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Resonant elastic scattering of polarized electrons on H-like ions
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We study the polarization properties of elastic electron scattering on H-like ions using the relativistic QED
theory. We calculate the complete set of parameters which describe the scattering of a polarized electron on an
initially unpolarized ion and analyze them for both nonresonant and resonant scattering focusing on the LL-shell
resonances. The study is carried out for B4+, Ca19+, Kr35+, and Xe53+ ions. We demonstrate that for the resonant
electron scattering on ions with Z up to 50 both the relativistic spin-orbit and the exchange interaction are
equally significant. The possible spin exchange between the incident and bound electrons can fundamentally
change the polarization of the scattered electron. We show that the involvement of the autoionizing states leads
to quantitative and qualitative changes in the polarization parameters, in particular, to a significant increase in
the spin asymmetry.
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I. INTRODUCTION

The scattering of an unpolarized electron by the Coulomb
field of an atomic nucleus has axial symmetry with respect
to the direction of the momentum of the incident electron.
Mott suggested that in the scattering by the Coulomb field
an initially unpolarized electron becomes partially polarized
and the resulting polarization is directed perpendicular to the
plane of scattering (and therefore changes with the direction
of the scattered electron momentum) [1]. It was also noted
that if the electron polarized in this way is then scattered
on the Coulomb potential again, the differential cross section
of this process is no longer symmetric with respect to the
direction of the incident electron momentum and therefore the
polarization of the electron can be detected experimentally in
such scattering. The cause of these effects is most easily seen
in the electron rest frame. When the electron is moving in the
electric Coulomb field, in the rest frame of the electron there
is a magnetic field that interacts with the magnetic moment
of the electron. This interaction explains the appearance of
asymmetry in the electron scattering.

The Mott prediction was confirmed in a double-scattering
experiment in [2]. Since then, the asymmetry arising in Mott
scattering has been utilized to produce and measure electron
polarization. Today Mott polarimeters are widely used in dif-
ferent fields of physics such as atomic, nuclear, and particle
physics [3,4].

A general approach for the description of the electron
polarization was initially formulated in [5]. A detailed study
of the polarization properties of the Coulomb scattering is
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given in [6,7], where the authors proposed to characterize
the polarization properties of the scattered electron by three
parameters, with the so-called Sherman asymmetry function
[8] being of most interest. The Sherman asymmetry function
describes both the polarization acquired by the electron during
scattering and the possible asymmetry of the differential cross
section.

The polarization properties were also studied for elec-
tron elastic scattering on neutral atoms. In some of these
studies [9–19] the atom was considered as a rigid structure
not affected by the collision and therefore representing just
an external short-range (electrostatic) potential in which the
scattered electron moves. In such an approximation the polar-
ization properties are described by the same three parameters
as in the case of the pure Coulomb scattering.

A theory for the description of the polarization properties
in electron elastic scattering on one-electron (alkali-metal)
atoms, where the bound (valence) electron plays an active
role, was presented in [20]. In that paper the parametrization
of the polarization properties was generalized to the case of
the presence of an active bound electron and in particular the
asymmetry function for the resonant elastic electron scattering
with the formation of autoionizing states of Cs− ion was
calculated.

The effect of the spin exchange on the polarization proper-
ties of an electron elastically scattered on neutral atoms with
one valence electron was investigated in [21–27]. There the
dependence of the asymmetry in the differential cross section
on the initial polarizations of the incident electron and the
atom was explored. However, the change in the polarization of
the electron and atom after the scattering was not considered.

In this work we study the polarization properties for the
elastic electron scattering on highly charged H-like ions.

2469-9926/2021/104(5)/052808(18) 052808-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5385-1592
https://orcid.org/0000-0001-7155-1393
https://orcid.org/0000-0003-1420-5915
https://orcid.org/0000-0003-1311-6355
https://orcid.org/0000-0003-1464-0060
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.052808&domain=pdf&date_stamp=2021-11-11
https://doi.org/10.1103/PhysRevA.104.052808


D. M. VASILEVA et al. PHYSICAL REVIEW A 104, 052808 (2021)

Compared to the scattering on neutral atoms, this process
possesses qualitatively new features caused by the strong and
long-range Coulomb field exerted on the electrons by the ionic
nucleus. In addition, it is a relatively simple process that can
be described within an ab initio QED approach which treats,
in a natural way, the polarization properties determined by the
joint action of the spin-orbit interaction and exchange effects.
Since in highly charged ions the interaction of all electrons
with the electric field of the atomic nucleus is much stronger
than the interelectron interaction, the QED perturbation theory
for the interelectron interaction is expected to converge fast.

