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Measurement of the tune-out wavelength for 133Cs at 880 nm
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We perform a measurement of the tune-out wavelength, λ0, between the D1, 62S1/2 → 62P1/2, and D2,
62S1/2 → 62P3/2, transitions for 133Cs in the ground hyperfine state (F = 3, mF = +3). At λ0, the frequency-
dependent scalar polarizability is zero leading to a zero scalar ac Stark shift. We measure the polarizability as a
function of wavelength using Kapitza-Dirac scattering of a 133Cs Bose-Einstein condensate in a one-dimensional
optical lattice, and determine the tune-out wavelength to be λ0 = 880.21790(40)stat(8)sys nm. From this mea-
surement we determine the ratio of reduced matrix elements to be |〈6P3/2‖d‖6S1/2〉|2/|〈6P1/2‖d‖6S1/2〉|2 =
1.9808(2). This represents an improvement of a factor of 10 over previous results derived from excited-state
lifetime measurements. We use the present measurement as a benchmark test of high-precision theory.
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I. INTRODUCTION

Optical trapping is widely employed in experiments in-
volving ultracold neutral atoms and molecules [1]. Optical
fields can be engineered on the scale of the optical wavelength
to produce various trapping geometries, including lattices [2],
ring traps [3,4], box potentials [5–7], and arrays of individual
microtraps [8,9]. This, combined with the ability to confine
any polarizable species, has resulted in numerous advances
in metrology [10], control of single atoms and molecules
[8,9,11–15], and quantum simulation of interacting many-
body systems [16–19]. Refined optical trapping techniques
can also lead to exciting developments that will underpin
future quantum technologies [20–22].

The dipole force experienced by atoms in an optical trap
is proportional to the dynamic polarizability. The polarizabil-
ity varies with wavelength exhibiting poles, whenever the
applied optical field matches a transition. This wavelength
dependence gives additional control over the optical poten-
tial where, for ground-state atoms, optical frequencies red
detuned of a transition give rise to attractive optical potentials
and those frequencies that are blue detuned give rise to re-
pulsive optical potentials. The poles in the polarizability lead
to wavelengths between transitions where the polarizability is
zero, commonly referred to as tune-out wavelengths [23,24]
or magic-zero wavelengths [25]. Precise knowledge of the
polarizability is important for a number of applications includ-
ing optical lattice clocks, quantifying lattice potentials, and
as benchmarks for testing theoretical methods of calculating
polarizability for more complex atoms such as Er and Dy
[25]. Measurements of tune-out wavelengths are important as
they allow the determination of multiple atomic properties in-
cluding transition dipole matrix elements, oscillator strengths,
and state lifetimes [25,26]. Transition dipole matrix elements
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are fundamental properties of atoms as well as being crucial
parameters for determining, for example, the blackbody ra-
diation shift of atoms which is often a limiting systematic
uncertainty in atomic clocks [27]. A number of discrepan-
cies between experimental results and between theory and
experiment have been pointed out in the literature [28–31]
recently, giving particular importance to further benchmark
tests.

Tune-out wavelengths can also be used to create species-
specific and state-specific optical trapping potentials [23,24].
Species-specific traps occur due to different atomic species
having different transition wavelengths. For different atomic
species, the poles in the polarizability therefore occur at dif-
ferent wavelengths leading to different trapping potentials.
Species-specific trapping is useful in multispecies experi-
ments and has allowed for studies of scattering in mixed
dimensions [32] and the transfer of entropy between different
atomic species to demonstrate novel cooling schemes [33].
Within the same atomic species, atoms in different electronic
states will experience different trapping potentials due to the
different transition frequencies from the different states. Even
within the same electronic state it is possible to engineer
state-specific potentials as the polarizability also depends on
the polarization of the light interacting with the atom and
the orientation of the atomic spin. The light polarization and
atomic spin will determine the transitions that are allowed by
selection rules and hence make polarizability depend on both
the total electronic angular momentum, F , and its projection,
mF . In general, the polarizability is therefore composed into
scalar, vector, and tensor polarizabilities where the scalar
polarizability is the polarizability when averaging over all
mF levels. State-specific potentials can be used to engineer
multi-particle entanglement [34], spatiotemporal control of
intraspecies interactions [35], and state-selective manipula-
tion of quantum states [31,36].

