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Theoretical study of the electronic structure of hafnium (Hf, Z = 72) and rutherfordium
(Rf, Z = 104) atoms and their ions: Energy levels and hyperfine-structure constants
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Energy levels, magnetic dipole, and electric quadrupole hyperfine structure of the superheavy element ruther-
fordium (Rf, Z = 104) and its first three ions are calculated using a combination of the configuration interaction,
linearized coupled-cluster single-doubles, and many-body perturbation theory techniques. The results are to be
used in future interpretations of the measurements in terms of nuclear magnetic dipole and electric quadrupole
moments. To have a guide on the accuracy of the study, we perform similar calculations for hafnium (Hf, Z = 72)
and its ions. Hf is a lighter analog of Rf with a similar electronic structure. Good agreement with the experiment
for Hf and with available previous calculations of the energy levels of Rf is demonstrated.
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I. INTRODUCTION

The study of the hyperfine structure (hfs) of the super-
heavy elements (Z > 100) is a way of obtaining important
information about their nuclear structure. The measurements
accompanied by atomic calculations lead to extractions of
nuclear magnetic dipole and electric quadrupole moments.
This serves as a test of nuclear theory leading to more reliable
predictions of nuclear properties and helping in the search for
the hypothetical stability island [1–5]. The heaviest element
so far where such a study was performed is nobelium (No,
Z = 102) [6–8]. The hfs was measured for 253No isotope in
the strong electric dipole transition between ground 1S0 and
excited 1Po

1 state. In addition, isotope shift was measured
for the 252,253,254No isotopes. Similar measurements are now
planned for lawrencium (Lr, Z = 103) [9]. Hopefully, ruther-
fordium (Rf, Z = 104) is next in line.

Most of the synthesized isotopes of Rf have odd neutron
numbers [10], meaning that they have a nonzero nuclear spin
and that their energy levels have hyperfine structures. The
spectrum of electronic states of Rf was studied theoretically
before [11–13], revealing several electric dipole transitions
suitable for the measurements.

In the present work, we perform calculations of energy
levels, magnetic dipole, and electric quadrupole hyperfine
structure (hfs) of neutral Rf and Hf and their first three ions.
The main purpose of the work is to obtain the values of the hfs
matrix elements needed for the interpretation of future mea-
surements. The energy levels are obtained as a byproduct; they
are also useful for assessing the accuracy of the calculations.

We use a combination of the linearized single-double
coupled-cluster method with the configuration interaction
technique, the CI+SD method [14]. Calculations for Hf are
performed to test the accuracy of the predictions for Rf. Hf
is a lighter analog of Rf with a similar electronic structure.
Good agreement with the experiment for Hf and with previous
calculations of the energy levels of Rf is demonstrated. This

opens a way for the interpretation of future measurements in
terms of the nuclear magnetic dipole and electric quadrupole
moments.

II. METHOD OF CALCULATION

A. Calculation of energy levels

For all considered systems, calculations start for the rel-
ativistic Hartree-Fock (RHF) procedure for the closed-shell
core (Hf V and Rf V). This corresponds to the use of the
V N−M approximation [15]. Here N = Z is the total number
of electrons in a neutral atom, and M is the number of valence
electrons (M = 4 for Hf I and Rf I). The RHF Hamiltonian
has the form,

ĤRHF = cα p̂ + (β − 1)mc2 + Vnuc(r) + Vcore(r), (1)

where c is the speed of light, α and β are the Dirac matrices, p̂
is the electron momentum, m is the electron mass, Vnuc is the
nuclear potential obtained by integrating Fermi distribution of
nuclear charge density, and Vcore(r) is the self-consistent RHF
potential created by the electrons of the closed-shell core.

After the self-consistent procedure for the core is com-
pleted, the full set of single-electron states is generated using
the B-spline technique [16,17]. The basis states are linear
combinations of B splines, which are the eigenstates of the
RHF Hamiltonian (1). We use 40 B splines of the order 9 in a
box that has a radius Rmax = 40aB with the orbital angular mo-
mentum 0 � l � 6. These basis states are used for solving the
linearized single-double couple-cluster (SD) equations and for
generating many-electron states for the configuration interac-
tion (CI) calculations. By solving the SD equations first for
the core and then for the valence states, we obtain correlation
operators �1 and �2 [14]. �1 is a one-electron operator which
is responsible for correlation interaction between a particular
valence electron and the core. �2 is a two-electron operator
that can be understood as screening of Coulomb interaction
between a pair of valence electrons by core electrons. These
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� operators can be used in the subsequent CI calculations for
atoms with several valence electrons to account for the core-
valence and core-core correlations. Solving the SD equations
for valence states also gives energies of the single-electron
states for the system with one external electron above closed
shells. Note that there is a small difference in the SD equations
intended for obtaining these energies compared to those in-
tended for further use in the CI calculations. In the latter case,
one particular term should be removed from the SD equations
since its contribution is included via the CI calculations (see
Ref. [14] for details). However, the contribution of this term is
small, and the difference in the SD equations can be neglected.

