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This work presents a rigorous theory to unify the two independent theoretical frameworks of Kohn-Sham (KS)
density-functional theory (DFT) and reduced-density-matrix-functional theory (RDMFT). The generalization of
the KS orbitals to hypercomplex number systems leads to the hypercomplex KS (HCKS) theory, which extends
the search space for the electron density in KS-DFT and reformulates the kinetic energy. The HCKS theory
provides a general framework, and different dimensions of the HCKS orbitals lead to different HCKS methods,
with KS-DFT and RDMFT being two cases corresponding to the smallest and largest dimensions. Furthermore,
a series of tests show that HCKS can capture the multireference nature of strong correlation by dynamically
varying fractional occupations, while maintaining the same computational scaling as the KS method. With great
potential to overcome the fundamental limitations of the KS method, HCKS creates new possibilities for the
development and application of DFT.
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I. INTRODUCTION

Built on the Hohenberg-Kohn theorem [1,2], Kohn-Sham
(KS) density-functional theory (DFT) [3–5] is a formally ex-
act theoretical framework toward the many-electron problem.
Due to the favorable balance between accuracy and efficiency,
KS-DFT has won enormous popularity that can manifest itself
in the countless applications across physics, materials science,
chemistry, and biology [6–8]. Nonetheless, the great success
of KS-DFT, along with commonly used density-functional
approximations (DFAs), is clouded by the improper treatment
of strong correlation [9]. Strong correlation represents the
intractable electronic interaction stemming from the multiref-
erence character of systems, which has long posed a major
challenge to KS-DFT [10–14].

It is generally recognized that intrinsic errors in commonly
used DFAs [9,15–21] and the slow progress in systemat-
ically eliminating these errors for better describing strong
correlation have severely limited the applicability of KS-DFT
[9,19,22,23]. The enlightening work by Lee, Bertels, Small,
and Head-Gordon [24] shows that commonly used DFAs can
better treat the strong correlation in singlet biradicals by using
complex spin-restricted orbitals in KS-DFT. This thus raises
a deep question: In addition to the errors inherent in existing
DFAs, is there still any limitation in the understanding and
application of the KS-DFT framework? Apparently, in-depth
insights into this question is important for further development
and application of DFT.

Besides KS-DFT, reduced-density-matrix-functional the-
ory (RDMFT) [25–33] provides an alternative approach to
the many-electron problem. The Gilbert’s theorem [25] guar-
antees that the one-electron reduced-density matrix (1-RDM)
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instead of the density can be used as the fundamental variable
for the energy functional, which thus makes RDMFT an ex-
act theoretical framework independent of KS-DFT. RDMFT
has proved its great potential to overcome the fundamental
limitations of KS-DFT through the successful application in
predicting dissociation energy curves [34–36], and fundamen-
tal gaps for finite systems and extended solids [37] as well
as for Mott insulators [29]. Therefore, establishing a connec-
tion with the theoretical framework of RDMFT will further
improve our understanding of KS-DFT and the problems of
existing DFAs.

This work presents theory to unify the two theoretical
frameworks of KS-DFT and RDMFT. This is achieved by gen-
eralizing the conventional KS determinant to hypercomplex
number systems. The resulting hypercomplex KS (HCKS)
theory extends the search space for the electron density in
KS-DFT and reformulates the kinetic energy in a form similar
to that in RDMFT. The potential of HCKS in capturing the
physical essence of strong correlation is demonstrated on sys-
tems of multireference character, including transition metals.

The rest of this article is structured as follows. First,
KS-DFT and RDMFT are reviewed and their differences are
summarized in Sec. II and Sec. III. After that, the HCKS
theory is introduced in Sec. IV, which is proved to unify the
two theoretical frameworks of KS-DFT and RDMFT. Finally,
the numerical test results of HCKS are discussed in Sec. V,
followed by conclusions in Sec. VI.

II. KOHN-SHAM DENSITY-FUNCTIONAL THEORY

KS-DFT introduces a noninteracting system, namely the
KS system, which yields the same electron density as the
interacting system [3,4]. Based on this, the total energy as a
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function of the electron density can be expressed as

Etot[ρσ ] = Ts[ρσ ] + Eext[ρσ ] + EH[ρσ ] + EXC[ρσ ], (1)

which includes the kinetic energy of the KS system Ts[ρσ ], the
external energy Eext[ρσ ], the Coulomb energy EH[ρσ ], and the
exchange-correlation (XC) energy EXC[ρσ ]. Here σ denote
the electron spin, which can be spin-up (α) and -down (β).