The elastic electron scattering can proceed via two chan-
nels: nonresonant and resonant ones. In the nonresonant
channel the electron is scattered on the long-range (Coulomb)
potential created by a partially screened nucleus. The resonant
channel becomes efficient if the energy of the initial electron
configuration is close to the energy of one of the autoionizing
states of the corresponding He-like ion.

Then the scattering of an electron can occur due to the
formation of a doubly excited state d and its subsequent Auger
decay

e− + X (Z−1)+(1s) → X (Z−2)+(d ) → e− + X (Z−1)+(1s). (1)

For the nonresonant region of impact energies the polarization
properties are mainly determined by the long-range Coulomb
interaction. The formation of intermediate autoionizing states
significantly enhances the interelectron interaction and facili-
tates spin exchange between the electrons that can drastically
change the polarization properties of the scattering process.
The effect of autoionizing states is stronger than that studied
in [20] for the electron scattering on a neutral atom.

We note that the process of the resonant electron scattering
on multiply and highly charged ions was experimentally stud-
ied in [28–33], where the focus was on measuring differential
cross sections. However, the polarization properties of this
process were not considered.

The paper is organized as follows. In Sec. II, based on the
parametrization proposed in [6,7,20], we introduce the com-
plete set of parameters describing the polarization properties
of the scattered electron and perform their calculation within
the framework of the QED theory developed in our previous
paper [34]. In particular, the calculation takes into account
the one- and two-photon exchange corrections, including the
Breit interelectron interaction and the retardation effect. Ra-
diation corrections such as the corrections for the electron
self-energy and vacuum polarization are taken into account in
the first order of the QED perturbation theory. In Sec. III we
present numerical results for the polarization parameters in
the electron scattering on B4+, Ca19+, Kr35+, and Xe53+ ions.
Section IV contains a summary and our main conclusions.

II. SCATTERING OF POLARIZED ELECTRONS

In this work we consider the process of scattering in the rest
frame of the atomic nucleus which is assumed to be infinitely
heavy. Relativistic units are used throughout the paper unless
stated otherwise.

A. Scattering theory

The elastic scattering of electrons on H-like ions can pro-
ceed via two channels: the Coulomb nonresonant channel and
the resonant channel via formation and subsequent decay of
intermediate autoionizing states. These two channels are usu-
ally described in two different ways. The long-range Coulomb
interaction with the nucleus partially screened by the bound
electron must be treated nonperturbatively. In contrast, in the
resonant channel, the formation of the autoionizing states is
described within QED, which implies the use of the QED
perturbation theory. Nevertheless, in order to correctly ac-
count for the interference between the two channels, the whole
process must be described within a single approach. For this
purpose, we use a method we developed in [34]. Below we
present the key points of our approach.

We introduce � i
mi,μi

(pi ) and �
f

m f ,μ f (p f ) describing the ini-
tial and final states of the two-electron system

� i
mi,μi

(pi ) = 1√
2

det
{
ψ (+)

piμi
(r1)ψ1smi

(r2)
}
, (2)

� f
m f ,μ f

(p f ) = 1√
2

det
{
ψ (−)

p f μ f
(r1)ψ1sm f

(r2)
}
, (3)

where mi and m f are the bound (1s) electron total momentum
projections on the z axis and ψ (±)

pμ (r) is the incoming (+)
or outgoing (−) wave function of an electron in an external
Coulomb field with the asymptotic momentum (p = pν̂)