The CI equations,

〈a|ĤCI|b〉 − Eδab = 0, (2)

have the CI Hamiltonian, which includes �1 and �2,

ĤCI =
M∑

i=1

(ĤRHF + �1)i +
M∑

i< j

(
e2

|ri − r j | + �2i j

)
. (3)

a and b in (2) are many-electron single determinant basis
states which are constructed by exciting one or two electrons
from one or more reference configuration(s) and then building
from these configurations the states of definite values of the to-
tal momentum J . M in (3) is the number of valence electrons.
In our cases M = 1, 2, 3, 4. The case of one external electron
is a special one. It has no terms of the second line in the
CI Hamiltonian (3). Taking into account that single-electron
basis states are eigenstates of the RHF Hamiltonian (1), the
CI eigenvalue problem is reduced to diagonalization of the �1

matrix,

〈i|�1| j〉 − Eδi j = 0. (4)

Here i and j are single-electron basis states. Note that in spite
of significant simplifications of the CI equations for M = 1,
there is no need for the modification of the computer code.
For M = 1 Eqs. (2) and (4) are equivalent.

There is an alternative way to perform the calculations for
systems with one external electron. One can find the energies
and wave functions of the valence states by solving the RHF-
like equations for an external electron in which the correlation
potential �1 is included:

(ĤRHF + �1 − εv )ψv = 0. (5)

Here index v numerate states of an external electron, wave
functions ψv are usually called the Brueckner orbitals (BO)
[18], and the energies εv and wave functions ψv include cor-
relation corrections. The BO can be used to calculate matrix
elements, in particular, for the hfs (see below). Comparing two
ways of the calculations is an important test of the accuracy.
It is especially valuable when there is a lack of experimental
data, which is the case of the present work.

The meaning of the �1 operator is the same in the CI and
BO equations [Eqs. (4) and (5)]. However, the �1 operator,
which comes from the SD calculations as a set of matrix
elements between single-electron states, cannot be directly
used in (5) since here we need the operator in the coordinate
representation. Therefore, we calculate the �1 for the BO in
the second order of the many-body perturbation theory (see
Fig. 1). A particular class of the higher-order correlations is

FIG. 1. Four diagrams for the second-order correlation operator
�1.

included by solving Eq. (5) iteratively. It includes contribu-
tions ∼�2

1 , �3
1 , etc. In the end, the two ways of calculations

are sufficiently different to be a good test of accuracy.

B. The CIPT method

It is very well known that the size of the CI matrix grows
exponentially with the number of valence electrons. In the
present work, we have up to four valence electrons (in neutral
Hf and Rf), leading to the huge size of the CI matrix, the
number of lines in (2) ∼106. Dealing with a matrix of this size
requires significant computer power. However, it can be re-
duced by orders of magnitude for the cost of some sacrifices in
the accuracy of the result. To do this, we use the CIPT method
[19] (configuration interaction with perturbation theory). The
idea is to neglect off-diagonal matrix elements between high-
energy states in the CI matrix (since in the perturbation theory
approach, such matrix elements appear in higher orders). Then
the CI matrix equation [Eq. (2)] can be written in a block form,(

A B
C D

)(
X
Y

)
= Ea

(
X
Y

)
. (6)

Here block A corresponds to low-energy states, block D corre-
sponds to high-energy states, and blocks B and C correspond
to cross terms. Note that since the total CI matrix is symmet-
ric, we have C = B′, i.e., ci j = b ji. Vectors X and Y contain
the coefficients of expansion of the valence wave function
over the single-determinant many-electron basis functions,

�(r1, . . . , rM ) =
N1∑

i=1

Xi	i(r1, . . . , rM )

+
N2∑
j=1

Yj	 j (r1, . . . , rM ). (7)

Here M is the number of valence electrons, N1 is the
number of low-energy basis states, and N2 is the number of
high-energy basis states.

We neglect off-diagonal matrix elements in block D. Find-
ing Y from the second equation of (6) leads to

Y = (EaI − D)−1CX. (8)

Substituting Y to the first equation of (6) leads to

[A + B(EaI − D)−1C]X = EvX, (9)
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TABLE I. The number of configurations and the size of the ef-
fective CI matrix for Hf and Rf. NNC is the number of nonrelativistic
configurations, NRC is the number of relativistic configurations, and
N1 is the corresponding number of states with given J p.

J p NNC NRC N1

1+ 80 364 726
2+ 80 364 987
3+ 80 364 968
4+ 80 364 784
1− 60 259 470
2− 60 259 605
3− 60 259 566

where I is the unit matrix. Neglecting the off-diagonal ma-
trix elements in D leads to a very simple structure of
the (EaI − D)−1 matrix, (EaI − D)−1

ik = δik/(Ea − Ek ), where
Ek = 〈k|HCI|k〉 (see [19] for more details). Equation (9) gives
the same solution as Eq. (6) if the energy parameter Ea in the
left-hand side of (9) has the same value as the solution Ev .
Since the value of Ev is not known in advance, we use an
iterative procedure, E (n)

a = E (n−1)
v , where n is iteration num-

ber. On first iteration one can use a solution of the simplified
equation AX = EaX or use some guess energy. In most cases
less than 10 iterations is sufficient for full convergence.

The relative sizes of blocks A and D can be varied in the
calculations in search of a reasonable compromise between
the accuracy of the results and the computer power needed to
obtain them. In our current calculations, the number of lines
in (9) is ∼103.