Tune-out wavelengths have been experimentally mea-
sured both directly and indirectly. Direct measurements are
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made by performing polarizability measurements around the
tune-out wavelength, with experimental techniques, including
atom diffraction [25], parameteric heating [31], and atom
interferometry [37]. Indirect measurements can be made by
inferring tune-out wavelengths from measurements of state
lifetimes, but can be limited by knowledge of branching ratios
[25]. Previous experiments have directly measured tune-
out wavelengths, using linearly polarized light, for different
alkali-metal atoms, including Li [38,39], K [26,40], and Rb
[25,33,37,41], as well as for other atomic species, including
He [42], Sr [31], and Dy [43] and also for ground-state NaK
molecules [44]. However, despite many theoretical studies of
133Cs polarizability [45–48], so far no measurements of 133Cs
scalar tune-out wavelength have been performed. And yet
133Cs atoms are used in a wide range of applications including
the definition of the second [49], the search for variations in
fundamental constants, and tests of the standard model.

In this paper, we report the experimental measurement of
the scalar tune-out wavelength λ0 of 133Cs atoms, hereafter
just denoted Cs, in the ground hyperfine state at λ0 ≈ 880 nm,
between the D1, 62S1/2 → 62P1/2, and D2, 62S1/2 → 62P3/2,
transitions. From this measurement we determine the ra-
tio of reduced dipole matrix elements |〈6P3/2‖d‖6S1/2〉|2/|
〈6P1/2‖d‖6S1/2〉|2 = 1.9808(2). This ratio is in agreement
with previous results from lifetime measurements [50], but
with an error bar reduced by more than a factor of 10. Ex-
perimental determination of this ratio is also of particular
interest due to discrepancy between theoretical and experi-
mental values in Ba+ discussed in Refs. [29,30]. We carry
out a benchmark comparison with theoretical calculations of
the Cs ratio, testing the methodology for determining theory
uncertainties.

This paper is structured as follows. In Sec. II we discuss
the theoretical calculations of polarizability including its de-
composition into scalar, vector, and tensor components. We
also explain how measurements of polarizability can be made
using Kapitza-Dirac scattering that results from applying a
pulsed optical lattice potential to the atoms. In Sec. III we give
a brief overview of the experimental apparatus and the pro-
duction of Cs Bose-Einstein condensates (BECs). In Sec. IV
we discuss the lattice setup used to measure λ0 and present
the results. In Sec. V we discuss how we extract the scalar
tune-out wavelength from our measurements. We also discuss
how the ratio of reduced matrix elements is extracted, and
present theoretical calculations. In Sec. VI we summarize the
results and give an outlook to future work.

II. THEORY

A. Polarizability

Our experiments are performed using Cs atoms prepared in
|F = 3, mF = +3〉 in a magnetic field of 23.4(1) G. We calcu-
late the polarizability including hyperfine structure following
the methods described in detail elsewhere [45,48,51]. Below
we summarize the main results.

The quantum state, |i〉, of an alkali-metal atom can be
defined in terms of the quantum numbers |i〉 = |γ , F, mF 〉 ≡
|F, mF 〉. F = I + J, with I the nuclear spin, and J the elec-
tronic angular momentum. For Cs, the nuclear spin I = 7/2.

γ represents the other quantum numbers used to define the
state but we will drop γ from the notation for simplicity.

For an alkali-metal atom in |i〉 interacting with light of
wavelength λ, with associated angular frequency, ω, the gen-
eral form of the frequency dependent polarizability can be
decomposed as [37]

αi(ω) = α
(0)
i (ω) − ξ k̂ · B̂

mF

2F
α

(1)
i (ω)

+
[

3(ε̂ · B̂)2 − 1

2

]
3m2

F − F (F + 1)

F (2F − 1)
α

(2)
i (ω).

(1)

Here α
(K )
i are the scalar (K = 0), vector (K = 1), and

tensor (K = 2) components of the polarizability, ξ = (I+ −
I−)/I0 is the fourth Stokes parameter [52] and quantifies the
degree of circularity of the polarization with I± being the
intensities of the different circular components and I0 is the
total intensity, B̂ is a unit vector in the direction of the mag-
netic field, and ε̂ and k̂ are unit vectors in the direction of the
polarization vector and wave vector, respectively, of the light
interacting with the atoms.