ψ (±)
pμζ

(r) = N
∑
jlm

�+
jlm(ν)vμζ

e±iφ jl ilψε jlm(r), (4)

where

N = (2π )3/2

√
pε

(5)

is the normalization factor, φ jl is the phase shift [35], and the
spinor vμζ

describes the electron with the (asymptotic) projec-
tion of spin μζ on the direction ζ̂ = ζ/|ζ| and is determined
by the equation

1
2 (ζ̂σ)vμζ

= μζvμζ
. (6)

The Coulomb scattering amplitude is well known [7,8]. In
our previous work we showed that the Coulomb amplitude can
be expressed as

U Coul
μiμ f

= N2 (−1)p

(2π )2

∑
m

[vμ f (ν f )]∗mMCoul
mμi

(θ, ϕ). (7)

Following [36], we introduced the matrix M as

MCoul(θ, ϕ) =
(

f (θ ) g(θ )e−iϕ

−g(θ )eiϕ f (θ )

)
, (8)

where f (θ ) and g(θ ) are the relativistic scattering amplitudes

f (θ ) = 1

2π i

∑
jl

|κ|(e2iφκ − 1)P0
l (cos θ ), (9)

g(θ ) = 1

2π i

∑
l

(e2iφκ=−l−1 − e2iφκ=l )P1
l (cos θ ), (10)

where κ = ( j + 1
2 )(−1) j+l+1/2 is the Dirac quantum number,

φκ ≡ φ jl , and Pm
l are the associated Legendre polynomials.
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In order to describe the electron scattering process within
the QED perturbation theory, we introduce the formal per-
turbation series for the Coulomb interaction of the incident
electron with the screened nucleus:

Upert =
∑

k

(
U Coul

k + U Auger
k

)
. (11)

Here k denotes the order of the QED perturbation series. The
purpose of this expansion is to establish the phase difference
between the Coulomb amplitude obtained nonperturbatively
[see Eq. (7)] and the Coulomb amplitude obtained as a formal
series within the QED perturbation theory U Coul

pert = ∑
k U Coul

k .
Then the formal series for the Coulomb amplitude U Coul

pert can
be replaced by U Coul with the corresponding phase factor.
Within our method, we define the amplitudes so that the phase
factor is equal to unity:

U Coul
pert = U Coul. (12)

Below we assume that Eq. (12) takes place. Accordingly, the
amplitude can be presented as

U = U Coul + U Auger. (13)

The amplitude U Auger = ∑
k U Auger

k is calculated within the
QED perturbation theory [34].

Within the standard QED perturbation theory, the Furry
picture is employed where the interaction of all electrons with
the Coulomb field of the nucleus (V = −αZ/r) is fully taken
into account from the onset. However, in our previous work
we demonstrated that, in the case of electron scattering on an
ion that has bound electrons, the terms of the perturbation se-
ries for the resonant amplitude (U ) would be divergent. These
divergences arise because the long-range Coulomb interaction
between the incident and bound electrons is described with
a finite number of perturbation series terms. This problem
was discussed in detail in [34]. We can circumvent this issue
by considering the incident electron as moving in the field
V = −α(Z − 1)/r with the corresponding modification of the

Furry picture. Thus, the long-range interaction of the incident
electron with the bound electron is included in the Coulomb
amplitude U Coul. The interaction of the incident electron with
the remaining potential V = α/r is taken into account within
the perturbation theory. The divergences in these additional
terms completely cancel the divergences arising in the pertur-
bation series for U Auger.

For the resonant part of the amplitude we employ the
line-profile approach (LPA) [37]. Within the LPA the energy
level of an atomic system is associated with a resonance in
some scattering process. Usually, the photon (ω) scattering is
considered. The amplitude of this process is connected with
the S matrix as

S = (−2π i)δ(Ei − E f )U . (14)

In [37] we showed that it can be expressed as

UA0 = T + 1

ω + EA0 − V
T, (15)

where T and T + describe the absorption and emission of the
photon (ω) and EA0 is the energy of the ground state. The
matrix V can be presented as

V = V (0) + V, (16)

where V (0) is the sum of one-electron Dirac Hamiltonians
and represents the noninteracting (with the quantized fields)
electrons and V includes various QED corrections and is
derived order by order within the QED perturbation theory.
The excited states are associated with the corresponding reso-
nances defined by Eq. (15).