Note that the CI matrix is different for every combination
of the value of the total angular momentum J and the parity of
the states (J p). Therefore, the choice of the N1 parameter (i.e.,
the size of the effective CI matrix) should be done separately
for every J p. In doing so we follow the rule that all states
of the same configuration should be treated equally, either
as low-energy or high-energy states. Since for every given
configuration the number of states with different values of J is
different, the values of N1 are also different for every J p. The
search for a compromise between the size of the effective CI
matrix and the accuracy of the results is also done separately
for every J p. Table I shows the parameters used in the present
calculations. The only external parameter chosen “by hands”
is the number of nonrelativistic configurations. The values of
other parameters are calculated. For example, one nonrela-
tivistic configuration 7s26d2 corresponds to three relativistic
configurations: 7s26d2

3/2, 7s26d3/26d5/2, and 7s26d2
5/2. The to-

tal number of states included in the calculations, N1 + N2, also
varies with J p being about 106.

C. Calculation of hyperfine structure

To calculate hfs, we use the time-dependent Hartree-Fock
(TDHF) method, which is equivalent to the well-known
random-phase approximation (RPA). The RPA equations are
the following:

(ĤRHF − εc)δψc = −(
f̂ + δV f

core

)
ψc, (10)

where f̂ is an operator of an external field (an external electric
field, nuclear magnetic dipole, or electric quadrupole fields).
Index c in (10) numerates states in the core, ψc is a single-
electron wave function of the state c in the core, δψc is the
correction to this wave function caused by an external field,
and δV f

core is the correction to the self-consistent RHF potential
caused by changing of all core states. The nucleus is assumed
to be a sphere with a uniform distribution of the nuclear
electric quadrupole moment and the nuclear magnetic dipole
moment. Equation (10) is solved self-consistently for all states
in the core. As a result, an effective operator of the interaction
of valence electrons with an external field is constructed as
f̂ + δV f

core. The energy shift of a many-electron state a, which
is a solution of the CI equations [Eq. (2)], is given by

δεa = 〈a|
M∑

i=1

(
f̂ + δV f

core

)
i
|a〉. (11)

When the wave function for the valence electrons comes as a
solution of Eq. (9), Eq. (11) is reduced to

δεa =
∑

i j

xix j〈	i|Ĥhfs|	 j〉, (12)

where Ĥhfs = ∑M
i=1( f̂ + δV f

core )i. For better accuracy of the
results, the full expansion (7) might be used. Then it is conve-
nient to introduce a new vector Z , which contains both X and
Y , Z ≡ {X,Y }. Note that the solution of (9) is normalized by
the condition

∑
i x2

i = 1. The normalization condition for the
total wave function (7) is different,

∑
i x2

i + ∑
j y2

j ≡ ∑
i z2

i =
1. Therefore, when X is found from (9), and Y is found from
(8), both vectors should be renormalized. Then the hfs matrix
element is given by the expression, which is similar to (12)
but has many more terms,

δεa =
∑

i j

ziz j〈	i|Ĥhfs|	 j〉. (13)

In the case of one external electron, the calculations can
also be done using the BO,

δεv = 〈
v
∣∣ f̂ + δV f

core

∣∣v〉
. (14)

Here v stands for a solution of Eq. (5). Energy shifts (11) and
(14) are used to calculate hfs constants A and B using textbook
formulas:

Aa = gIδε
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (15)

and

Ba = −2Qδε (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (16)

Here δε (A)
a is the energy shift (11) or (14) caused by the inter-

action of atomic electrons with the nuclear magnetic moment
μ, gI = μ/I , I is nuclear spin; δε (B)

a is the energy shift (11)
or (14) caused by the interaction of atomic electrons with the
nuclear electric quadrupole moment Q [Q in (16) is measured
in barns].
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FIG. 2. Sample SR diagrams corresponding to the first diagram
in Fig. 1. The cross stands for the hfs operator. It goes to all internal
lines of all four diagrams for the �1 operator.

D. Further corrections to the hyperfine structure

Using Eq. (12) is the fastest way of calculating hfs for
many-electron atoms. Sometimes it gives pretty accurate re-
sults, within ∼10% of the experimental values. This is usually
the case when the hfs comes mostly from contributions of the
s and p states. In our case, the contribution of the s states is
suppressed because, in the leading configurations (6s25d2 and
6s25d6p), the 6s electrons are from the closed subshell and do
not contribute to the hfs. This means that further corrections to
the hfs matrix elements should be considered. Equation (12)
can still be used to identify states with large hfs. The accuracy
of the calculations is likely to be higher for such states. This
is because the small value of the hfs often comes as a result of
strong cancellations between different contributions leading
to poor accuracy of the results.

There are at least three classes of the higher-order cor-
rections to the hfs matrix elements: (a) Contribution of the
higher states (HS). This is the difference between (13) and
(12). (b) Corrections to the single-electron matrix elements
caused by the correlation operator �1. This includes the struc-
ture radiation (SR) when the hfs operator is inside of the
�1 operator (see Fig. 2) and the self-energy correction when
the hfs operator is outside of the �1 operator (see Fig. 3)
(see also [20,21]). (c) Two-particle correction [20,21], which
is a correction to the Coulomb interaction between valence
electrons caused by the hfs interaction (see Fig. 4).

To study the corrections to the single-electron matrix el-
ements, it is convenient to have a system with one external
electron above closed shells where experimental data are
available for a range of valence states. The 135Ba+ ion is a
good example of such a system. Table II presents a com-
parison with the measured magnetic dipole hfs constants of
135Ba+, calculated in different approximations. The RHF (rel-
ativistic Hartree-Fock) column corresponds to using Eq. (14)
in which the valence state |v〉 is a Hartree-Fock orbital and
the core polarization correction δV f

core is absent. In the RPA
column the CP correction is added, BORPA corresponds to
using the BO in (14), and the BORPA rescaled is the same
but the BO calculated with rescaled correlation operator λ�1;
the rescaling parameter λ is chosen to fit the experimental
energies. The SR column is the structure radiation (Fig. 2),
and the total column is the sum of the previous two columns.

