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Ab initio calculations of the spectrum of lawrencium
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We present high-accuracy relativistic investigations of the spectrum of Lr, element 103, prompted by the
planned optical spectroscopy experiments on this rare and short-lived atom. Reliable predictions of the tran-
sition lines are important for the planning and success of these challenging measurements. The relativistic
coupled cluster approach was used to calculate the energies of lowest excited states, while the combination
of configuration-interaction method with the many-body perturbation theory was employed to address the
higher-lying states and to obtain the transition strengths and the lifetimes of the levels of experimental interest.
We performed similar calculations for Lu, the lighter homologue of Lr, where experimental data are available.
For the lighter element, both the calculated energies and the Einstein coefficients are in excellent agreement with
the previously measured values, confirming the accuracy of the performed calculations and the reliability of our

predictions for Lr.
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I. INTRODUCTION

Optical spectroscopy of the heaviest elements can pro-
vide us with a wealth of information across various research
disciplines. Such studies probe the atomic configuration and
electronic structure of these atoms and give an insight into
the trends in these properties, which are strongly affected by
the relativistic effects [1-3]. Predictions of chemical behav-
ior and material properties can also be derived from such
spectroscopic studies; this is particularly important for the
transfermium elements (Z > 100), where traditional chemical
studies are presently beyond our reach [4]. Information about
the nuclear spin, moments, and radii can also be extracted
from the measured optical spectra, complementing the nuclear
decay experiments [5]. Spectroscopic data for heavy elements
can also be used for benchmarking the various theoretical
approaches and assessing their predictive power.

While they are both important and interesting, optical
spectroscopy experiments on heaviest elements are also ex-
tremely challenging, due to the low production rates and the
short lifetimes of their study subjects. Thus, alongside the
specially developed ultrafast and very sensitive measurement
techniques, strong theoretical support is important for the
success of these experiments, particularly for narrowing the
search window for the possible transitions. An example of a
recent success story is the measurements of atomic levels, the
hyperfine structure, and the ionization potential of nobelium
[3,5,6]. Theoretical predictions were important both for the
success and for the interpretation of these experiments. Fur-
ther investigations of the atomic in the heaviest elements is
envisaged for the low-energy branch at the upcoming S3 facil-
ity at GANIL, CAEN [7,8]. Here laser ionization spectroscopy
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will be performed in a supersonic effusing gas jet, aiming for
laser spectroscopic investigations of the heaviest elements. In
addition to a search for atomic levels, Sato et al. performed
experimental measurements of the ionization potential of Lr
and the lighter actinide elements [9,10], which were evaluated
with the support of corresponding coupled-cluster and multi-
configurational Dirac-Fock (MCDF) calculations.

A continuation of the experimental level search for heav-
ier elements is planned at the GSI employing the RADRIS
method, which was used for the successful level search in
nobelium [3,11]. First investigations for a laser spectroscopy
with this method in lawrencium have been performed, study-
ing different filament materials [12] to minimize the impact
from surface ions in light of the fact that lawrencium has a
significantly lower first ionization potential. The application
for laser spectroscopy in lawrencium is in any case challenged
by a tenfold reduced production cross section compared with
nobelium [13]. In this context the reliability of theoretical
predictions is important to render any successful level search
possible within a realistic beam time period.

Although there are previous theoretical studies of the elec-
tronic spectrum of Lr, many of them report incomplete spectra
or limited properties. Borschevsky et al. [14] used the rel-
ativistic Fock-space coupled cluster approach to calculate
ionization potentials and energy levels of Lr, but that study
only reported energies for levels which can be reached by
exciting a single electron from the ground-state (7s>7p) con-
figuration. Dzuba er al. [15] report the transition energies and
the g factors of Lr obtained using the configuration-interaction
method combined with the all-order single-double coupled-
cluster technique (CI + all order). MCDF was also employed
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for calculations of both singly and multiply excited states
[16]. However, the estimated uncertainties in those predicted
excitation energies are between 1200 and 2400 cm~!, which is
too large to serve as a guide for precision spectroscopic mea-
surements. Zou and Froese Fischer also carried out MCDF
calculations of the energy levels and transition rates for Lu
and Lr but only calculated the three lowest lying states [17].
The aim of this work is to provide accurate and re-
liable predictions of the level energies and the strengths
of the transitions between these levels in support for the
planned spectroscopy of Lr. The relativistic coupled-cluster
method with single, double, and perturbative triple excita-
tions [RCCSD(T)] corrected for the Breit contributions was
used to calculate the lowest excitation energies following the
scheme presented in Ref. [18]. We also used the configuration-
interaction approach augmented with many-body perturbation
theory (CI + MBPT) to calculate the energies of the higher-
lying levels, alongside the QED contributions, g factors and
the transition rates, and to treat states that cannot be handled
by the coupled cluster approach. In these calculations we
followed the computational scheme presented in Ref. [19].
To facilitate the use of our predictions in the experimental
context we performed extensive computational investigations
that allowed us to set realistic uncertainties on our predictions.
Furthermore, we have benchmarked the accuracy of our cal-
culations by performing analogous calculations for the lighter
homologue Lu, for which experimental values are available.