The scalar polarizability can be further decomposed
into [53]

α
(0)
i (ω) = αcore + αvc + α

(0)
v,i (ω), (2)

where there is a contribution to the polarizability from the
core electrons, αcore, a core modification due to the valence
electron, αvc, and a contribution from the valence electron
α

(0)
v,i (ω). The excitation frequencies of the core electrons are

far detuned from the laser frequencies considered here and so
αcore and αvc are treated as frequency independent. Calcula-
tions in the random-phase approximation (RPA) yield for Cs,
αcore = 15.84(16) × 4πε0a3

0 and αvc = −0.67(20) × 4πε0a3
0

[47]. It is important that these two values are computed by
the same method for consistency. The uncertainty in the core
contribution is taken to be 1% based on the comparison with
the coupled-cluster calculations [54]. The uncertainty in the
αvc term is taken to be the difference of the RPA and Dirac-
Hartree-Fock values.

The scalar polarizability contribution from the valence
electron is calculated by summing over contributions from all
other states |k〉 = |F ′, m′

F 〉 [45],

α
(0)
v,i (ω) = 2

h̄

(2F + 1)√
3(2F + 1)

∑
k 
=i

ωk,i|dk|2
ω2

k,i − ω2
(−1)F ′+F+1

× (2F ′ + 1)

{
F 1 F ′
1 F 0

}{
F ′ I J ′
J 1 F

}2

,

(3)

where ωk,i = ωk − ωi is the transition frequency between |k〉
and |i〉, h̄ is the reduced Planck constant, dk = 〈J||d||J ′〉 is the
reduced dipole matrix element between |i〉 and |k〉, and the
terms in curly brackets are Wigner-6j symbols.

It can be observed from Eq. (3), that the scalar polariz-
ability depends on the wavelengths of transitions from |i〉
that are allowed by electric dipole selection rules, and that
the polarizability exhibits poles at these transition frequen-
cies. For ground-state atoms, red (blue) detuned frequencies
lead to positive (negative) polarizability and hence attractive
(repulsive) trapping potentials. For atoms in the ground state,
there are scalar tune-out wavelengths between all pairs of

052813-2



MEASUREMENT OF THE TUNE-OUT WAVELENGTH FOR … PHYSICAL REVIEW A 104, 052813 (2021)

FIG. 1. Calculated scalar polarizability (blue solid line) of
ground-state Cs in the vicinity of the D1, 6S1/2 → 6P1/2, transition
at 894.6 nm, and the D2, 6S1/2 → 6P3/2, transition at 852.3 nm.
Between these two transitions the polarizability changes signs and
passes through zero at the tune-out wavelength λ0 ≈ 880 nm as
indicated by the dashed orange line.

transitions at a wavelength where the red-detuned contribution
to the polarizability from one transition is canceled by the
blue detuned contribution from the other transition. Figure 1
shows the calculated scalar polarizability of ground-state Cs
around the D1 and D2 transitions at 894.6 nm and 852.3 nm,
respectively. Between these two transitions, the polarizability
goes to zero at λ0 ≈ 880 nm. This is the tune-out wavelength
that we measure in Sec. V.

We now consider the impact of the vector and tensor
polarizability terms in Eq. (1) on the value of the tune-out
wavelength. The vector polarizability can cause substantial
shifts to the tune-out wavelengths as a result of the selection
rules for electric-dipole transitions. To illustrate the impor-
tance of these selection rules, we consider Cs atoms in the
|4,+4〉 ground state. If the atoms interact with light polarized
to drive σ+ transitions (|ξ | = 1), then transitions to the 6P1/2

state are not allowed by selection rules. This lack of coupling
to the 6P1/2 state means that no tune-out wavelength will be
present between the D1 and D2 lines for this specific light
polarization. For the case studied here of atoms in |3,+3〉,
all polarizations can couple to both the 6P3/2 and 6P1/2 states,
but the position of the tune-out wavelength is still strongly
influenced by the vector polarizability and can move on the
order of ∼10 nm for different polarizations. We observe from
Eq. (1) that the vector polarizability contribution is propor-
tional to the ellipticity of the light through the fourth Stokes
parameter (ξ ), as well as the term k̂ · B̂. We can therefore
suppress the vector polarizability by ensuring the light polar-
ization is highly linear and aligning the laser beam orthogonal
to the magnetic field, so that k̂ · B̂ → 0. Details of how this is
achieved in our experiment are presented in Sec. IV.

The tensor polarizability term is relevant to the measure-
ments performed here. There is no contribution from the core
electrons since the core is isotropic (α(2)

i = α
(2)
v,i ) [47]. In the

absence of hyperfine structure, the tensor polarizability is
zero for the ground state. However, including the hyperfine

structure the tensor polarizability of |i〉 is nonzero, and can
also be written as a sum over states as [45]

α
(2)
v,i (ω) = 2

h̄

√
10F (2F − 1)(2F + 1)

3(F + 1)(2F + 3))

∑
k 
=i

ωk,i|dk|2
ω2

k,i − ω2

× (−1)F+F ′
(2F ′+1)

{
F 1 F ′
1 F 2

}{
F ′ I J ′
J 1 F

}2

.