FIG. 3. Self-energy diagrams. The cross stands for the hfs oper-
ator, and the black box stands for the correlation operator �1 (see
Fig. 1).

FIG. 4. Two-particle correction to the many-electron matrix ele-
ment of the hfs interaction. The cross stands for the hfs operator, and
the dashed line is the Coulomb interaction.

The last column presents the experimental hfs constants from
Ref. [22,23]. The table shows that all considered corrections
are important, and including them all leads to accurate re-
sults in most cases. Therefore, all these corrections should
be included in the calculations for many-electron atoms via
correcting single-electron matrix elements. The inclusion of
the CP and SR corrections is straightforward, but the inclusion
of correlations like in the BO needs some clarification. The
CI Hamiltonian (3) does include the correlation operator �1

leading to the mixing of the states above the core and forming
orbitals similar to BO. No core states are involved in this
mixing. On the other hand, the BO found by solving Eq. (5)
can be written in the first order of �1 as

ψBO
v =

∑
i

|i〉 〈i|�1|v〉
Ev − Ei

. (17)

Here summation goes over the complete set of the single-
electron Hartree-Fock states, including states in the core. The
self-energy (SE) terms (Fig. 3) are needed to account for this
missed summation over the core states in the CI calculations.
Table II shows that the considered approximation gives very
accurate results for the hfs of the s and p state, while the
results for the d states are less accurate. Furthermore, the
relative difference between theory and experiment for d3/2

states is about two times smaller than for the d5/2 states.
This means that while considering the hfs of many-electron
atoms in which the values of the hfs constants come mostly
from the contribution of the d states (like Hf and Rf), it is
preferable to consider states in which the contribution of the

TABLE II. Magnetic dipole hfs constants of 135Ba+ (MHz) cal-
culated in different approximations.

State RHF RPA BORPA BORPA SR Total Expt.
rescaled [22,23]

6s1/2 2603 3090 3815 3654 −63 3591 3593
6p1/2 440 530 691 659 5 664 665
6p3/2 64 105 134 129 −16 113 113
5d3/2 115 133 165 161 27 188 170
5d5/2 46 −50 −47 −48 35 −13 −10.7

052811-4



THEORETICAL STUDY OF THE ELECTRONIC STRUCTURE … PHYSICAL REVIEW A 104, 052811 (2021)

d3/2 states dominates over the contribution of the d5/2 states.
The accuracy of the calculations is likely to be higher for these
states. To identify such states, we need to do the analysis of
the partial contributions to the hfs of the many-electron atoms.
We will further discuss the matter in Sec. III B.

III. RESULTS

A. Energy levels of Hf, Rf, and their ions

Calculated energy levels of Hf and its first three ions are
presented in Table III and are compared with the experiment.
Good agreement between the sets of data indicates that ap-
plied approximation is sufficiently accurate to proceed to the
calculations of the hyperfine structure. Energy levels of Hf and
Hf+ were calculated before (see, e.g., [13] for Hf and [24] for
Hf+). We do not make a direct comparison between the results
because to assess the accuracy of the method, it is sufficient to
compare the result with the experiment. However, it is useful
to understand the reasons for some differences in our results
with the results of previous calculations of Ref. [13]. Some
energy levels calculated in [13] are closer to the experiment
than in the present work (e.g., low energy states); others (e.g.,
some high energy states) are closer to the experiment in our
present work. The main reason for the differences is the use of
the different versions of the CI+SD method. The method of
Ref. [25] was used in Ref. [13], while in the present work, we
use the method of Ref. [14]. Another reason for the differences
comes from the fact that in the present work we do not include
radiative corrections. This is because we focus mostly on
the hyperfine structure. However, the method of inclusion of
the radiative corrections developed in Ref. [26] and used in
Ref. [13] is applicable for the energy levels and transition
amplitudes but not applicable for the singular operators like
the operators of hfs. Finally, in the present work, we use the
CIPT technique to get a huge gain in sensitivity while making
some sacrifices in accuracy (see Sec. II B for details). This
approach was not used in previous works, and this is another
reason for some differences in the results.

Calculated energy levels of Rf and its first three ions are
presented in Table IV and compared with other calculations.
Energy levels of neutral Rf were calculated in a number of
earlier works [11–13,27], and energy levels of Rf+ were cal-
culated in Refs. [11,13]; only the ionization potential (IP) of
Rf III and Rf IV were reported before [13,27,28]. The origin
of the differences in the energies of Rf in our present work and
earlier work of Ref. [13] is the same as for Hf; see discussion
above.

As can be seen from the table, the results of the present
calculations for Rf and Rf+ are in excellent agreement with
previous studies; the difference between the energies of earlier
works and present results for Rf is within 300 cm−1 for a
majority of energy levels, and it is up to ∼1000 cm−1 for some
states. The difference for Rf+ is within ∼2000 cm−1, and for
some states it is significantly smaller.

The ionization potentials for Rf III and Rf IV have been
calculated, and the results obtained are 192 367 cm−1 and
257 396 cm−1, respectively. Those results are compared with
experiment and other theoretical studies. In Ref. [28], the
measured results achieved for the IP are 191 960 cm−1 and
257 290 cm−1 for Rf III and Rf IV, respectively; and in

TABLE III. Excitation energies (E , cm−1) for some low states of
Hf I, Hf II, Hf III, and Hf IV.