The ground-state wave function of the KS system is just a
determinant that is constructed by the occupied KS orbitals,
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This determinant, termed the KS determinant, makes it viable
to express the electron density in the simple form,

ρσ (r) =
Nσ∑

k=1

∣∣ϕσ
k (r)

∣∣2
. (3)

With Eq. (2), the kinetic energy Ts[ρσ ] can be obtained via

Ts[ρσ ] = 〈�|T̂ |�〉 = −1

2

α,β∑
σ

Nσ∑
k=1

〈
ϕσ

k

∣∣∇2
∣∣ϕσ

k

〉
, (4)

and the XC energy is defined by

EXC[ρσ ] = T [ρσ ] − Ts[ρσ ] + Eee[ρσ ] − EH[ρσ ], (5)

where T [ρσ ] and Eee[ρσ ] are the kinetic energy and the
electron-electron interacting energy of the interacting physical
system, respectively. Hence the XC energy includes contri-
butions from both the kinetic energy (i.e., T [ρσ ] − Ts[ρσ ])
and the electron-electron interacting energy (i.e., Eee[ρσ ] −
EH[ρσ ]).

Among the four terms in Eq. (1), the density functionals of
Eext[ρσ ] and EH[ρσ ] are well defined [38], and Ts[ρσ ] can be
calculated via Eq. (4); only the exact functional of EXC[ρσ ] is
unknown, which has to be obtained by approximation in prac-
tice. To date, there are various DFAs for EXC[ρσ ] constructed
from different philosophies and strategies [3,39–56].

The ground-state energy in KS-DFT can be obtained by
the minimization of Etot[ρσ ] with respect to {ϕσ

p }, subject to
the orthonormalization condition〈

ϕσ
p

∣∣ϕσ
q

〉 = δpq. (6)

This process can be easily carried out through the self-
consistent field (SCF) calculation of the KS equations [3].

III. REDUCED DENSITY MATRIX FUNCTIONAL THEORY

In RDMFT, the total energy [2,25] is

Etot[γσ ] = T [γσ ] + Eext[γσ ] + EH[γσ ] + EXC[γσ ], (7)

where T [γσ ], Eext[γσ ], EH[γσ ], and EXC[γσ ] are now uniquely
determined by 1-RDM (γσ ). Unlike KS-DFT, there is no
noninteracting counterpart to the physical system in RDMFT,
hence γσ should be obtained from the wave function of the
interacting system, instead of from a simple wave function

similar to Eq. (2). This thus makes the RDMFT calculation
much more complicated as compared to KS-DFT.

The diagonalization of γσ leads to the natural spin orbitals
{ψσ

p } and their occupations {nσ
p }, which in turn form the spec-

tral representation of γσ ,

γσ =
K∑

p=1

∣∣ψσ
p

〉
nσ

p

〈
ψσ

p

∣∣, (8)

where K is the dimension of the basis set. With Eq. (8), EH[γσ ]
and any (non-)local Eext[γσ ] can be expressed in terms of {ψσ

p }
and {nσ

p } [38], and T [γσ ] takes the following form:

T [γσ ] = −1

2

α,β∑
σ

K∑
p=1

nσ
p

〈
ψσ

p

∣∣∇2
∣∣ψσ

p

〉
. (9)

Unlike KS-DFT, T [γσ ] in RDMFT can exactly take into
account the kinetic energy of the interacting physical sys-
tem, and the XC energy in RDMFT is completely from the
electron-electron interaction,

EXC[γσ ] = Eee[γσ ] − EH[γσ ], (10)

which needs to be obtained by approximation in practice.
Different approximations for EXC[γσ ] have been proposed
during the past few decades, some are explicit functionals
of γσ , while most depend on γσ implicitly through {ψσ

p }
and {nσ

p } [26,27,29,30,34,35,57–60]. Nonetheless, existing 1-
RDM functionals in RDMFT still show large errors in the
description of various properties that can be properly pre-
dicted by KS-DFT, which should be attributed to the incorrect
weak-correlation limits [61] and the incorrect description
of spin-polarized systems [62] of the functionals, as well
as the underestimated dynamic correlation by most existing
functionals that depend only on the Coulomb and exchange
integrals [63,64].