II. METHODS AND COMPUTATIONAL DETAILS

The two methods we used for the calculations of Lu and
Lr energy levels are complementary. RCCSD(T) has demon-
strated high accuracy in treating heavy atoms and ions, but we
cannot apply this method to treat the states where an electron
is excited from the 75 shell, or states high above the ground
state. These calculations are therefore restricted to the lowest
configurations generated by one-electron excitations of the
valence electron. Thus, this method provides accurate energies
for “single open-shell electron” states (e.g., 75%8s, 7s%6d), but
completely neglects the other states (e.g., 7s7p6d).

Consequently, we employ CI + MBPT (which has no such
limitations on the number of valence electrons) to calculate
the energy levels of these “three open-shell electron” states,
and as independent predictions of the “single open-shell elec-
tron” states. CI + MBPT calculates atomic wave functions
alongside excitation energies, and we thus use this method to
calculate the Lande g factors and the Einstein A coefficients
(which in turn can be used to obtain transition rates and level
lifetimes).

The calculations were performed within the framework of
the projected Dirac-Coulomb-Breit Hamiltonian [20],

Hpcp = Y hp(i)+ Y (1/rij + By). (1)
i i<j
Here, hp is the one-electron Dirac Hamiltonian,
hp(i) = cai - pi + (B — 1) + Vaue (D), 2

where « and B are the four-dimensional Dirac matrices. The
nuclear potential V. accounts for the finite size of the nu-
cleus. In the RCCSD(T) calculations, the Gaussian charge

distribution was used, while in the CI + MBPT calculations
we used the Fermi two-parameter charge distribution model.
The choice of the finite nucleus model was shown to have
negligible effect on the calculated electronic properties [21].
The two-electron term includes the Coulomb term and the
frequency-independent Breit operator,

Bij:_%ij[“i'“j+(ai'rij)(aj'rij)/rizj]v 3)
and is correct to second order in the fine-structure constant
«. In the RCCSD(T) calculations the Breit contribution was
estimated separately and added on top of the obtained results
as a correction, while the CI + MBPT calculations were
carried out using the explicit DCB Hamiltonian.

A. Relativistic coupled-cluster method with single, double,
and perturbative triple excitations

The RCCSD(T) calculations were carried out using the
DIRAC15 program package [22]. We employed the fully un-
contracted correlation-consistent all-electron relativistic basis
sets of Dyall [23]. A high-quality description of the region
removed from the nucleus is important for excitation energies
and we have thus augmented the basis sets with a single
diffuse function for each symmetry block. Finally, we extrap-
olated the excitation energies to the complete basis set (CBS)
limit using the CBS(34) scheme [24]. To achieve optimal
accuracy, all the electrons were correlated, and the virtual
orbitals with energies below 500 a.u. were included.

The contribution of zero-frequency Breit interaction was
calculated within the Fock-space coupled cluster approach
(DCB-FSCCQ), using the Tel Aviv atomic computational pack-
age [25], and added on top of the RCCSD(T) results.

B. Configuration-interaction approach augmented
with many-body perturbation theory

The CI+ MBPT method was first developed to treat
few-valence-electron atoms and ions [26], and as such is well-
suited to the present calculations. In this method the valence
electrons are treated using CI in the potential of the frozen
core, while correlations with the core are treated using MBPT
corrections to the radial integrals in the CI procedure. We
carried out the calculations using the AMBIT atomic structure
software [27]; see also Refs. [28-30] for details of this im-
plementation of the CI + MBPT method. Below we present
details that are specific to the current calculations.

We start with a Dirac-Hartree-Fock (DHF) calculation in
the V¥=! potential, including the closed-shell core plus the rs>
electrons (where n = 6 for Lu and n = 7 for Lr). That is, all
atomic electrons but one are included in the self-consistency
calculations. Our DHF operator includes Breit corrections and
Lamb shift corrections via the radiative potential method [31],
which includes the self-energy [32] and vacuum polarization
[33] contributions.

A large basis of single-particle orbitals, including spectro-
scopic and virtual orbitals, is generated by diagonalizing a
set of B splines over the DHF operator [34-36]. These basis
orbitals are used to construct a set of many-electron configura-
tion state functions (with well-defined angular momentum and
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TABLE 1. Calculated energies of the lowest single-electron states in Lu (cm™!).
RCCSD (T) ABreit AQED Final Expt. [42]
5d6S2 2D3/2 0 0
Ds 2005 19 -39 11 1996 £ 29 1994
65%6p *Pi ) 3699 -97 6 50 3658 £ 183 4136
Py 7287 —264 64 56 7143 + 298 7476
65*7s %812 23598 70 52 79 23799 + 210 24 126

projection) for the CI expansion. We include configurations
formed by allowing all single and double excitations from the
ground states (65%5d and 757 p for Lu and L, respectively),
up to 22spdfg (i.e., excitations to orbitals with n < 22, and
0<l<4).