Present Expt.
No. Conf. Term J (CI+SD)

Hf I [29]
1 5d26s2 3F 2 0 0
2 5d26s2 3F 3 2114 2356.68
3 5d26s2 3F 4 4148 4567.64
4 5d26s2 1D 2 4799 5638.62
5 5d26s2 3P 1 5063 6572.54
6 5d26s2 3P 2 9026 8983.75
7 5d6s26p 1Do 2 10 634 10 508.88
8 5d26s2 1G 4 10 402 10 532.55
9 5d6s26p 3Do 1 14 042 14 017.81
10 5d36s 5F 1 12 469 14 092.26
11 5d6s26p 3F o 2 14 092 14 435.12
12 5d6s26p 3F o 3 14 545 14 541.66
13 5d36s 5F 2 12 625 14 740.67
14 5d36s 5F 3 13 181 15 673.32
15 5d6s26p 3Do 2 15 706 16 163.35
16 5d36s 5F 4 14 050 16 766.60
17 5d26s6p 5Go 2 18 234 18 011.04
18 5d6s26p 3Po 1 17 969 18 143.39
19 5d6s26p 3F o 4 16 485 18 224.97
20 5d6s26p 3Do 3 17 824 18 381.50
21 5d26s6p 5Go 3 19 148 19 292.68
22 5d6s26p 3Po 2 19 490 19 791.29
23 5d36s 5P 1 18 363 20 784.87
24 5d36s 5P 2 19 085 20 908.43

Hf II [29]
1 5d6s2 2D 3/2 0 0
2 5d6s2 2D 5/2 3054 3050.88
3 5d26s 4F 3/2 3578 3644.65
4 5d26s 4F 5/2 4312 4904.85
5 5d26s 4F 7/2 5330 6344.34
6 5d26s 4F 9/2 8039 8361.76
7 5d26s 4P 1/2 11 675 11 951.70
8 5d26s 2F 5/2 11 783 12 070.46
9 5d26s 4P 3/2 11 781 12 920.94
10 5d26s 4P 5/2 12 581 13 485.56
11 5d26s 4D 3/2 13 836 14 359.42
12 5d26s 2F 7/2 14 410 15 084.26
13 5d6s6p 4F o 3/2 28 580 28 068.79
14 5d6s6p 4Do 1/2 29 249 29 160.04
15 5d6s6p 4F o 5/2 29 759 29 405.12
16 5d6s6p 4Do 3/2 31 903 31 784.16

Hf III [30]
1 5d2 3F 2 0 0
2 5d6s 3D 2 2572 3039.7
3 5d2 3F 3 1944 3288.7
4 5d2 1D 2 5212 5716
5 5d2 3F 4 5598 6095.1
6 5d6s 3D 3 6443 6881.6
7 5d2 3P 2 11 909 12 493.2

Hf IV [30]
1 4 f 145d 2D 3/2 0 0
2 4 f 145d 2D 5/2 4721 4692
3 4 f 146s 2S 1/2 17 530 18 380
4 4 f 146p 2Po 1/2 66 611 67 039
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TABLE III. (Continued.)

Present Expt.
No. Conf. Term J (CI+SD)

5 4 f 146p 2Po 3/2 76 232 76 614
6 4 f 147s 2S 1/2 140 329 140 226

Ref. [27], the calculated results obtained are 192 301 cm−1

and 257 073 cm−1, respectively. All these values are in excel-
lent agreement with the results of the present work. For Rf
III, the difference is just 407 cm−1 compared with [28] and
66 cm−1 compared with [27]; and for Rf IV, the variation is
just 106 cm−1 compared with [28] and 323 cm−1 compared
with [27]. This is well inside of the error bars of this work.

Comparison of the spectra of Rf and its ions (Table IV)
with the spectra of Hf and its ions (Table III) show many

TABLE IV. Excitation energies (E , cm−1) for some low states of
Rf I, Rf II, Rf III, and Rf IV.

Present Other Cal.

No. Conf. Term J (CI+SD)

Rf I [11] [12] [13]
1 7s26d2 3F 2 0 0 0 0
2 7s27p6d 3F o 2 2737 2210 3923 2547
3 7s26d2 3F 3 4259 4855 4869 4904
4 7s26d2 3P 2 6873 7542 8704 7398
5 7s26d2 3P 1 7502 8776 10 051 8348
6 7s26d2 3F 4 7836 7542 8597 8625
7 7s27p6d 3Do 1 8028 8373 9201 8288
8 7s27p6d 3Do 2 11 235 10 905 12 889 11 273
9 7s27p6d 3F o 3 11 328 11 905 12 953 11 390
10 7s27p6d 1Do 2 13 811 − − 14 403
11 7s26d2 1D 2 13 841 − − 13 630
12 7s26d2 1G 4 14 040 − − 14 476
13 7s27p6d 3Po 1 16 017 − − 16 551
14 7s27p6d 3Do 3 17 367 − − 18 029
15 7s27p6d 3F o 4 19 979 − − 20 477
16 7s6d27p 5Go 2 20 371 − − 20 347
17 7s6d3 5F 1 20 626 − − 21 552
18 7s27p6d 3Po 2 21 031 − − 21 480
19 7s6d3 5F 2 21 512 − − 23 079
20 7s6d27p 5Go 3 22 941 − − 23 325
21 7s6d3 5F 3 23 002 − − 25 432
22 7s27p6d 1F o 3 23 965 − − 24 634
23 7s6d3 5F 4 25 231 − − −
24 7s6d27p 5F o 1 25 821 − − −