The ground-state energy in RDMFT is obtained by the
minimization of Etot[γσ ] with respect to γσ or, equivalently,
with respect to both {ψσ

p } and {nσ
p }, subject to the orthonor-

malization constraint on {ψσ
p },

〈
ψσ

p

∣∣ψσ
q

〉 = δpq, (11)

and the ensemble N-representability constraint on {nσ
p }

[65,66],

0 � nσ
p � 1,

K∑
p=1

nσ
p = Nσ . (12)

In addition, the density in RDMFT can be obtained from
the diagonal element 〈r|γσ |r〉,

ρσ (r) =
K∑

p=1

nσ
p

∣∣ψσ
p (r)

∣∣2
. (13)

Compared with Eq. (3), the density in Eq. (13) has a wider
search space, and the fractional occupations can capture the
multireference character of the system under study. Therefore,
despite the computational disadvantage, RDMFT has the po-
tential to overcome the fundamental limitations of KS-DFT,
especially in the description of strong correlation.
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IV. HYPERCOMPLEX KOHN-SHAM THEORY

Obviously, the density of Eq. (3) that corresponds to a sin-
gle determinant cannot effectively capture the multireference
character of the system under study, which thus makes it ex-
tremely difficult to solve the strong correlation problem within
the conventional KS-DFT framework. Unlike many attempts
made to combine DFT with multiconfiguration states, here we
present a different idea to address the strong correlation issue
in KS-DFT by generalizing the KS orbitals and the KS de-
terminant to hypercomplex number systems. Next, the HCKS
theory that unifies KS-DFT and RDMFT will be introduced,
more detailed derivation can be found in the Supplemental
Material [38].

A. Energy and one-electron equations in HCKS

The concept of hypercomplex and the theory of Clifford
algebra [38,67] that generalizes the real and complex numbers
to quanternions, octonions, and other hypercomplex numbers
have important applications in a variety of fields including
theoretical physics [68]. Based on these, the KS orbitals are
generalized to hypercomplex number systems, which take the
following form:

ϕσ
p (r) = φσ,0

p (r) +
n∑

μ=1

φσ,μ
p (r)eμ, (14)

where {φσ,μ
p } are a set of real functions, and {e1, e2, . . . , en}

are a basis of dimension n in a Clifford algebra, such that [68]

e2
μ = −1; eμeν = −eνeμ. (15)

The orbitals defined by Eq. (14) are called the HCKS orbitals,
and the determinant formed by them is called the HCKS
determinant �HC. The HCKS orbitals are actually a set of
high-dimensional KS orbitals, while the real and complex KS
orbitals in the conventional KS method are the special cases
for n = 0 and n = 1, respectively. Moreover, the conjugate
hypercomplex [38,68] of the HCKS orbitals read

ϕ̄σ
p (r) = φσ,0

p (r) −
n∑

μ=1

φσ,μ
p (r)eμ. (16)

In HCKS, the auxiliary system taking the HCKS determi-
nant �HC as the ground state is used as the noninteracting
system subject to the external potential V̂ σ

s = ∑Nσ

i vσ
s (ri ).

Hence the ground-state energy of the noninteracting
system is

EHC
s [ρσ ] = 〈

�HC
∣∣T̂ + V̂s|�HC〉

= T HC
s [ρσ ] +

∑
σ

∫
vσ

s (r)ρσ (r)dr, (17)

where the density ρσ and the kinetic energy T HC
s [ρσ ] can be

obtained by inserting the HCKS orbitals into Eqs. (3) and
(4), respectively, while the potential V̂ σ

s is chosen to make
the noninteracting system yield the same density as the in-
teracting physical system. Following the variational principle
based on the HCKS orbitals subject to the orthonormalization
condition, a set of one-electron eigenvalue equations can be

derived, which are

ĥσ ϕσ
p (r) = εσ

p ϕσ
p (r), (18)

where the operator ĥσ is

ĥσ = − 1
2∇2 + vσ

s (r). (19)

Making use of Eq. (14), Eq. (18) can be further expanded as

ĥσ φσ,0
p (r) = εσ

p φσ,0
p (r)

ĥσ φσ,1
p (r) = εσ

p φσ,1
p (r)

· · ·
ĥσ φσ,n

p (r) = εσ
p φσ,n

p (r).

(20)

Hence, Eq. (18) are a set of high-dimensional KS equations,
named the HCKS equations.