To reduce the size of the CI matrix and the computational
load we employ the emu CI method [27,30], which exploits
the fact that the wave functions of interest are typically dom-
inated by contributions from a subset Ngn,; of low-lying
configurations. Off-diagonal matrix elements that do not in-
volve at least one of these important configurations have a
small effect on the eigenstates of interest and so are set to
zero without significant loss of accuracy [30,37]. For both
Lr and Lu we restrict the set of dominant configurations to
those generated by taking single excitations up to 22spdfg and
single and double excitations up to 12spdfg; further increasing
Ngman changes the energy levels by an average of 6 cm™!.
In both systems, increasing the basis size beyond 22spdfg
changes the energy by ~1 cm™!, indicating that the valence
Cl is well converged.

Core-valence correlations are included up to second order
in the residual Coulomb interaction via the diagrammatic
MBPT technique described in Refs. [26,28]. We have included
all one- and two-body diagrams with orbitals up to 35spdfgh
(n <35, 0 <1 <5). Since our DHF includes two valence
electrons, we must include subtraction diagrams in our MBPT
procedure. See Refs. [27,38] and references therein for a dis-
cussion of the role of subtraction diagrams in CI + MBPT
calculations. Small-scale CI + MBPT calculations showed
that the choice of VV~! potential produces closer agreement to
experimental Lu energies than other alternatives. The MBPT
corrections rapidly converge as more partial waves are added,
and adding orbitals with [ > 6 to the MBPT basis changes the
energy by an average of 108 cm ™!,

The Landé g factors and transition matrix elements are
calculated to first-order in perturbation theory using the
complete correlated CI + MBPT wave function. Transition
lifetimes and branching ratios are derived from these matrix
elements. In the CI+ MBPT theory, core-valence correla-

tions will modify the transition matrix elements. In principle,
the resulting effective operators may be approximated by
including higher-order corrections such as random-phase ap-
proximation [39-41]. Nevertheless, based on comparisons
with experimentally measured transitions in Lu, we estimate a
precision of 40%. For Lu, the experimental transition energy
was used in the expression for Einstein coefficients, while for
single-electron states of Lr we used the RCCSD(T) results,
and for the three-electron states we used the CI + MBPT
energy values.

III. RESULTS

Table I contains the calculated lowest transition energies
of Lu calculated using RCCSD(T). We separate contributions
due to the Breit and QED effects (the latter obtained from
CI + MBPT calculations with the radiative potential method),
and those due to the perturbative triple excitations [A(7')], and
compare our results with the experimental values. Overall, the
results are in very good agreement with the experiment. The
cumulative effect of (T) and the Breit and QED corrections
is quite modest and for most transitions does not exceed
100 cm~!.

Table II contains the calculated energies of Lr. These re-
sults are in good agreement with the earlier FSCC values, but
the (T) and the QED contributions are more significant in Lr
(and do not cancel each other out), so the present values are
expected to be more accurate. In particular D states are very
sensitive to these contributions (and to the basis set effects),
which affects their values significantly.

An important aim of this work is to set uncertainties on the
predicted transition energies, which we do for Lr by estimat-
ing the order of magnitude of the effects that are not included
in the calculations. The three main remaining sources of error
are the basis set incompleteness, the neglect of higher excita-
tions beyond (T), and the higher-order QED contributions. We
have extrapolated our results to the complete basis set limit
and as the associated error we take the difference between the
CBS result and the singly augmented ae4z (s-aug-ae4z) basis

TABLE II. Calculated energies of the lowest single-electron states in Lr (cm™").

RCCSD A(T) ABreit AQED Final FSCC [14]

7s27p 2P1/2 0 0
6d7s* *Ds) 1562 —416 —125 77 944 + 697 1436
Dss 5382 —344 —175 —54 4809 £ 527 5106
75*Tp Py 8791 —46 -176 8 8677 £ 112 8413
75%8s 2512 20 284 291 -82 40 20533 + 303 20118
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TABLE III. Energy levels of lutetium. The CI + MBPT and RCCSD(T) columns give the energy in cm~! and include the Breit and QED
corrections, the latter of which is also presented separately in the AQED column. Experimental values are from results tabulated in Ref. [43].

Configuration ~ Term J gfactor  gfactor (Expt.) CI+ MBPT (au.) AQED (cm™!) RCCSD(T)(cm~')  Expt. (cm™!)
6s%5d D 3/2 0.80 0.79 0 0
5/2 1.20 1.20 2174 11 1996 1994
6526p P02 0.66 0.66 4361 50 3658 4136
3/2 1.33 1.33 7734 56 7143 7182
5d6s6p w032 045 05 17577 ~70 17 427
5/2 1.06 1.07 18 695 —69 18 505
7/2 1.24 1.22 20 754 —61 20433
9/2 1.33 1.3 23016 —55 22 609
655d> ‘F 3/2 0.41 18 324 —98 18 851
5/2 1.03 1.04 18 943 —-95 19 403
7/2 1.24 19 884 —91 20247
9/2 1.33 21 002 —85 21242
5d6s6p 4p° 1/2 0.04 0.00 20 783 72 20 762
3/2 1.16 1.19 21254 —72 21195
5/2 1.38 1.39 22 359 —65 22222
7/2 1.42 1.41 23720 —63 23524
5d6s6p Do 52 121 1.23 21 663 -7 21462
3/2 0.86 0.87 22 368 —67 22 124
655d> 12 260 21 621 —68 21472
3/2 1.68 1.73 22 618 —-73 22 467
5/2 1.43 22 842 —81 22 802
5d6s6p PO 12 26l 24218 —66 24108
3/2 1.64 1.67 24 469 —65 24 308
5/2 1.51 1.53 25501 —60 25191
65%7s g 1/2 2.02 2.05 24 396 79 23799 24 126
655d? D 3/2 0.85 24 549 —83 24 518
5/2 1.13 24 764 —98 24711
6s5d> F 5/2 1.09 1.6 25999 -92 25 861
7/2 1.06 26 691 —106 26 570
9/2 1.11 27 822 —-90 26 671
5d6s6p b 5/2 0.89 0.88 28 194 —83 28 020
7/2 1.14 29 897 —-79 29 487

