave), 3◦, 6◦, and 9◦ for the Cu target and θp = 0◦
(plane wave), 3◦, 6◦, and 10◦ for the Ag target. We keep the
same kinematics and follow the same representations of the
curves as used in Fig. 7. When we compare the spin asymme-
try for the Cu and Ag targets in Fig. 8, we observe that for all
the cases, the spin asymmetry varies with the ejection angle of
the ejected electron. For all the cases of θp, the spin asymme-
tries are mostly negative. In the forward region around θ1 =
0◦, there is a maximum asymmetry observed in both the tar-
gets when the plane wave is used (see solid curves in Fig. 8).
However, as θp increases, the spin asymmetry gradually de-
creases in the forward direction. For example, it is around
−0.05 and −0.075 for the Cu and Ag targets, respectively,
when θp is maximum (θp = 9◦ and 10◦, respectively, for Cu
and Ag targets), whereas for the plane-wave case, it is around
−0.4 for both the targets (see solid and dash-dotted curves
in Fig. 8). However, in the binary peak region, it follows the
reverse trend resulting in maximum asymmetry for the highest
θp (see solid and dash-dotted curves in Fig. 8) in the binary
peak region. It also follows a similar trend in the recoil region
around θ1 = −100◦. In this region, the spin asymmetries are
largely positive for all the calculations. We end this section
with the comment that the spin asymmetry in (TDCS)av de-
pends on the opening angle of the twisted electron.
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IV. CONCLUSION

In this paper, we have studied the relativistic electron
impact ionization of atomic targets by the twisted electron
beam in coplanar asymmetric geometrical mode. We used a
semirelativistic Coulomb wave model for the computation of
TDCS in the first Born approximation. A range of kinematical
parameters was used in order to study the effect of various
parameters of the twisted electron beam on the (e, 2e) process.
The spin asymmetry in TDCS averaged over impact parameter
caused by the polarized incident electron beam is presented to
study the effects of the twisted electron beam on the (e, 2e)
process. We also studied TDCS for the charge density, the
sum of the charge and current density parts, and the total
contributions, which includes the interference term of the
matrix elements of the said terms. We observed a significant
dependence of TDCS and spin asymmetry on different pa-
rameters of the twisted electron beam and also on the atomic
number Z .

We would like to add that in the literature there are better
models as compared with our FBA model for the plane-wave
(e, 2e) process. These models can be explored for the twisted

electron (e, 2e) processes for further investigation of the ef-
fects of the twisted electron beam on it. Different kinematics,
such as coplanar symmetric geometry, noncoplanar geome-
tries, Bethe-Ridge kinematics, etc., can be considered. In the
present model, the exchange between the scattered electron
and the ejected electron can be considered for further study
in the symmetric geometry mode. Furthermore, one can ex-
plore a better relativistic wave function for the bound state.
However, at present, we do not have any experimental and the-
oretical results for the (e, 2e) process for the twisted electron
beam at relativistic energy. Still, we are hopeful that this study
may stimulate more studies in the field of electron impact
ionization with a twisted electron beam, at both theoretical
and experimental levels.
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