The solution of the HCKS equations yields the exact den-
sity, and the ground-state energy of the interacting system can
be obtained via

Etot[ρσ ] = T HC
s [ρσ ] + Eext[ρσ ] + EH[ρσ ] + EHC

XC [ρσ ]. (21)

The generalization of the KS orbitals and determinant to hy-
percomplex number systems makes T HC

s [ρσ ] different from
Ts[ρσ ] in KS; accordingly, the XC energy in HCKS should be
defined as

EHC
XC [ρσ ] = T [ρσ ] − T HC

s [ρσ ] + Eee[ρσ ] − EH[ρσ ], (22)

where the contribution from the kinetic energy is different
from that of KS, while the contribution from the electron-
electron interaction remains unchanged. Here the superscript
HC is used to distinguish from the definitions in KS.

To realize this HCKS approach, the potential vσ
s in Eq. (19)

needs to be clearly defined. From the stationary property, the
total energies of both the noninteracting and the interacting
systems, i.e., Eqs. (17) and (21), must be invariant under
small changes δρσ around the exact density ρσ , subject to the
condition

∫
δρσ (r)dr = 0. With these, vσ

s can be determined
up to within a constant, that is,

vσ
s (r) = vH(r) + vHCσ

XC (r) + vext (r), (23)

where vext (r) is the external potential and vH(r) and vHCσ
XC (r)

are the Coulomb and XC potentials, which are obtained via the

functional derivatives δEH[ρσ ]
δρσ (r) and δEHC

XC [ρσ ]
δρσ (r) , respectively. Due

to the dependence of this potential on the density, the HCKS
equations need to be solved self-consistently.

The above discussion shows that the HCKS theory is exact,
except that the unknown XC functional needs to be obtained
by approximation in practice. Moreover, HCKS as well as
KS is based on a pure state, and thus it can circumvent the
generalized Pauli constraints that hamper RDMFT [69]. Note
that Eqs. (18) and (20) are not the equations to be solved
in practical applications. Next, the further derivations on the
density and kinetic energy will result in a set of easy-to-solve
auxiliary equations for the HCKS calculation.
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B. Density and kinetic energy in HCKS

Without loss of generality, {φσ,μ
p } in Eq. (14) can be ex-

panded on a set of orthonormal functions {ξp}

φσ,μ
p (r) =

K∑
q=1

ξq(r)V σ,μ
pq . (24)

Here V σ,μ is a K × K matrix associated with the μth compo-
nent of the HCKS orbitals for each μ in [0, n]. Making use of
Eq. (24), the orthonormalization condition of Eq. (6) becomes
(see the Supplemental Material [38])

n∑
μ=0

V σ,μV σ,μT =
n∑

μ=0

V σ,μT V σ,μ = IK , (25)

and

V σ,μV σ,νT = V σ,νV σ,μT ;

V σ,μT V σ,ν = V σ,νT V σ,μ,
(26)

where the superscript T denotes the transpose and IK is
the K × K identity matrix. Inserting Eqs. (14) and (24) into
Eq. (3) leads to the electron density corresponding to the
HCKS determinant,

ρσ (r) =
K∑

p,q=1

ξp(r)Dσ
pqξq(r), (27)

where Dσ is a symmetric matrix,

Dσ =
n∑

μ=0

V σ,μT INσ

K V σ,μ, (28)

and INσ

K is a K × K diagonal matrix, with the first Nσ diagonal
elements being 1 and the rest being 0. The diagonalization of
Dσ leads to

Dσ = U σ�σU σT , (29)

where U σ is an orthogonal matrix and �σ is a diagonal matrix
with the diagonal elements being the eigenvalues of Dσ and
satisfying the following constraints (see the Supplemental
Material [38]):

0 � λσ
p � 1;

K∑
p=1

λσ
p = Nσ . (30)

With Eq. (29), the density of Eq. (27) can be further formu-
lated as

ρσ (r) =
K∑

p=1

λσ
p

∣∣χσ
p (r)

∣∣2
, (31)

where {χσ
p } are obtained from the unitary transformation,

χσ
p (r) = ∑K

q=1 ξq(r)U σ
qp, and hence they are orthonormal,

〈
χσ

p

∣∣χσ
p

〉 = δpq. (32)

Through a series of similar derivations, the kinetic en-
ergy corresponding to the HCKS determinant can be

formulated as

Ts[ρσ ] = −1

2

α,β∑
σ

K∑
p=1

λσ
p

〈
χσ

p

∣∣∇2
∣∣χσ

p

〉
. (33)