set values which is 50-500 cm~!, depending on the transition.
We assume that the effect of the higher excitations should
not exceed the (T) contribution of 50-300 cm~!, and that the
error due to the incomplete treatment of the QED effects is
not larger than the vacuum polarization and the self-energy
contributions themselves. Note that the effect of finite nuclear
size is large in Lr, of the same order as the QED contribution.
However, there is little uncertainty associated with this since
the nuclear size can be estimated with enough accuracy.

Combining the above sources of error and assuming them
to be independent, the total conservative uncertainty estimate
on the calculated transition energies of Lr is given in Table II.
A similar analysis was performed for Lu (Table I); the cal-
culated transition energies generally agree with experiment
within this uncertainty, supporting the validity of the proposed
scheme. Note that, while for Lu the dominating effects con-
tributing to uncertainty are the basis set incompleteness and
the neglect of the higher excitations, for the heavier Lr the
higher-order relativistic effects also become important.

Our CI + MBPT results for Lu (shown in Table III) agree
closely with experimental values from Ref. [43]; the av-
erage disagreement between CI 4+ MBPT and experimental

energy levels is 141(294) cm™' (the number in brackets is the
standard deviation of the difference between theory and exper-
imental energies). We assume similar computational accuracy
for Lr (Table IV) as we obtain for the lighter homologue Lu.
In the absence of experimental data to compare against, we
(conservatively) estimate the uncertainty in our CI + MBPT
energy levels for Lr as the standard deviation of the differ-
ences between theory and experimental energy levels for Lu
(294 cm~!). We also compare our results against previous
calculations from Refs. [14—17], which are presented in Ta-
ble V. Our results are generally in good agreement, except
for the 75%6d D5 level, where both the RCCSD(T) and
CI + MBPT energies are smaller than results from previous
calculations by ~650 cm~!. This difference can be explained
by the inclusion of the perturbative triple excitations in the
present work along with a more precise treatment of the QED
contributions. Both these effects lower the calculated energy.
For both RCCSD(T) and CI + MBPT, we find different
ground states for Lu (6s5%5d) and Lr (7s27p) due to the rel-
ativistic stabilization of the 7p orbital and anticontraction
of the 6d orbital, in agreement with earlier studies [14—17].
Additionally, the 7s%8s level in Lr, which is the main target
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TABLE IV. Energy levels of lawrencium. The CI + MBPT and RCCSD(T) columns give the energy as calculated by the two computational
methods in cm™! and include the Breit and QED corrections, the latter of which (also calculated via the radiative potential method) is also
presented separately in the AQED column. We expect that these levels will have an accuracy similar to that of the CI + MBPT results for Lu,
so we (conservatively) estimate the uncertainty in our CI + MBPT energy levels for Lr as the standard deviation of the differences between
theory and experimental energy levels for Lu, which is &~ & 300 cm~!.

Configuration Term J gfactor CI+MBPT(cm™')  AQED (cm™')  RCCSD(T)(cm™!) Lifetime (s)
75*7p 2p0 1/2 0.67 0 0
3/2 1.33 8606 8 8677 1.79 x 107
7s%6d D 3/2 0.80 712 =77 944 3.69 x 107
5/2 1.20 5252 —54 4809 0.25
75%8s 5 1/2 2.00 20 485 40 20 533 1.456 x 1078
757 pbd 4o 3/2 0.48 20 985 —189 1.10 x 1077
5/2 1.07 23289 —188 5.89 x 1078
7/2 1.25 28 574 —174 2.07 x 1077
9/2 1.33 34758 —169
757 p6d Odd (ambiguous) 1/2 0.44 25 887 -2 3.94 x 1078
757 pbd 4p° 3/2 1.29 26 808 —76 4.89 x 1078
5/2 1.37 28 708 —181 6.86 x 1078
7/2 1.35 33 549 —161 2.87 x 1077
757 p? ip 1/2 2.45 25 381 —131 3.47 x 1078
75642 i 32 043 24742 —151 9.27 x 10~
5/2 1.04 26 165 —49 1.02 x 1073
7/2 1.23 28 290 —222 52 x 107
9/2 1.31 30 754 —-212 1.36 x 1073
7s*7d D 3/2 0.80 28 580 31 1.34 x 1078
5/2 1.20 28 725 —88 1.81 x 1078
75*8p 2p0 1/2 0.39 26 996 —161 1.26 x 1077
3/2 1.30 28 307 —82 6.19 x 1078
75%9s 5 1/2 2.00 30 621 47 4.47 x 1073
7529p 2p0 12 086 32307 —132 7.46 x 10
3/2 1.33 33473 —167 1.12 x 1077
75%6 f 20 5/2 0.86 31755 —167 5.78 x 1078
72 115 32 560 21 5.69 x 107