(4)

For alkali-metal atoms in the ground state, the tensor term
typically leads to corrections of less than a part-per-million.
Therefore, the polarizability for linearly polarized light is
dominated by contributions from the scalar polarizability but
small corrections due to the tensor polarizability need to also
be taken into account.

B. Kapitza-Dirac Scattering

Kapitza-Dirac scattering [55] is routinely used in atomic
physics experiments to measure optical lattice trap depths
[56–58] and has previously been shown to be a useful tool for
measuring tune-out wavelengths [41,43]. The technique has
been extended to measure low lattice depths by applying mul-
tiple pulses of the lattice potential to the atoms [25,43]. Here,
we use Kapitza-Dirac scattering to measure the wavelength
dependence of the atomic polarizability of Cs.

Kapitza-Dirac scattering occurs when the lattice is pulsed
onto a Bose-Einstein condensate (BEC) and atoms in the
condensate undergo stimulated two-photon scattering events.
Photons are scattered from one lattice beam to the other and
therefore momentum transfer occurs in units of 2h̄klat, where
klat is the lattice wave vector. The momentum transfer can oc-
cur in either direction along the beam to give both positive and
negative momentum states. As the lattice pulse time is varied
the population will oscillate between the different 2l h̄klat mo-
mentum states (l is an integer). The momentum states separate
in a time-of-flight expansion allowing the populations to be
measured. In the Raman-Nath regime, the atomic motion dur-
ing the lattice pulses can be neglected and analytic relations
for the population dynamics can be used [58].

In the work presented here, we consider Kapitza-Dirac
scattering beyond the Raman-Nath regime [58]. In this regime
the pulses are no longer short compared to the oscillation
period of atoms in the lattice. We therefore cannot use analytic
relations for the different momentum-state populations and a
numerical model is required. The Hamiltonian for atoms of
mass m in a periodic potential of depth V0 and wave vector klat

applied in the x direction is given by

H = − h̄2

2m

d2

dx2
+ V0 sin2(klatx). (5)

To calculate the populations in each momentum state, we di-
agonalize the Hamiltonian using a plane wave basis including
both positive and negative orders up to |l| = 20. Conver-
gence of solutions is found for |l| > |lmax|, where |lmax| is the
maximum populated momentum state. In the measurements
performed here, we observe populations in momentum states
up to |lmax| = 5. The atom numbers in each state are nor-
malized by the total number of atoms in the image to avoid
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issues from shot-to-shot variations in the atom number. The
evolution of all momentum states are fit simultaneously, with
the ±|l|2h̄klat populations averaged during fitting to reflect
symmetry of the scattering process. The only free parameters
in the fit are the lattice depth and an amplitude factor to
account for imperfect atom-number normalization.

III. OVERVIEW OF THE APPARATUS AND BEC
PRODUCTION

A schematic overview of our apparatus is shown in Fig. 2.
Below we give brief details of the stages used to produce Cs
BECs.

Our experiment begins with a high-flux source of laser-
cooled atoms from a 2D+ magneto-optical trap (MOT) [59].
Atoms from this source are collected in a 3D MOT in the
center of a 12-port stainless steel chamber. After sub-Doppler
molasses cooling, degenerate Raman sideband cooling [60]
is performed which cools the atoms to ∼1 μK and polarizes
them into the |F = 3, mF = +3〉 ground state. To cool the
atoms further we follow the method used to create the first
BECs of Cs [61]. In this approach, we implement a large
volume reservoir trap consisting of two beams with waists of
∼500 μm at the atoms and crossing at an angle of 90 degrees.
The light for the reservoir trap is derived from a broadband Yt-
terbium fiber laser (IPG Photonics) with a wavelength around
1070 nm. The trap is setup in a bowtie configuration where
the power is recycled and used in both of the trapping beams,
as shown in Fig. 2. The reservoir trap requires a magnetic
levitation gradient to support the atoms against gravity.