Therefore, although the HCKS orbitals and determinant are
hypercomplex, the electron density and kinetic energy are
both real. The above derivations show that the introduction
of the HCKS orbitals generalizes the electron density and
the kinetic energy in KS, i.e., Eqs. (3) and (4), to Eq. (31)
and Eq. (33) that have the similar forms as the electron den-
sity and kinetic energy in RDMFT. Moreover, the additional
constraints, i.e., Eq. (30) on {λσ

p } and Eq. (32) on {χσ
p }, are

the same to the constraints on natural spin orbitals and their
occupations as well. The number of orbitals in {χσ

p } that are
allowed for fractional occupations relates to the dimension of
the HCKS orbitals (i.e., n + 1). KS is the case of n = 0, which
has all {χσ

p } integer occupied; while the recently developed
complex spin-restricted KS (cRKS) [24] corresponds to the
case of n = 1, where two of {χσ

p } can be half filled for singlet
biradicals. For completeness, next it will be further proved that
when the dimension of the HCKS orbitals is greater than or
equal to the dimension of the basis set, i.e., n + 1 � K , there is
no additional constraint on {χσ

p } and {λσ
p } other than Eqs. (30)

and (32).
Here provide a proof by contradiction, and assume that

there are more constraints on {χσ
p } or {λσ

p } besides Eqs. (30)
and (32) when n + 1 � K . In order to prove this assumption
is wrong, we only need to find a special example that there is
no other constraint on {χσ

p } or {λσ
p } besides Eqs. (30) and (32)

when n + 1 = K . If so, then the cases of n + 1 > K certainly
will bring no additional constraint either, since it has greater
degrees of freedom with larger n. To achieve this end, a special
set of HCKS orbitals for n + 1 = K are considered below.

Given any set of orthonormal {χσ
p }, the HCKS orbitals can

be constructed by taking the following simple form for {φσ,μ
p }

in Eq. (14),

φσ,μ
p = χσ

μ+1(r)V σ,μ
pμ+1. (34)

It means that the components corresponding to the same eμ in
all the HCKS orbitals are formed by the same function χσ

μ+1,
thereby

V σ,μ
pq =

{
W σ

pq, q = μ + 1

0, q �= μ + 1,
(35)

where W σ is a K × K matrix. By inserting Eq. (35) into
Eqs. (25) and (26), the orthonormalization condition becomes
(see the Supplemental Material [38])

W σW σT = IK , (36)

which thus requires W σ to be an orthogonal matrix. With
the definition of V σ,μ by Eq. (35), the same derivations as
above can lead to Eqs. (31) and (33) for ρσ (r) and T [ρσ ] as
well, while λσ

p = ∑Nσ

k=1(W σ
kp)2. As W σ can be any orthogonal

matrix, {λσ
p } can take any values subject to Eq. (30). This con-

clusion contradicts the above assumption, which thus verifies
that Eqs. (30) and (32) are the only constraints on {χσ

p } and
{λσ

p } when n + 1 � K .
Overall, the introduction of the HCKS orbitals leads the

a set of auxiliary orbitals {χσ
p } and their occupations {λσ

p },
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which extends the search space for the electron density and
formulates the kinetic energy with {χσ

p } and {λσ
p }. In the-

ory, {χσ
p } and {λσ

p } take the electron density as the basic
variable, which thus provide more flexibility in constructing
approximate functionals toward better consideration of the
XC effect in HCKS. The dimension of the HCKS orbitals (i.e.,
n + 1) determines the degree of restriction on {λσ

p }, which
achieves correspondingly different HCKS methods. When n
takes the minimum value, that is, n = 0, {λσ

p } are subject to
the strongest restriction and can only be integer, thus HCKS
reduces to KS; when n > 0, {λσ

p } can be fractional, subject to
the constraint of Eq. (30). More constraints on {λσ

p } need to be
further explored for different n except n + 1 � K . It has been
proved above that when n + 1 � K , Eqs. (32) and (30) are
the only constraints on {χσ

p } and {λσ
p }, respectively, which are

actually equivalent to the constraints on natural spin orbitals
and their occupations, that is, Eqs. (11) and (12) in RDMFT.
Moreover, the kinetic energy, the external energy, and the
Coulomb energy in HCKS have the same forms as those in
RDMFT, and in the construction of the XC functional, {χσ

p }
and {λσ

p } for n + 1 � K provide the equivalent information as
the natural spin orbitals and their occupations. Consequently,
the ground-state energy in HCKS (in the case of n + 1 � K)
obtained via the minimization of the energy functional with
respect to both {χσ

p } and {λσ
p} equates with the ground-state

energy in RDMFT obtained via the minimization of the en-
ergy functional with respect to both natural spin orbitals and
their occupations. Therefore, RDMFT is a special case of
the newly developed HCKS theory, which provides a general
theoretical framework to unify KS-DFT and RDMFT.