state in currently planned experiments, is lower in energy orbitals in lawrencium. These orbitals are taken from the
by 24000 cm~! than the analogous 6s°7s level in Lu; again Dirac-Hartree-Fock step of our CI 4 MBPT calculations; the
due to the relativistic contraction and stabilization of the 8s  relativistic orbitals are those we have used throughout the full
orbital. CI + MBPT calculations, while the nonrelativistic orbitals

Figures 1-3 show the effects of relativistic corrections were obtained by setting the fine-structure constant o« — 0 (it
on the radial wave functions of the 7s and 8s, 7p, and 6d

0.40 —— Lr7s - Relativistic: [V|? 0.25 —— Lr 7p - Relativistic: |V|?
% 0357 [y Lr 7s - Nonrelativistic: |W|? % —————— Lr 7p - Nonrelativistic: |W|?
2 0.30 -—— Lr 8s - Relativistic: |¥|? 5 0.20
% 0.25 Lr 8s - Nonrelativistic: |W|? *E
c c 0.15
9] 9]
T 0.20 ©
2 o
= 0.15 2 0.10
S S
2 0.10 o
e 2 0.05
O 0.05 o

0.00 e e 0.00

0 10 20 30 40 50 0 10 20 30 40 50
r (atomic units) r (atomic units)

FIG. 1. Comparison between relativistic and nonrelativistic one- FIG. 2. Comparison between relativistic and nonrelativistic one-

electron particle density |W|? for the 7s and 8s orbital in Lr. electron particle density |W|? for the 7p orbital in Lr.
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TABLE V. Comparison of Lr energy levels with previous calculations. All energies are given in cm™'; energy levels not present in a

particular source are left blank.

Configuration Term J gfactor CI+ MBPT FSCC [14] CI + all order [15] MCDF [16] MCDF [17]
75*7p 2po 1/2 2.01 0 0 0 0 0
3/2 0.80 8606 8413 8495 8138 7807
75%6d D 3/2 0.80 712 1436 1555 1331 1127
5/2 1.20 5252 5106 5423 4187
7528s g 1/2 2.01 20 485 20118 20 253 20 405
757 p6d 40 3/2 0.43 20 985 21288 20 886
5/2 1.20 23289 23530 23155
7/2 1.23 28 574 28 320 27276
9/2 131 34758 34212 32775
757 pbd 0dd (ambiguous)  1/2 2.44 25887 27 904
757 pbd 4po 3/2 0.83 26 808
5/2 1.04 28 708
7/2 0.88 33549
757 p? ‘P 1/2 2.44 25380
756d> va 3/2 0.43 24742 25409
5/2 1.04 26 165 27397
7/2 1.23 28 290
9/2 131 30 754 34 807
75*7d D 3/2 0.83 28 580 28 118
5/2 1.22 28 725 28 385
75*8p 2p0 1/2 2.00 26 996 26 111 25912 25246
3/2 1.61 28 307 27 508 27079 26 902
7529s %g 1/2 2.00 30 621 30119
75*9p 2p0 1/2 221 32307 32295
3/2 0.80 33473 32 840
7526 f 20 5/2 1.37 31755 32 949
7/2 0.92 32560 32950

was not possible within the structure of the AMBIT code to
do a formally nonrelativistic calculation, so the nonrelativistic
orbitals presented here are necessarily an approximation). We
can clearly see the relativistic contraction of the 7s, 8s, and
7p orbitals, which in turn result in the different ordering of
configurations we observe between Lu and Lr. The effect of
relativity on the 6d orbital is less pronounced, as expected.
As a result of the relativistic corrections to the orbitals in
lawrencium, the 7s%8s level has fewer decay channels and thus

©
>

—— Lr 6d - Relativistic: |W|?
------ Lr 6d - Nonrelativistic: |¥|?

©
w

©
=

One-particle density |W(r)|?
o
N

©
o

0 10 20 30 40 50
r (atomic units)

FIG. 3. Comparison between relativistic and nonrelativistic one-
electron particle density |W|? for the 6d orbital in Lr.

a longer lifetime of 1.46 x 1078 s than the 6s5>7s level in Lu,
which has a lifetime of 2.42 x 107 s. The lifetimes of all Lr
levels we have calculated are shown in Table IV. We included
the contributions of the forbidden M1 and E?2 transitions in
the lifetimes of each state, but these have a negligible effect on
the total lifetimes, with the exception of the 75*6d *Ds /2 level.
This level can only decay via the “forbidden” M1 transition to
the 75%6d D5 > level, resulting a significantly longer lifetime
of 0.25 s compared with all other levels in Table I'V.