Approximately 10% of the atoms are then transferred from
the reservoir trap into a tighter crossed optical dipole trap
(xODT) at 1064 nm derived from a Nd:YAG laser (Coherent,

Imaging
2D+-MOT

3D-MOT

Dimple Reservoir

DRSC

1D-lattice

y

x

CC
D

/2

T

PD

/4 /4
/2

/4

/4

/4

FIG. 2. Schematic of the apparatus highlighting the optical beam
layout in the x-y plane. All beams used for cooling, trapping, and
imaging of atoms are shown. The 1D optical lattice used for mea-
suring the polarizability is aligned along the x direction (left-right
in the diagram). Absorption imaging is performed at an angle of
33◦ with respect to the lattice direction. Electromagnetic coils (not
shown) above and below the chamber provide a magnetic bias field
in the vertical direction. The MOT and degenerate Raman sideband
cooling beams in the z direction are not shown for clarity.

Mephisto). The two beams forming the trap have waists of
51(1) μm and 103(2) μm at the atoms. Forced evaporation
is then performed by reducing the powers of these xODT
beams whilst applying a bias field of 23.4(1) G to minimize
the three-body inelastic loss rate [61]. Typically, pure BECs
containing 2 × 104 atoms in the |3,+3〉 ground hyperfine
state are created.

IV. POLARIZABILITY MEASUREMENTS

The lattice light used for the Kapitza-Dirac measurements
is generated from a tuneable Ti:sapphire laser (M-Squared,
SolsTiS) pumped by a 18 W pump laser at 532 nm (Light-
house Photonics, Sprout). The light intensity sent to the
experiment is controlled by an acousto-optical modulator
(AOM) that uses a fast switch (Mini-Circuits, ZASWA2-
50DR-FA+) to generate the short pulses required for the
measurements. The light from the AOM is coupled into an
optical fiber to avoid changes in the lattice alignment as
the wavelength of the laser is adjusted. The power output
of the fiber is monitored using a photodiode as shown in
Fig. 2. This photodiode is used to correct for small power
changes between polarizability measurements. Before passing
through the vacuum chamber, the lattice light passes through
a Glan-Laser polarizer (Thorlabs, GL10-B). This polarizer
minimizes ξ and achieves a highly polarized lattice beam
which is linearly polarized with an extinction ratio of better
than 10−5. The waist of the ingoing lattice beam is measured
to be 99(5) μm at the position of the atoms. After the light has
passed through the chamber, it is collimated and retroreflected
onto the atoms to create the lattice potential. The lattice laser
frequency is measured and stabilized using a HighFinesse
WS-U wavemeter with an absolute accuracy of 30 MHz. We
reference the wavemeter to a laser frequency stabilized to the
52S1/2(F = 2) → 52P3/2(F ′ = 3) transition in 87Rb.

To perform the measurements of the polarizability, the
BEC is released from the dipole trap and, after a 100 μs delay,
the lattice is pulsed on for a variable time. The atoms are
then levitated for 40 ms using a magnetic field gradient of
≈30 G/cm, allowing the different momentum peaks to sepa-
rate spatially before being imaged. Example images from such
diffraction measurements are shown in Fig. 3(a) for a lattice
created using ∼300 mW of 881 nm light and applied for vary-
ing pulse duration. Figure 3(b) shows the extracted popula-
tions of each of the momentum states for each of these images.

Birefringence in the viewports of the vacuum chamber can
cause the highly linearly polarized light to acquire a circularly
polarized component. To suppress any vector polarizability
contribution caused by the vacuum viewports, we therefore
perform separate measurements using two orthogonal linear
polarizations and then average the two measured tune-out
wavelengths [25]. We choose the two lattice polarization
alignments to be parallel and orthogonal to the applied mag-
netic field. This choice of orthogonal polarizations has the
advantage that the changes in tune-out wavelength due to
the tensor polarizability are less sensitive to alignment of the
polarization in these orientations.

We initially measure the trap depth of the lattice using a
power of ∼300 mW. We measure trap depths for different
lattice wavelengths and different orientations of the lattice
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FIG. 3. An example of a Kapitza-Dirac measurement for a lattice
of power P ∼ 300 mW at a wavelength of 881 nm. (a) Absorp-
tion images of the different BEC momentum states for varying
lattice pulse duration, measured after a 40 ms levitated time-of-flight.
(b) The relative atom number of the different diffracted momentum
states are extracted from the images and fit using the method de-
scribed in the text to give a trap depth of 4.96(2) μK.

polarization with respect to the magnetic field. Figure 4(a)
shows the results of these measurements together with a fit
using Eq. (2). In the fit, the weighting of the polarizability
contributions from the D1 and D2 transitions is a free pa-

rameter and the polarizability contributions from the other
transitions is assumed to be wavelength independent over this
range. The overall amplitude is also a fit parameter to convert
from polarizability to trap depth.