A detailed description of this method and the derivation of
the matrix V were given in [37]. Below we present the most
important corrections for the process under consideration. We
note that in this work the spin of the nucleus is neglected.

First we discuss the interelectron interaction corrections.
The photon propagator in the Coulomb gauge reads

Dc,t
μ1μ2

(x1, x2) =
∫ ∞

−∞
d� Ic,t

μ1μ2
(|�|, r12)e−i�(t1−t2 ), (17)

where r12 = |r1 − r2| and

Ic
μ1μ2

= δμ10δμ20

r12
, (18)

I t
μ1μ2

(�) = −
(

δμ1μ2

r12
ei�r12 + ∂

∂xμ1
1

∂

∂xμ2
2

1 − ei�r12

r12�2

)
(1 − δμ10)(1 − δμ20). (19)

Here Ic
μ1μ2

describes the Coulomb photons and I t
μ1μ2

corresponds to the Breit interaction.
The one-photon exchange correction can be written in the form

V 1ph ≡ αI (| − εa + εa′ |)a′b′ab (20)

= α

∫
dr1dr2ψ̄a′ (r1)ψ̄b′ (r2)γ μ1

1 γ
μ2
2 Iμ1μ2 (| − εa + εa′ |, r12)ψa(r1)ψb(r2). (21)

The two-photon exchange correction reads

V 2ph(ω) = α2 i

2π

E (0)
n1n2

�=E (0)
ab∑

n1n2

∫ ∞

−∞
d�

I (|�|)a′b′n1n2 I (| − � − εa + εa′ |)n1n2ab

[−� + εa′ − εn1 (1 − i0)][EA0 + ω + � − εa′ − εn2 (1 − i0)]
(22)
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−α2 i

2π

E (0)
n1n2

=E (0)
ab∑

n1n2

∫ ∞

−∞
d�

I (|�|)a′b′n1n2 I (| − � − εa + εa′ |)n1n2ab

(� − εa′ + εn1 + εn1 i0)[EA0 + ω + � − εa′ − εn2 (1 − i0)]
, (23)

where E (0)
n1n2

= εn1 + εn2 and E (0)
ab = εa + εb are the sums of one-electron Dirac energies.

For the systems under consideration (Z < 54) the so-called Breit approximation can be employed. In this approximation we
disregard the retardation:

I t
μ1μ2

(�) = I t
μ1μ2

(0). (24)

Then the two-photon exchange correction becomes

V 2ph(ω) = α2

E (0)
n1n2

�=E (0)
ab∑

n1n2

(�(+)
n1

�(+)
n2

− �(−)
n1

�(−)
n2

)Ia′b′n1n2 (0)In1n2ab(0)

EA0 + ω − εn1 − εn2

, (25)

where �(±)
n are the projectors on the states with positive (neg-

ative) energies. The resonance condition for Eq. (15) in the
lowest order of QED perturbation theory is given by

ω + EA0 = εa + εb. (26)

Other important corrections are the radiative corrections
[37,38]: the electron self-energy and the vacuum polariza-
tion. The real part of the radiative corrections is subject to
renormalization. It contributes mainly to the energy of the
two-electron configurations or to the positions of the reso-
nances. Taking into account the real part of the self-energy
corrections leads to various shifts of the resonances. The
imaginary part is convergent and usually gives the leading
contribution to the width of the energy level. Two-photon
exchange corrections can also give an important contribution
to the width.

Below we demonstrate that the polarization properties are
affected by the presence of the resonances. Accordingly, the
influence of the radiative corrections on the polarization prop-
erties is determined by their contributions to the positions
and widths of the resonances. For the calculation of the elec-
tron self-energy correction, we use the methods presented in
[38–41].

The matrix V is a complex symmetric matrix. The eigen-
values of the matrix V can be written as E − i/2�, where E
is the energy of a state of the system and � is the width of the
energy level.