Table VI shows the Einstein A coefficients (transition prob-
abilities) for the lowest-lying electric dipole (E'1) transitions
in lutetium. The spectra of both Lu and Lr are relatively dense,
so to reduce the size of the tables we have only included Lu
transitions which fulfill two criteria: they must have exper-
imentally derived A coefficients tabulated in Ref. [42], and
at least one state in the transition must be analogous to the
target states in Lr. Our A coefficients are mostly larger than the
experimentally derived values and differ from experimental
results by an average of 40%, although transitions involving
states with J > 2.5 tend to have worse accuracy. The relative
strengths of the different transitions are reproduced and we
can reliably identify the strongest transitions.

We present electric-dipole transition energies and A coef-
ficients between low-lying and target levels of lawrencium
in Table VII, where we expect similar accuracy to the E'1
transitions in Lu. As in Table VI, we have only included
results for the levels which are of experimental interest, as
well as states lower in energy than the experimental targets.
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TABLE VI. Einstein A coefficients for electric-dipole (£'1) transitions in lutetium, as calculated by using CI + MBPT wave functions and
experimental transition energies. We compare our calculated values with experimentally derived A coefficients (Anist) tabulated in Ref. [42].

Upper level Lower level Transition energy (cm™") Actemeer 571 Anist (571
5d6s6p ‘B, 6525d Ds) 17 427 2.54 x 10° 1.73 x 10°
5d6s6p ‘), 6s25d Ds), 15433 9.07 x 10* 7.2 x 10*
5d6s6p ‘B, 6525d D) 18 505 1.81 x 10° 1.20 x 10°
5d6s6p *Fy) 6s%5d Ds) 16 511 1.49 x 10° 9.2 x 10°
5d6s6p ‘DY) 6s25d D) 20 762 1.06 x 10° 9.0 x 10°
5d6s6p ‘DY) 6s25d D) 21195 5.58 x 10* 1.13 x 10°
5d6s6p ‘DY) 6s25d Ds) 19 201 2.57 x 10° 2.5 % 10°
5d6s6p DY), 6s25d D)y 21462 4.01 x 10° 3.15 x 10°
5d6s6p DY, 6s25d Ds), 19 468 1.15 x 107 9.1 x 10°
5d6s6p DY) 6s%5d D3 22125 3.22 x 107 2.26 x 107
5d6s6p DY) 6s25d Dss 20131 7.35 x 10* 33 x10*
5d6s6p ‘DY) 6s%5d D3 22222 3.37 x 10° 1.28 x 10°
5d6s6p ‘DY), 6s25d Ds) 20 228 2.21 x 10° 9.7 x 10°
65°7s 811 6s°6p P, 19990 2.78 x 107 3.20 x 107
65°7s %1/ 6s°6p P, 16 650 4.86 x 107 4.9 x 107
5d6s6p 4Py, 6s%5d D3 24 308 1.07 x 10¢ 43 x 10°
5d6s6p 4P, 6s°5d Ds) 22314 9.13 x 10* 8.8 x 10*
5d6s6p 4py, 6s°5d D) 25192 3.98 x 10° 2.21 x 10°
5d6s6p 4p9, 6s25d Dss 23198 1.22 x 10° 6.6 x 10°
5d6s6p ’Fon 6s%5d Dsp 28 020 1.05 x 108 6.9 x 107
5d6s6p ’F, 6s°5d Dss 26 026 3.52 x 107 2.65 x 107
5d6s6p Fi 6s25d Ds)s 27 493 1.18 x 107 6.4 x 10°
5d6s6p *Fy) 6s25d D) 30 184 1.31 x 108 1.85 x 108
6s%6d D) 6s%6p Py, 24 066 1.70 x 107 1.68 x 107
65s26d Ds) 6s°6p P, 24237 9.08 x 107 8.9 x 107
5d6s6p ’F), 6s25d s, 29 757 2.77 x 108 2.44 x 108
6s°5f ’F), 6525d D) 36 633 1.87 x 107 2.32 x 107
655 f Fi) 6s%5d Ds 34650 2.52 x 107 2.31 x 107

The forbidden M1 and E2 transitions contribute a negligible
amount compared with the dominant E'1 transitions (except
for the aforementioned 7s*6d 2D5/2 level, which can only
decay via M1 transitions), so we have not included them in
the tables.

25800

25600

fon]
525400
K
25200
w000 Lo o0
0 20 40 60 80 100
RI‘/VVSJ (fmz)

FIG. 4. Effect of finite nuclear size on the 7s*7p P{, —
7s7p* *Py), transition energy. Gray points: CI+MBPT calculation;
solid line: linear fit in R2; dashed line: linear fit in R? , showing

usual field shift parametrization which is tangent to solid line at
R.ms = 6 fm (dotted line).