To measure the tune-out wavelength, we increase the power
to ∼1 W, increasing our sensitivity to small polarizabilities
and allowing measurements to be made closer to λ0. We then
performed measurements of the trap depth over a ∼0.5 nm
wavelength range centered on the tune-out wavelength, as
shown in Fig. 4(b). The polarizability can be extracted from
the trap depth if the powers, beam waists and beam overlap
are all known. However, to determine the tune-out wavelength
only relative changes in polarizability are required if the lat-
tice beam parameters remain constant. We therefore use the
extracted trap depth to determine the tune-out wavelength.

V. ANALYSIS OF RESULTS

To extract the tune-out wavelength, from the measurements
shown in Fig. 4(b), we first fit the data using a linear function
which is a good approximation to the polarizability over this
wavelength range. We separately fit the data for the orthogonal
linear polarizations. The fits yield the tune-out wavelengths
of λ⊥

0 = 880.2164(6) nm and λ‖
0 = 880.2195(6) nm, where

⊥ (‖) indicates that the linear polarization of the lattice is
orthogonal (parallel) to the magnetic field. To extract the
scalar tune-out wavelength from these measurements we rely
on some theoretical corrections detailed below.

A. Corrections to measurements

The first correction that is taken into account is to remove
the shifts from the tensor polarizability. From Eq. (1) we see
that the shift depends on the relative orientation of the mag-
netic field and the polarization of the lattice. Using Eq. (4),
we determine the tensor shifts to be 473 fm when ε̂ · B̂ = 1
and −237 fm when ε̂ · B̂ = 0. We note that the uncertain-
ties in these calculated values are irrelevant compared to our
statistical uncertainty in the measurement of λ0.

FIG. 4. Trap depth measurements using Kapitza-Dirac scattering for polarization vector, ε̂, parallel (‖, orange, dashed, circles) and
perpendicular (⊥, blue, solid, squares) to the magnetic field B̂. (a) A broad wavelength scan of trap depth using P ∼ 300 mW. Dashed lines
are fitted trap depths (see text for details). (b) Narrow wavelength scan across the range of wavelengths shown by the grey box in (a). Trap
depths are measured using a lattice power of P ∼ 1 W, and are fitted with straight line functions to extract tune-out wavelengths λ0 for each
polarization. The residuals are plotted in the lower panel. The fitted tune-out wavelengths are λ⊥

0 = 880.2164(6) nm and λ
‖
0 = 880.2195(6) nm

for lattice polarizations perpendicular and parallel to B̂, respectively. The difference in these values is highlighted in the inset of (b).

052813-5



APICHAYAPORN RATKATA et al. PHYSICAL REVIEW A 104, 052813 (2021)

After applying this correction the tune-out wavelengths
become λ⊥

0 = 880.2166(6) nm and λ‖
0 = 880.2190(6) nm.

Although the two values agree at the 2σ level, the small
difference between them may also indicate the presence of a
residual vector polarizability shift due to the birefringence in
the vacuum viewports. We cancel this effect by averaging the
tune-out wavelength measurements from the two orthogonal
polarizations, giving the result λ0 = 880.2178(4) nm.

The next correction we make is due to the Zeeman effect
from the applied magnetic bias field. We calibrate the mag-
netic field in our experiment using the known Cs Feshbach
resonances up to 50 G [62]. We wish to extrapolate our
measurements to the case of zero applied magnetic field. To
calculate the shift in the tune-out wavelength due to the Zee-
man effect, we cannot use Eq. (3) and must use an equation
that takes into account the Zeeman shifts of the individual
Zeeman sublevels [37,45],

α
(0)
v,i (ω) = 1

3h̄
(2F + 1)

∑
k 
=i

ωB|dk|2
ω2

B − ω2
(2F ′ + 1)

×
(

F ′ 1 F
m′

F mF − m′
F −mF

)2{
F ′ I J ′
J 1 F

}2

.

(6)

Here, the term in the large rounded brackets is a Wigner-3j
symbol. This equation is identical to Eq. (3) for the case
of B = 0 but now with an explicit summation over Zeeman
sublevels, m′

F . The transition frequencies now depend on the
magnetic field by

ωB = ωk,i + (g′m′
F − gmF )μBB, (7)

where g (g′) is the Landé g-factor for the ground (excited)
state. We consider only the transitions to the 6PJ states and
by comparing the calculated tune-out wavelengths for the
case B = 0 G and B = 23.4(1) G we calculate the shift to
be 68(3) fm. Including transitions to the 7PJ states results in
shifts of ∼0.002 fm. Applying this correction gives the scalar
tune-out wavelength to be λ0 = 880.2179(4) nm, where the
error bar is purely statistical.