Rf II [11] [24]
1 7s26d 2D 3/2 0 0 0 −
2 7s26d 2D 5/2 7026 7444 5680 −
3 7s6d2 4F 3/2 15 030 − 15 678 −
4 7s6d2 4F 5/2 16 817 − 17 392 −
5 7s27p 2Po 1/2 19 050 19 390 16 657 −
6 7s6d2 4P 1/2 23 701 − 24 615 −
7 7s6d2 4D 5/2 25 392 − 26 565 −
8 7s6d2 4P 3/2 25 561 − 26 648 −
9 7s6d2 4D 3/2 28 940 − 29 983 −

TABLE IV. (Continued.)

Present Other Cal.

No. Conf. Term J (CI+SD)

10 7s7p6d 4F o 3/2 30 264 − 27 846 −
11 7s6d2 2P 1/2 31 238 − 32 550 −
12 7s7p6d 4F o 5/2 33 320 − 31 031 −
13 7s27p 2Po 3/2 33 621 35 513 31 241 −
14 7s7p6d 4Do 1/2 37 378 − 36 156 −
15 7s7p6d 2Po 3/2 40 015 − 38 814 −
16 7s7p6d 4Do 5/2 40 640 − 42 410 −

Rf III
1 7s2 1S 0 0 − − −
2 7s6d 3D 1 8526 − − −
3 7s6d 3D 2 9945 − − −
4 7s6d 3D 3 16 878 − − −
5 7s6d 1D 2 19 165 − − −
6 6d2 3F 2 24 371 − − −
7 6d2 3F 3 28 326 − − −

Rf IV
1 5 f 147s 2S 1/2 0 − − −
2 5 f 146d 2D 3/2 3892 − − −
3 5 f 146d 2D 5/2 13 559 − − −
4 5 f 147p 2Po 1/2 50 770 − − −
5 5 f 147p 2Po 3/2 75 719 − − −
6 5 f 148s 2S 1/2 12 7703 − − −

similarities and some differences. The most prominent differ-
ence is the difference in the ground-state configurations of the
double and triple ionized ions. This difference comes from the
relativistic effects, which pull s electrons closer to the nucleus,
reversing the order of the 7s and 6d states of the Rf ions on
the energy scale compared to the 6s and 5d states of the Hf
ions.

B. Hyperfine structure of Hf I and Hf II

As it was discussed in Sec. II D, calculation of the hfs in
cases when d states are involved often leads to poor accuracy
of the results. This is because the density of the d states in the
vicinity of the nucleus is negligible, and all values of the hfs
constants come from higher-order corrections, which include
mixing with s states. If leading higher-order corrections are
included, then the accuracy for some states might be suffi-
ciently good. It is important to have a way of recognizing such
states. Then we would be able to recommend which states
of Rf or its ions should be used to extract nuclear moments
from the comparison of the measured and calculated hfs. It
was suggested in Sec. II D to study partial contributions to the
hfs matrix elements. It is also important to study the relative
values of the higher-order corrections. In this section, we per-
form such a study for magnetic dipole and electric quadrupole
hfs constants of Hf and Hf+ for the states where experimental
data are available. Table V shows leading and higher-order
contributions to the magnetic dipole hfs constants A for five
even and two odd states of Hf. Table VI shows partial wave
contributions to the same A constants of the seven states of Hf;
leading and higher-order contributions to the magnetic dipole
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TABLE V. Contributions to the magnetic dipole hfs constants of 179Hf (MHz). The CI values correspond to formula (12); HS is the
difference between (13) and (12); SR is structure radiation (Fig. 2); SE is self-energy corrections (Fig. 3); TP is two-particle correction
(Fig. 4). The Sum line contains the sums of all single-particle contributions (CI,HS,SR,SE). The Total line contains also TP contributions. The
Final line contains error bars calculated according to (18). Experimental values are taken from [31–33].

3F2
3F3

3F4
1D2

3P2
3Do

2
5Go

2

CI −82.18 −35.24 −16.04 −32.38 −41.36 −42.18 191.16
HS 15.34 5.70 2.90 14.29 15.24 12.22 −52.21
SR −13.08 −16.19 −19.67 −18.35 −13.87 −16.88 −17.80
SE −0.90 1.70 2.66 3.13 3.28 2.50 −13.30
Sum −80.82 −44.03 −30.15 −33.31 −36.71 −44.34 107.85
TP 11.33 −8.18 −12.69 −19.34 −25.55 −4.92 37.17
Total −69.49 −52.21 −42.84 −52.65 −62.26 −49.26 145.02
Final −69(7) −52(9) −42(9) −52(9) −62(14) −49(6) 145(33)
Expt. −71.43 −50.81 −43.46 −47.68 −44.7 −46.93 128.74

hfs constants A for five even and two odd states of Hf are taken
into account. Tables VII and VIII show similar data for the
electric quadrupole hfs constant B.