C. Auxiliary working equations in HCKS

So far, the HCKS theory has been constructed. In practice,
the ground-state energy in HCKS is obtained by the minimiza-
tion of the total energy with respect to both {χσ

p } and {λσ
p }.

Unlike RDMFT, the costly minimization with respect to {χσ
p }

in HCKS can be achieved via the following equations:

ĥσχσ
p (r) = ε̄σ

p χσ
p (r). (37)

Here the density required in ĥσ is constructed by Eq. (31), and
hence Eq. (37) can be solved through a simple SCF calculation
similar to that of KS-DFT. Therefore, HCKS has the same
computational scaling as KS-DFT. Note that for complicated
functionals that depend on {χσ

p } and {λσ
p }, the chain rule

should be applied to derive ĥσ , or gradient-based algorithms
should be used for the HCKS calculation.

V. RESULTS

The numerical performance of HCKS and its potential
in describing strong correlation are evaluated with the finite
basis simulation. All calculations were performed using a
local modified version of the NWChem package [70], and the
HCKS method with n + 1 = K is tested in this work. Systems
of multireference character are calculated, including C atom
under varying external charged environments, various atoms
and diatoms from the TS12 benchmark set [71], atoms of
transition metals, and the C2 molecule with stretched bond.
The basis sets used are aug-cc-pVQZ [72,73] for main-group

x

y

(a)

(b)

(c)

z

x

y

z

FIG. 1. Density on real-space grids for the lowest singlet state
of C atom. (a) RKS density (purple), (b) cRKS density (green), and
(c) HCKS density (blue) are plotted at the isosurface value of 0.2 au.
Views along the z, y, and x axes are provided respectively. The PBE
XC functional is applied for all the calculation.

elements, and def2-TZVP [74] for transition-metal elements.
In principle, HCKS and KS have different definitions of XC
functionals. Nevertheless, the XC functionals that are com-
monly used in KS, namely PBE [45] and BLYP [42,43],
are used in both HCKS and KS for most tests in this work,
which can directly and effectively compare the differences
between the two theoretical frameworks. Moreover, the use
of functionals that have been proved effective in KS can make
HCKS have the good merits of KS, as HCKS would reduce
to KS when the strong correlation effect is not obvious. In
the future, functionals developed specifically for HCKS can
further improve the performance of HCKS. A distinct advan-
tage of the HCKS and KS calculations in this work is that
the results converge fast with respect to the size of the basis
set, while the calculations of RDMFT with common 1-RDM
functionals suffer from the same issue of slow convergence
[75,76] as the wave-function methods [77], which has recently
been attributed to the off-diagonal cusp in 1-RDM [78]. A
numerical test on the basis set dependence of HCKS, KS,
and RDMFT can be found in Fig. S1 of the Supplemental
Material [38].

The density for the lowest singlet state of C atom is first
examined. The singlet-state C atom is of biradical nature, with
two electrons in the 2p subshell. Normally, the spin-restricted
KS (RKS) would have one doubly occupied p orbital and
destroy the degeneracy of the p orbitals. Figure 1(a) shows the
density of RKS when pz is occupied, which maintains the spin
symmetry but loses the space symmetry. Different from RKS,
cRKS leads to two half-filled p orbitals for the singlet C atom
[24]; see the Supplemental Material [38]. Figure 1(b) shows
that the cRKS density with both px and py half filled maintains
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FIG. 2. Triplet-singlet energy gaps of C atom under varying ex-
ternal charged environments. The energies are calculated with two
point charges of 0.3 au placed equidistantly on two sides of the
C atom, with the distance between the two point charges ranging
from 4 to 12 Å. KS and HCKS in use of the same XC function-
als (PBE and BLYP) are examined, while CCSDT [79] results are
used as reference. For both KS and HCKS, spin-restricted and spin-
unrestricted calculations are performed for singlet and triplet states,
respectively. All energies are in eV. The occupations of the three p
orbitals for the singlet states are also provided in the figure, and the
occupations by KS and HCKS (in use of PBE functional) are in round
and square brackets, respectively. By comparison, the occupations by
KS keep unchanged, while HCKS can provide dynamically varying
fractional occupations under different charged environments.

the space symmetry along the z axis, but it cannot guarantee
the apace symmetry along both the x and y axes. In contrast,
the spin-restricted solution of HCKS provides three equally
occupied p orbitals, each p orbital is 1/3 filled. Therefore, the
density by HCKS can maintain both spin and space symmetry;
see Fig. 1(c). Similar results can be obtained for other systems
of multireference character such as singlet states of O, S, and
Si atoms, and even the d and f block transition metals.