We must also include the systematic errors in our final
result. The first systematic error comes from our wavelength
measurement. The wavemeter has an uncertainty of 30 MHz
corresponding to 78 fm at this wavelength. The other major
error comes from the vector polarizability due to an impure
lattice polarization which we calculate to have a conservative
upper bound of 7 fm assuming we have aligned the lattice
within 3 degrees of being orthogonal to the magnetic field
quantization axis. This gives us the final result for the tune-
out wavelength λ0 = 880.21790(40)stat(8)sys nm where we
separate the statistical and systematic uncertainties. Table I
shows a summary of error contributions. The overall error in
the measurement is dominated by the statistical uncertainty.
The nonstatistical error contributions are dominated by the
wavemeter calibration.

There are a number of theoretical predictions for λ0

[24,46,48]. However, only one of these theoretical values
takes into account the hyperfine structure of the atoms [48]
and gives a predicted tune-out wavelength of 880.20(5) nm.
Our measured tune-out wavelength agrees well with this
result.

TABLE I. The error budget for the measurement of the 880 nm
tune-out wavelength. Each error contribution is given to one sig-
nificant figure. Statistical and nonstatistical errors are listed. The
individual contributions of the nonstatistical errors are shown
explicitly.

Source Error (pm)

Statistical 0.4
Nonstatistical 0.08

Zeeman effect 0.003
Vector shift 0.007
Wavemeter calibration 0.08

B. Ratio of matrix elements

The error in the theoretical value of the tune-out wave-
length is dominated by the ratio of the 6P matrix elements.
It is therefore interesting to use our measurements to extract a
value for this ratio, which is defined as

R = |〈6P3/2||d||6S1/2〉|2
|〈6P1/2||d||6S1/2〉|2

= |d6P3/2 |2
|d6P1/2 |2

. (8)

When considering degeneracies of states only, this ratio is
expected to be R = 2. However, including relativistic correc-
tions, which are large for Cs compared to other alkali-metal
atoms due to the large atomic mass, this ratio is reduced.

We calculate the ratio R using the relativistic linearized
coupled-cluster method [47]. The results of four computations
are listed in Table II. Ab initio linearized coupled-cluster re-
sults with single-double (SD) and perturbative valence triple
(SDpT) excitations are given in the SD and SDpT columns,
and the scaled values are listed in SDsc and SDpTsc columns.
These approaches are described in Ref. [63]. A large fraction
of the correlation correction cancels for the ratio, and its
accuracy is substantially higher than that of the matrix ele-
ments. The final value is taken to be 1.9788(21), in excellent
agreement with the experiment, as we show below. All three
approximations beyond SD are aimed at evaluating one type
of the correlation corrections (the so called “Brueckner-orbital
(BO) correction”), and its uncertainty is evaluated as the
spread of the four results. The total of all other corrections
is of the same order as the BO correction and we assume
their total uncertainty to be similar to the uncertainty of BO
correction, based on comparison with lifetime measurements.
The present work validates this procedure for the ratio as well.

Table III shows the contributions to the frequency depen-
dent scalar polarizability at the theoretical tune-out wave-

TABLE II. The theoretical calculations of the 6s − 6p1/2 and
6s − 6p3/2 matrix elements in atomic units and their ratio using
four variants of the all-order method; ab initio linearized coupled-
cluster results with single-double (SD) and perturbative valence
triple (SDpT) excitations are given in the SD and SDpT columns,
and scaled values are listed in the SDsc and SDpTsc columns.

SD SDsc SDpT SDpTsc

6S − 6P1/2 4.4807 4.5350 4.5576 4.5302
6S − 6P3/2 6.3030 6.3818 6.4136 6.3734
Ratio 1.9788 1.9803 1.9803 1.9793
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TABLE III. The theoretical contributions to the 6S scalar polar-
izability of Cs at λth

0 = 880.2463 nm. Polarizability contributions are
given in units of (4πε0a3

0). Uncertainties are given in parentheses.
Experimental energies 
E are measured from the ground state and
given in cm−1 [64]. The reduced electric-dipole matrix elements d in
atomic units are from experimental and theoretical data.

State 
E (cm−1) d (ea0) α(0) (at λth
0 ) Ref.