Studying Tables V, VI, VII, VIII, as well as Table II reveal
that accurate calculated values of the hfs constants are likely
to be found for the states which satisfy three conditions:
• The value of the hfs constant is relatively large.
• There is no strong cancellation between different

contributions.
• The value of the hfs constant is dominated by partial contri-

butions from the low angular momentum states.
As one can see, only magnetic dipole hfs of the ground

state of Hf fully satisfies these conditions. The difference
between theory and experiment, in this case, is about 3%. In
all other cases, including the electric quadrupole hfs constant
of the ground state, there is a large contribution from the 4d5/2

channel. However, the accuracy of the results is reasonably
good for both types of the hfs constants for some other states
as well. This means that the conditions above are rather most
favorable than necessary conditions. On the other hand, all
cases with poor results can be explained by strong cancellation
between different contributions and a large contribution from
the d5/2 partial wave.

Studying Tables II, V, VI, VII, and VIII also allows one
to find a way of a rough estimation of the uncertainty of the

calculations and assign specific error bars to all theoretical
results. Dominating contribution to the error usually comes
from the contributions of the d3/2 and d5/2 partial waves. The
data in Table II shows that the error for the d3/2 contribution
is about 10%, while the error for the d5/2 contribution is about
20%. The contribution of the other partial waves to the error
budget can be neglected because of either a small error (s and
p waves) or a small contribution. It is natural to assume that
the accuracy of the nondiagonal and two-particle contribu-
tions is also ∼10% since both these contributions have matrix
elements with d states. Then the total error for a state a can be
calculated as

σa =
√

σ 2
an.d.

+ σ 2
ad3/2

+ σ 2
ad5/2

+ σ 2
aT P, (18)

where σan.d. = δan.d./10, σad3/2 = δad3/2/10, σad5/2 = δad5/2/5,
σT P = δT P/10. Here δ stands for a particular contribution.
The values of δ can be found in Tables V, VI, VII, and VIII.
Error bars for the hfs constants of Hf, calculated using (18),
are presented in Tables V and VII. One can see that in many
cases, estimated error bars are larger than the actual differ-
ence between theory and experiment. However, in some cases
of externally strong cancellations between different contribu-
tions, the estimated error bars are smaller than the difference
between theory and experiment. This probably means that
such states should be excluded from the consideration.

TABLE VI. Contributions of different partial waves into the magnetic dipole hfs constants of 179Hf (MHz). The n.d. stands for nondiagonal
contributions, which include s1/2 − d3/2, p1/2 − p3/2, d3/2 − d5/2, etc., contributions. The TP terms are not included.

3F2
3F3

3F4
1D2

3P2
3Do

2
5Go

2

n.d. −37.22 0.37 23.34 27.19 8.46 −6.52 −64.55
s1/2 18.89 −5.31 −12.34 23.69 27.71 12.46 −206.51
p1/2 0.42 0.28 0.12 0.24 0.32 −31.63 58.40
p3/2 0.38 0.16 0.10 −1.09 −0.31 1.94 3.61
d3/2 -75.17 5.78 5.60 −46.41 −2.95 −41.13 177.65
d5/2 7.92 −44.32 −44.20 −36.97 −69.08 20.59 137.18
f5/2 2.58 0.25 −0.57 −0.27 −0.24 0.09 1.45
f7/2 0.92 −1.01 −1.75 −0.62 −0.45 0.04 0.25
g7/2 0.36 0.03 −0.11 0.04 0.01 −0.06 0.35
g9/2 0.12 −0.27 0.36 −0.11 −0.18 0.03 0.01

Total −80.82 −44.03 −30.15 -33.31 −36.71 -44.34 107.85
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TABLE VII. Contributions to the electric quadrupole hfs constants of 179Hf (MHz). The meaning of the contribution titles are the same as
in Table V. Experimental values are taken from [31–33]. Experimental values are rounded to the last digit before decimal point. More accurate
numbers together with error bars can be found in Refs. [31–33].

3F2
3F3

3F4
1D2

3P2
3Do

2
5Go

2

CI 708 921 1972 −1107 −1358 153 2455
HS −108 −193 −274 153 252 −155 −310
SR 130 49 33 −115 −52 99 162
SE 4 −12 −48 9 19 −11 7
Sum 734 765 1683 −1060 −1139 86 2314
TP −2 17 57 −0.63 −22 28 80
Final 731 783 1740 −1061 −1162 114 2394
Error bar (43) (144) (725) (178) (243) (215) (143)

Expt. 706 931 1619 −905 −1364 740 2802

We found experimental data on the hfs of Hf+ for only
two states, the ground state 5d6s2 2D3/2, and the excited odd
state 5d6s6p 4F o

5/2 [34]. Calculated contributions to the hfs of
these states are presented in Table IX for the magnetic dipole
hfs and Table X for the electric quadrupole hfs. One can see
from Table IX that calculated A hfs constant of the ground
state is consistent with zero due to strong cancellation between
different contributions. On the other hand, the accuracy of
the result for the excited state is high; the difference between
theory and experiment is about 3%. This state satisfies all
“most favorable” conditions discussed above.

For the electric quadrupole hfs constant B, the situation is
opposite (see Table X); the accuracy is high for the ground
state, and it is not so high for the excited state. The latter can
be explained by strong cancellation between the nondiagonal
contributions and the contributions from the d3/2 partial wave.

C. Hyperfine structure of Rf I and Rf II

Hyperfine structure constants A and B calculated for se-
lected states of Rf I and Rf II are presented in Table XI. We
have calculated the hfs only for the ground state and for the
low-lying states of opposite parity, which are connected to
the ground state by electric dipole transitions. The frequencies
of these transitions, together with the hyperfine structure, are
likely to be measured first. The same method of calculations

TABLE VIII. Contributions of different partial waves into the
electric quadrupole hfs constants of 179Hf (MHz). The n.d. stands
for nondiagonal contributions, which include s1/2 − d3/2, p1/2 − p3/2,
d3/2 − d5/2, etc., contributions. The TP terms are not included.