IV. EFFECT OF FINITE NUCLEAR SIZE

All of our calculations use a finite-size nuclear model with
root-mean-square radius R;ps = 6.00 fm. It may be possible in
to extract difference in nuclear charge radii between different
isotopes of Lr by studying the isotope shift. In heavy atoms
the isotope shift of a transition i is dominated by the field shift,
which is usually parametrized by

svt = Fs(R2, )M

rms

4)

where §(R2 )" is the change in mean-square radius between
the isotopes A and A’.
For highly relativistic systems such as Lr, the relationship

is better expressed by (see, e.g., Refs. [44,45])

®)

where y = [1 — (Za)?]'/? ~ 0.66 for Lr. In Fig. 4 we show
CI + MBPT calculations for the 75s>7p 2Pf)/2 — 1s7p* P 2
transition in Lr, which is quite sensitive to finite nuclear
size due to the change in s-wave electron number. We also
show fits using (4) and (5). These clearly show that the latter
parametrization remains more accurate over a larger range of
nuclear radius. We see that even in this case, the total effect
of finite nuclear size is around 300 cm~!, which is the same
order as the uncertainty in our calculations. The field shift
constants F and F' are, however, quite stable and could be used

sy — F;(S(RZV )A,A”

1 rms
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TABLE VII. Einstein A coefficients for electric-dipole (£1) transitions in lawrencium, as calculated within the CI + MBPT framework.
Branching ratios for each transition are also shown. We estimate the uncertainty in the coefficients as 40% (see text).

Upper level Lower level Transition energy (cm™") A Branching ratio

7s%6d Ds) 7s*7p P, 712 1.26 x 103 1
75%8s %12 7s*7p P, 11878 3.57 x107 0.52
7528s %12 7s*7p P, 20 485 3.31 x107 0.48
756d? “Fs 757 p6d ‘), 1453 3.59 x10° 2.92 x 1073
7s6d> ‘B 757 p6d ‘Fya 3757 2.58 x10° 0.24
7s6d> ‘B 7s*Tp Py, 16 136 6.73 x 10 0.01
756d> ‘P 7s¥1p Pl 24742 7.96 x10° 0.75
7s7p? *Pij 757 p6d “Fy 4396 2.27 x10? 8.06 x 107
7s7p? *Pij 7s*Tp Py, 16 775 3.22 x10° 0.11
7s7p? P 7s*7p P, 25381 2.51 x107 0.89
756d* *Fsp 757 p6d ‘F), 2876 9.60 x10* 0.85
756d? “Fs) 757 p6d ‘B, 5180 1.36 x10* 0.12
756d? *Fs ) 75*7p P, 17 559 3.00 x 10 0.03
75*7d D) 75*8p P, 273 2.51 x10? 3.38 x 107°
75*7d D3 75°8p P, 1585 1.73 x10° 1.39 x 1073
75*7d D) 757 p6d ‘DY), 1772 2.43 x10* 3.26 x 107
75*7d D) 757 p6d 0dd (J = 1/2) 2693 7.09 x10° 0.01
75%7d D)y 757 p6d ‘B, 5291 3.30 x10? 4.44 x 107°
75*7d D) 757 p6d ‘) 7585 2.52 x 102 3.40 x 107°
75*7d D) 75*Tp P, 19974 1.21 x107 0.16
75*7d D3 75*Tp Py, 28 580 6.14 x 107 0.83
7s*7d Ds )2 757 p6d DS 18 1.72 x1073 3.18 x 1071
75*7d Ds) 7s7p6d “Fij 151 5.44 x107! 1.01 x 1078
75%7d Ds) 7s*8p Py, 419 547 x10° 1.01 x 10~
75*7d Ds) 7s7p6d ‘DS 1917 1.97 x10° 3.66 x 1073
75*7d Ds) 7s7p6d ‘Fy) 5436 3.97 x10° 7.32 x 107
75*7d Ds) 757 p6d ‘B, 7740 4.18 x10° 7.73 x 1073
75*7d Ds) 75*Tp P, 20119 5.39 x 107 0.99
75*Tp P, 7s%6d Ds), 3355 3.13 x10° 0.49
75*Tp P, 7s%6d D) 7894 3.01 x10° 0.51
757 p6d ‘Fy 75°8s 12 501 1.53 x107! 5.74 x 1078
757 p6d ‘B, 7s%6d Ds), 15734 1.56 x10° 0.02
757 p6d ‘Fy), 7s*6d D) 20273 8.80 x 10° 0.98
757 p6d ‘Fy) 7s*6d Ds) 18 038 3.26 x10° 0.19
757p6d *Fy) 7s%6d D3 22577 1.35 x 107 0.81
757 p6d 0dd (J = 1/2) 757 p* P 506 5.39 x 102 2.11 x 1073
757 p6d 0dd (J = 1/2) 756d> ‘B 987 1.20 x 10* 470 x 107
757 p6d 0dd (J = 1/2) 75°8s iy 5402 3.58 x10° 0.14
757 p6d 0dd (J = 1/2) 7s%6d D3 25175 2.21 x107 0.86
757 p6d ‘DY) 756d> “Fs) 643 2.41 x10° 1.19 x 107
757p6d ‘DY) 1s7p? *Piy 1427 741 x10° 3.66 x 1074
757 p6d ‘DY) 756d> ‘B 2066 9.36 x10° 4.62 x 107
757 p6d ‘DY, 75°8s %12 6324 3.22 x10° 0.16
757 p6d ‘DY, 7s%6d Ds) 21557 2.59 x10° 0.13
757 p6d ‘DY, 7s%6d Ds) 26 283 1.44 x107 0.71
75°8p P, 757 p* P 1615 5.95 x10? 8.43 x 1073
75*8p 2P10/2 756d* ‘P 2253 5.27 x10* 0.007
75*8p p), 7528s 81 6511 6.42 x10° 0.91
75*8p P, 7s%6d D) 26283 5.95 x10° 0.08
75°8p P, 756d> *Fsp 2141 8.12 x10° 530 x 107
75°8p P, 757 p* P 2926 2.73 x10* 1.79 x 1073
75°8p P, 756d> ‘B 3564 1.35 x10* 8.82 x 107
75*8p Py, 75%8s 12 7822 1.14 x107 0.75
75°8p Py, 7s%6d Ds) 23055 6.14 x10* 3.80 x 1073
7s*8p Py, 7s*6d D) 27 595 3.76 x10° 0.24
757 p6d ‘F, 756d> *Fr 284 1.135 x 102 2.39 x 107
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TABLE VII. (Continued.)