6P1/2 11178.26816 4.489(6) −4029(11) [65]
7P1/2 21765.348 0.2781(5) 0.3573(12) [66]
8P1/2 25708.8547 0.081(3) 0.030(7) [47]
9P1/2 27636.9966 0.043(7) 0.006(2) [47]
10P1/2 28726.8123 0.0248(5) 0.0019(8) [47]
11P1/2 29403.42310 0.0162(4) 0.0008(4) [47]
12P1/2 29852.43153 0.012(3) 0.0004(2) [47]
6P3/2 11732.3071 6.335(5) 4011(6) [50]
7P3/2 21946.397 0.5742(6) 1.501(3) [66]
8P3/2 25791.508 0.232(14) 0.19(2) [47]
9P3/2 27681.6782 0.130(10) 0.053(8) [47]
10P3/2 28753.6769 0.086(7) 0.022(4) [47]
11P3/2 29420.824 0.063(6) 0.011(2) [47]
12P3/2 29864.345 0.049(5) 0.0068(13) [47]
n > 12 0.16(16)
αcore 15.84(16) [47]
αvc −0.67(20) [47]
αoffset 17.5(3)
Total 0(13)

length, between the D line transitions, of λth
0 = 880.2463 nm.

To determine λth
0 , we use the matrix elements given in Table III

which come from a mixture of both experimentally measured
and theoretically calculated values. From the table it can be
seen that the main contributions to the polarizability at this
tune-out wavelength are from the transitions to the 6P1/2 and
6P3/2 states, with the other values constant around this value.
Therefore by adjusting the ratio R the theoretical value of
the tune-out wavelength can be adjusted to agree with the
measured value.

To determine this ratio of matrix elements, the scalar po-
larizability can be expressed in the following form [37]:

α
(0)
6S1/2

(ω) = αoffset + ∣∣d6P1/2

∣∣2(
K6P1/2 + K6P3/2 R

)
, (9)

where αoffset = 17.5(3) × 4πε0a3
0 includes all contributions to

the scalar polarizability that are not from the 6P1/2 and 6P3/2

states. K6PJ = α
(0)
6PJ

/|d6PJ |2 where α
(0)
6PJ

are the polarizability
contributions to the 6S state from the 6PJ states.

Setting α = 0 in Eq. (9) and using our experimentally mea-
sured value for the tune-out wavelength we extract the ratio
R = 1.9808(2). The uncertainty in R contains contributions
from d6P1/2 , αoffset and the determination of the tune-out wave-

length. However, the dominant contribution comes from the
calculation of the αcore. Using the experimentally measured
values of the 6PJ states given in Table III, the value of the ratio
is R = 1.984(4) which agrees well with our value extracted
from the measured tune-out wavelength.

VI. SUMMARY AND OUTLOOK

We have used Kapitza-Dirac scattering of atoms from a
1D optical lattice to measure the tune-out wavelength of
Cs in the ground hyperfine state, |F = 3, mF = 3〉, around
880 nm between the D1 and D2 transitions. We are able to
eliminate the influence of the vector Stark shift by using lin-
early polarized light and performing the measurement for two
orthogonal polarizations. By correcting the measured wave-
length to remove the influence of the tensor polarizability and
magnetic field, we find the scalar tune-out wavelength to be
880.21790(40)stat(8)sys nm. This is in good agreement with
theoretical value of 880.20(5) nm from Ref. [48].

We have used this measurement to determine the ratio of
the reduced matrix elements for transitions from the ground
state to the 6PJ states. We have found this ratio to be R =
1.9808(2) which is consistent with previous measurements,
but with a reduction in the uncertainty by a factor of more than
10. This ratio of reduced matrix elements is also important
for determining other atomic properties, such as oscillator
strengths and state lifetimes. The present work provides a
benchmark test of the relativistic all-order method and the pro-
cedure used to evaluate the uncertainty in the theory. This is
particularly important, as this method is used to generate data
and the associated uncertainties for the online data portal [67].

The measurement of this tune-out wavelength will be use-
ful in future studies of quantum degenerate mixtures involving
Cs [68–72]. For example, a stirring beam at this wavelength
could be used to create vortices in the atomic species trapped
with Cs, without affecting the Cs condensate. In future work
we plan to measure the tune-out wavelengths for Cs in
the vicinity of the 62S1/2 → 72P1/2, 72P3/2 transitions to put
constraints on additional dipole matrix elements. Such mea-
surements are also more sensitive to changes in αcore [40] and
may contribute to further constraints on this parameter.

The data and analysis associated with this work are avail-
able in the Ref. [73].
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