3F2
3F3

3F4
1D2

3P2
3Do

2
5Go

2

n.d. 865 −125 −1819 −454 144 −1117 2525
p3/2 −5 7 26 31 −7 44 125
d3/2 70 159 −274 294 −37 108 −19
d5/2 −206 715 3623 −875 −1215 1041 −340
f5/2 39 281 117 418 43 24 54
f7/2 −56 −273 −26 −464 −80 −17 −51
g7/2 35 48 58 77 36 0 28
g9/2 −10 −48 −22 −87 −22 3 −8

Sum 732 765 1682 −1059 −1139 86 2314

and the same analysis of the partial contributions and error
bars were used for Rf I and Rf II as for Hf I and Hf II
(see the previous section). We do not present tables of partial
contributions for Rf I and Rf II to avoid overloading the paper
with technical details. Only final results, together with the
error bars, are presented in Table XI. As in the case of Hf I
and Hf II the actual error of the calculations might be sig-
nificantly smaller than the estimated uncertainties. Note that
strong relativistic effects also pull the 7s and 7p1/2 electrons
of Rf closer to the nucleus, enhancing their contribution to
the hyperfine structure. This might be another reason for the
higher accuracy of the calculation for Rf I and Rf II compared
to what we had for Hf I and Hf II.

IV. CONCLUSION

In this paper, the energy levels and the hyperfine structure
constants A and B for low-lying states of the Rf atom and
ions were calculated. Energy levels were calculated for Rf I,
Rf II, Rf III, and Rf IV, while hyperfine structure constants
were calculated for Rf I and Rf II. Similar calculations were
performed for the lighter analog of Rf, the Hf atom, and its
ions to control the accuracy of the calculations. Present results
are in good agreement with other calculations and previous
measurements where the data are available. The way of esti-
mation of the uncertainty of the hfs calculations is suggested.
For the majority of the states, the uncertainty is within 10%.

TABLE IX. Contributions into the magnetic dipole hfs constants
of the 2D3/2 and 4F o

5/2 states of the 179Hf+ ion (MHz). Experimental
values are taken from [34].

2D3/2
4F o

5/2
2D3/2

4F o
5/2

n.d. 30.66 19.71
CI+HS 2.11 −521.50 s1/2 −23.63 105.68
SR −28.38 −0.02 p1/2 −0.68 38.61
SE −1.79 23.80 p3/2 1.09 1.57
Sum −28.06 −497.72 d3/2 −64.44 −667.02
TP 24.06 −58.25 d5/2 27.67 4.72
Total −4.00 −555.97 f5/2 1.06 −0.89
Final −4(9) −556(67) f7/2 0.07 0.00

Expt. −17.5(0.9) −540(2) Total −28.06 −497.71
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TABLE X. Contributions into the electric quadrupole hfs con-
stants of the 2D3/2 and 4F o

5/2 states of the 179Hf+ ion (MHz).
Experimental values are taken from [34].

2D3/2
4F o

5/2
2D3/2

4F o
5/2

n.d. −342 −3228
CI+HS 1780 −897 p3/2 6 −36
SR 63 51 d3/2 2071 2301
SE −32 -35 d5/2 −9 42
Sum 1811 −881 f5/2 34 21
TP 12 −15 f7/2 11 −3
Total 1823 −896 g7/2 40 23
Final 1823(208) −896(281) g9/2 1 −1

Expt. 1928(21) −728(17) Total 1181 −881

The calculated hfs constants of Rf I and Rf II can be used
to extract nuclear magnetic and electric quadrupole moments
from future measurements.
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TABLE XI. Hyperfine structure constants A and B for Rf I and
Rf II. Numeration of states corresponds to Table IV. Error bars are
calculated with the use of Eq. (18).

No. Conf. Term J Energy A/gI B/Q
cm−1 MHz MHz

Rf I
1 7s26d2 3F 2 0 202(108) 271(18)
7 7s27p6d 3Do 1 8028 −2546(386) 716(50)
13 7s27p6d 3Po 1 16017 788(259) −738(109)
24 7s6d27p 5F o 1 25821 −14 460(1177) −283(14)
2 7s27p6d 3F o 2 2737 3185(485) 963(102)
8 7s27p6d 3Do 2 11 235 −423(418) 446(129)
10 7s27p6d 1Do 2 13 811 −40(150) 578(37)
9 7s27p6d 3F o 3 11 328 3229(423) 1015(162)
14 7s27p6d 3Do 3 17 367 939(273) 1139(217)
20 7s6d27p 5Go 3 22941 5245(711) 776(54)

Rf II
1 7s26d 2D 3/2 0 −190(137) 1448(130)
5 7s27p 2Po 1/2 19 050 12 960(280) 0
14 7s7p6d 4Do 1/2 37 378 −21 730(2636) 0
13 7s27p 2Po 3/2 33 621 −7798(849) 2078(113)
15 7s7p6d 2Po 3/2 40 015 7193(937) 1414(28)
10 7s7p6d 4F o 3/2 30 264 9650(984) 1374(43)
12 7s7p6d 4F o 5/2 33 320 15 810(1828) 417(141)
16 7s7p6d 4Do 5/2 40 640 7582(1532) 1421(259)
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