In addition, the energies of C atom under varying external
charged environments are tested. Figure 2 shows that the
triplet-singlet energy gaps by KS seriously deviate from the
results of CCSDT, especially when the point charges are far
away from the C atom. By comparison, HCKS significantly
improves the performance of KS, in use of the same XC
functionals. The occupations of the three p orbitals change
gradually from [1,0,0] to [1/3, 1/3, 1/3] as the point charges
move away from the C atom. Therefore, HCKS is able to
capture the physical essence of strong correlation through
dynamically varying occupations.

Besides the C atom, the triplet-singlet gaps of various
atoms and diatoms from the TS12 benchmark set [71] are also
calculated. For these systems, the ground states are triplets,
while the lowest singlet states are of biradical character. More

TABLE I. Triplet-singlet gaps �ET −S (= ES − ET ) of various
atoms and diatoms from the TS12 benchmark set [71]. Experimental
data are used as reference. RKS, UKS, and HCKS with two XC func-
tionals, BLYP and PBE, are tested. MSE and MAE stand for mean
sign error and mean absolute error, respectively. Spin-unrestricted
calculations are performed for triplet states, while spin-restricted cal-
culations are performed for singlet states except UKS. All energies
are in eV. The calculation results of RKS, UKS, and cRKS can be
found in Ref. [24].

RKS UKS HCKS

Expt. BLYP PBE BLYP PBE BLYP PBE

C 1.26 1.71 1.88 0.32 0.37 1.32 1.38
NF 1.49 1.85 1.97 0.44 0.47 1.44 1.48
NH 1.56 2.11 2.31 0.49 0.55 1.67 1.79
NO− 0.75 1.09 1.17 0.27 0.29 0.85 0.89
O2 0.98 1.57 1.63 0.37 0.38 1.14 1.15
O 1.97 2.69 2.89 0.65 0.70 1.83 1.90
PF 0.88 1.25 1.39 0.25 0.30 0.87 0.99
PH 0.95 1.32 1.50 0.26 0.34 0.92 1.09
S2 0.58 0.91 0.97 0.18 0.20 0.59 0.64
S 1.15 1.61 1.78 0.33 0.39 0.90 1.04
Si 0.78 1.07 1.25 0.18 0.26 0.69 0.86
SO 0.79 1.14 1.22 0.24 0.26 0.78 0.83

MSE 0.43 0.57 −0.76 −0.72 −0.01 0.07
MAE 0.43 0.57 0.76 0.72 0.08 0.10

tested details about TS12 can be found in Refs. [24,71].
Table I shows the test results of RKS, spin-unrestricted KS
(UKS), and HCKS, in use of BLYP and PBE XC functionals.
As above, RKS cannot capture the multireference nature of the
singlet biradicals, because it provides a closed-shell solution
for any singlet state. Therefore, the energies of the singlet
states as well as the triplet-singlet gaps are systematically
overestimated due to the lack of strong correlation. Unlike
RKS, the destruction of spin symmetry in UKS leads to
the over-relaxation of the orbitals occupied by the unpaired
opposite-spin electrons, and thus the energies of the singlet
states as well as the triplet-singlet gaps are underestimated.
HCKS can correctly describe the strong correlation in singlet
biradicals, and thus it predicts accurate energies of the singlet
states and the MAEs of the triplet-singlet gaps by both BLYP
and PBE are only 0.08 and 0.10 eV, respectively. Note that
cRKS also has good performance for TS12 [24]; it embodies
the singlet biradical character by two partially filled spin-
restricted orbitals.

Here test also some atoms of 3d transition metals, which
are generally considered to be a big challenge to KS. Due
to the partially filled 3d subshell and the near degeneracy of
4s and 3d subshells, transition metals and systems contain-
ing them often have a plethora of low-lying degenerate and
near-degenerate states, which make them much more difficult
to correctly describe than main-group compounds. Figure 3
shows that KS with both PBE and BLYP XC functionals
overestimates the energy gaps between high- and low-spin
states of Cr, Fe, and Ni, due to the lack of strong correlation
in the low-spin states. In contrast, HCKS improves the per-
formance in use of the same XC functionals. The fractional
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FIG. 3. Energy gaps between high- and low-spin states of transi-
tion metals. Septet-singlet, quintet-singlet, and triplet-singlet energy
gaps for Cr, Fe, and Ni atoms, respectively, are calculated. KS and
HCKS in use of the same XC functionals (PBE and BLYP) are exam-
ined, while the experimental data [80] are used as reference. For both
KS and HCKS, spin-restricted and spin-unrestricted calculations are
performed for low- and high-spin states, respectively. All energies
are in eV.