We consider V as a block matrix:

V =
[
V11 V12

V21 V22

]
=

[
V (0)

11 + V11 V12

V21 V (0)
22 + V22

]
. (27)

The matrix V11 is defined on the set g. In this case, we choose
the set g to contain all two-electron configurations formed
using the bound electron states with the principal quantum
numbers n = 1, 2, 3 and continuum state describing the in-
cident electron. The treatment of the continuum electron is
discussed in detail in [42]. The matrix V11 is a finite matrix
and can be diagonalized numerically:

V diag
11 = BtV11B, Bt B = I. (28)

Using the matrix B, we obtain the expression for the eigenvec-
tors of V ,

�ng =
∑
kg∈g

Bkgng�
(0)
kg

+
∑

k /∈g,lg∈g

[V21]klg

Blgng

E (0)
ng − E (0)

k

�
(0)
k + · · · ,

(29)

where ng describes the reference state. The indices k and
lg denote the two-electron configurations: The index lg runs
over all configurations of the set g; the index k runs over all
configurations not included in the set g. The amplitude U Auger

can then be expressed as a matrix element of the operator V̂ ,

U Auger = 〈
� f

m f ,μ f
(p f )

∣∣V̂ |�ini
〉
, (30)

where �
f

m f ,μ f (p f ) describes the final state of the scattering
system [see Eq. (3)] and �ini is given by Eq. (29) with the
initial state of the system taken as the reference state.

B. Polarization theory

A partially polarized electron beam is described by the
density matrix ρ̂s [35,43],

ρ̂s = 1
2 (m + p̂)(1 − γ5ŝ), (31)

where

p̂ = pμγ μ = p0γ0 − pγ, (32)

ŝ = sμγ μ = s0γ0 − sγ, (33)

s = ζ + (ζp)p
m(ε + m)

, s0 = ζp
m

, (34)

m is the electron mass, ζ is the polarization vector of the
electron in the electron rest frame, and P = |ζ| � 1 is the
degree of polarization. Dirac gamma matrices here are defined
as

γ0 = β =
(

I 0
0 −I

)
, (35)

γ = βα =
(

0 σ

−σ 0

)
, (36)

γ5 = iγ1γ2γ3γ0. (37)
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If the density matrix of the initial state is ρ̂i, then the density
matrix describing the electron after scattering can be written
as

ρ̂ = Sρ̂iS̄, (38)

where S is the S matrix S̄ = γ0S+γ0.
If one is interested in the probability of transition from state

i described by the density matrix ρ̂i into state f described by
ρ̂ f , one should use the following formula for the differential
cross section with the appropriate coefficient [5]:

dσ (pi, ζi; p f , ζ f ) ∼ Tr(ρ̂ f ρ̂) = Tr(ρ̂ f Sρ̂iS̄). (39)

We note that here ρ̂ f is the density matrix that determines the
state of the electron detected in the experiment rather than the
state of the scattered electron.

In the process under consideration the initial and final elec-
tron states are positive energy states. In this case, taking into
account that the electron wave function can be written in terms
of two-electron wave functions with two certain polarizations,
the density matrix can be represented by a 2 × 2 matrix [5,35].
This matrix can be written as

ρζ = 1
2 (1 + ζσ ), (40)

where ζ is the polarization vector of the electron in the elec-
tron rest frame. The density matrix with |ζ| = 1 describes a
pure state with certain polarization. For mixed states |ζ| < 1.
A completely unpolarized state corresponds to ζ = 0.

In the case of the elastic electron scattering on a hydro-
genlike ion we must handle the two-electron system. Since
in the initial state the polarizations of the incident and bound
electrons are assumed to be independent, the density matrix of
the initial two-electron state can be taken as a direct product
of the corresponding single-electron density matrices [5]. Ac-
cordingly, in order to describe the initial state of the scattering
system, we use the 4 × 4 density matrices of the form

ρ̂ζη = 1
4 (1 + ζσ1)(1 + ησ2), (41)

where ζ is the polarization vector of the incident (or scattered)
electron and η is the polarization vector of the ion (in our case,
the polarization of the 1s electron). The matrix indices 1 and 2
refer to the incident (scattered) and 1s electrons, respectively.