Upper level Lower level Transition energy (cm™!) A(s™h Branching ratio
757 p6d 4F7(}2 7s6d> ‘Fsp 2409 1.17 x10* 2.00 x 1073
757 p6d 4F7(}2 7s%6d Ds 23323 4.74 x10° 0.998
757 p6d 402,2 7s6d> ‘B 417 1.07 x10? 3.48 x 107°
7s7p6d ‘DY), 7s*7d D3 127 5.53 x1073 5.79 x 107!
757 p6d 4D2/2 756d> ‘Fsp 2542 1.14 x10* 3.69 x 10~*
757 p6d 402,2 7s6d> M2y 3965 4.99 x10° 1.62 x 10~*
757 p6d 4D2/2 7s%6d Ds 23 456 2.03 x107 0.66
7s7p6d ‘pe o 7s%6d D3 27 966 1.05 x 107 0.34

to extract changes in R;,s between isotopes at the ~10% level
or better. We have calculated these values for the transitions
of experimental interest and presented them in Table VIII.

V. SUMMARY AND CONCLUSION

From the presented results it can be concluded that both
RCCSD(T) and CI + MBPT methods are able to reliably
calculate the experimental spectrum of neutral Lu with good
accuracy. Moreover, these methods give energies of Lr that
are in good agreement with each other. Therefore we have
confidence in the accuracy of both approaches for calculating
low-lying states of Lr which will enable a proper planning
of any experimental search for atomic levels in Lr, while
additional properties of the individual levels such as the tran-
sition strengths and lifetimes will help in the validation of the
configuration once a resonance is identified.

The levels calculated in this work indicate three transi-
tions from the atomic ground state with a suitable transition
strengths with Einstein A coefficients above 107 s~! which is
required to ensure an efficient transfer of the population (see
Fig. 5). The transitions target the excited 7s*8s %5, level at
20 485 cm™! with a transition strength of 3.31 x 107 s™!, the
excited 7s7p2 ‘p 2 level at 25 381 cm~! with a transition
strength of 2.51 x 107 s~! and the excited 7s* 7d D5 /2 level
at 28 580 cm~! with a transition strength of 6.14 x 107 s~!.
For laser spectroscopy regarding the extraction of nuclear
properties the latter transition to the 28 580 cm™' state with
J = 3/2 is beneficial due to a sensitivity to the nuclear spec-
troscopic quadrupole moment [1].

However, from the calculations it becomes evident that
three very close levels with lower energy (7s7d6d 4F7(}2 at

TABLE VIII. Field shift constants for ground-state transitions of
experimental interest in Lr. F and F are defined by Egs. (4) and (5),
respectively.

Upper level F (cm~!/fm?) F (cm™!/fm?")
75285 251/2 1.507 7.740
7S7p2 4P1/2 —5.699 —29.263
75*7d 2D3/2 0.953 4.894

28 574 cm™', 7s*8p Py, at 28307 cm™!, and 7s6d> ‘Fy),
at 28 290 cm™') are present in the atomic structure of Lrl.
A fast quenching into these states induced by the buffer
gas used in the RADRIS experiment is quite possible and
was already observed for a similar energy difference of
atomic levels in nobelium [3,46]. As the lifetimes of these
states are similar it will be difficult to distinguish the lev-
els by successive, delayed excitation or ionization. Although
this might disturb a measurement of the ionization poten-
tial when addressing higher-lying Rydberg levels from this
state, the measurement of a hyperfine structure is not af-
fected as the depopulation from the quenching only occurs
after the optical excitation. For the determination of the first
ionization potential by Rydberg convergence, as done in the
case of No [6], the excited 7s*8s 25, 2 level at 20 485
cm~! and the excited 7s7p* *Py > level at 25 381 cm™! are
promising, as they are well separated from other atomic
levels, preventing buffer gas induced quenching effects and
by the fact that the expected energy difference to the ion-
ization potential can be addressed with the available laser
systems.
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FIG. 5. Grotrian diagram of the energy-level scheme of Lr, as calculated by the CI + MBPT method including Breit and QED corrections.
Arrows represent transitions that may be targeted in experiment, as discussed in the text.
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