occupations for (nearly) degenerate orbitals render the HCKS
method the great potential to handle strong correlation. For
example, PBE@HCKS converges to a set of spin-restricted
orbitals for the singlet state of Ni, with occupations for both
α and β spins being 0.916 for each 3d orbital and 0.420 for
the 4s orbital. This further proves that HCKS can improve the
description of strong correlation while maintaining both spin
and space symmetry.

Finally, a prototypical example of strongly correlated sys-
tem, the stretched C2 molecule, is considered. Here the impact
of different choices of XC functionals on the calculation of
energies at bond dissociation limit is compared and evaluated
to demonstrate the potential of HCKS in handling strong
correlation. To this end, the PBE functional combined with
different amounts of correction, i.e., EPBE

XC + c�EXC, is used,
with c deciding the amount of correction in the XC function-
als. The correction considered here takes the form of �EXC =
EDirac

X − ETPSS
X , with EDirac

X and ETPSS
X being the Dirac [39]

and TPSS [49] exchange functionals, respectively. It has been
proved that EDirac

X includes not only the exchange energy but
also some static correlation effect [48], while ETPSS

X can better
reproduce the exact exchange energy [81]. Thereby �EXC can
be regarded as a correction of static correlation. By observing
Fig. 4, it can be found that the overestimated energies at
bond dissociation limit rarely change by KS with different
amounts of correction, which emphasizes the difficulty of
eliminating the systematical error of strong correlation within
the framework of KS. In contrast, by adjusting c to include

FIG. 4. Potential energy curves for C-C bond dissociation in C2.
The performances of KS and HCKS are evaluated in use of the
PBE functional combined with different amounts of correction, that
is, EPBE

XC + c�EXC, with c deciding the amount of correction in the
XC functionals. The correction takes the from of �EXC = EDirac

X −
ETPSS

X . Here the calculated energies with c ranging from 2.5 to 3.5
are plotted, and the total KS energies of two triplet C atoms are set to
zero. All energies are in eV. By comparison, KS and HCKS predict
the same energies at the equilibrium distance in use of the same
functionals, while the overestimated energies rarely change in KS,
which, however, can be effectively reduced by including appropriate
amount of correction in HCKS. Note that the XC functionals used in
this work are confined to semilocal functionals, similar results can be
obtained if the nonlocal correction of �EXC = EDirac

X − EHF
X is used

instead.

appropriate amount of correction, the overestimated energies
at bond dissociation limit can be effectively reduced. This
thus indicates that HCKS creates new possibilities to address
the issue of strong correlation in DFT. However, it should
be noted that while the correction improves the energy of
HCKS at the dissociation limit, it leads to the underestimation
of the energy at the equilibrium distance by HCKS as well
as KS. Moreover, HCKS cannot improve the calculation of
KS-DFT for the simple stretched H2, in use of functionals
that explicitly depend only on the density. Therefore, further
development of functionals that depend on {χσ

p } and {λσ
p } is

essential for the application of HCKS in strongly correlated
systems.

VI. CONCLUSIONS

This work presented theory to generalize KS-DFT to hy-
percomplex number systems. The resulting HCKS theory
provides a general framework, and different dimensions of
the HCKS orbitals lead to different HCKS methods, with
KS-DFT and RDMFT being two cases corresponding to the
smallest and largest dimensions. The test on the singlet biradi-
cal C atom shows that HCKS can maintain both spin and space
symmetry for the density with equally occupied p orbitals,
which cannot be achieved by KS. Besides, the predictions of
the triplet-singlet gaps on the TS12 benchmark set, the energy
gaps between high- and low-spin states for both transition
metals and C atom under varying external charged environ-
ments, and the potential energy curve for C2 bond dissociation
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demonstrate that HCKS is able to capture the multirefer-
ence nature of strong correlation by dynamically varying
fractional occupations, while KS in use of the same XC
functionals cannot. Therefore, HCKS shows great potential to
overcome the fundamental limitations of KS, which thus pro-
vides an alternative to the realization of DFT, and creates new
channels for the development and evaluation of approximate
functionals.
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