It is convenient to take the z axis in the direction of the in-
cident beam and introduce angles θ and ϕ for the direction of
the scattered electron momentum. The scattering is described
by the 4 × 4 matrix M [20]. Using our method (see Sec. II A),
we can express the elements of matrix M via the amplitude
defined by Eq. (13):

Mmi,μi;m f ,μ f (θ, ϕ) = Umi,μi;m f ,μ f (θ, ϕ)

= U Coul
μiμ f

(θ, ϕ)δmim f + U Auger
mi,μi;m f ,μ f

(θ, ϕ).

(42)

We note that in the calculation of the amplitude all spin pro-
jections must be taken with respect to one chosen axis (we use
the z axis).

It is convenient to consider the total amplitude of the
process as the sum of the Coulomb amplitude correspond-
ing to the Coulomb scattering by the screened potential of
the nucleus (Z − 1)/r and the Auger amplitude. The Auger

amplitude includes contributions from the interelectron inter-
action: the resonant channel as well as the remaining part of
the nonresonant channel.

The scattering matrix M can be expressed in terms of Pauli
matrices σ̂ . Since the matrix M must be invariant with respect
to the space rotation and reflection and also time reversal, only
the following six linearly independent terms remain [20]:

M = a0 + a1(σ1n̂) + a2(σ2n̂) + a12(σ1n̂)(σ2n̂)

+ b12(σ1k̂)(σ2k̂) + c12(σ1q̂)(σ2q̂). (43)

Here the vectors n̂, k̂, and q̂ are introduced,

n̂ = pi × p f

|pi × p f |
, (44)

k̂ = pi + p f

|pi + p f |
, (45)

q̂ = pi − p f

|pi − p f |
, (46)

and a0, a1, a2, a12, b12, and c12 are functions of only θ .
These coefficients can be easily obtained if the elements of
the matrix M are known (for details see Appendix A). For the
Coulomb scattering of an electron, M reduces to

MCoul = MCoul(θ, ϕ) ⊗ I = f (θ ) + ig(θ )(σ1n̂), (47)

where I is the 2 × 2 identity matrix and MCoul(θ, ϕ) is a
matrix defined by Eq. (8). We note that the scattering can be
fully described with 11 real numbers since the matrix M is
determined by six complex numbers [Eq. (43)] and the phase
of M can be chosen arbitrarily [20].

If the initial state is described by some density matrix
ρ̂i, the density matrix of the two-electron system after the
scattering is given by

ρ̂ = Mρ̂iM
+ (48)

and the scattered electron polarization can be obtained using

ζe = Tr(ρ̂σ1)

Tr(ρ̂)
. (49)

The expression for the differential cross section is determined
by the experimental setup. We suppose that the properties of
the electrons that are detected in the experiment are described
by the density matrix ρ̂ f . Then the corresponding differential
cross section can be obtained with the use of the formula

dσ (pi, ζi, ηi; p f , ζ f , η f )

= 2π

j
Tr(ρ̂ f Mρ̂iM

+)δ(ε f − εi )
d3 p f

(2π )3
, (50)

j = pi

εi
, (51)

ρ̂i = 1
4 (1 + ζiσ1)(1 + ηiσ2), (52)

ρ̂ f = 1
4 (1 + ζ f σ1)(1 + η f σ2). (53)

The matrix ρ̂i taken in the form (52) describes the initial state,
where ζi and ηi are the polarizations of the incident and bound
electrons, respectively.

If an electron is scattered from an unpolarized ion and only
the electron polarization is of interest, in order to obtain the
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respective differential cross section one should set ηi and η f in
Eqs. (50)–(53) to zero. After calculating the trace in Eq. (50)
we get the formula

dσ

d�
(pi, ζi; p f , ζ f )

= 1

4
w{I (θ )(1 + ζiζ f ) + D(θ )(ζin̂ + ζ f n̂)

+ F (θ )[ζi × ζ f ]n̂ − G(θ )[ζi × n̂][ζ f × n̂]

−H (θ )[ζi × k̂][ζ f × k̂] − K (θ )[ζi × q̂][ζ f × q̂]},
(54)

where

I (θ ) = |a0|2 + |a1|2 + |a2|2 + |a12|2 + |b12|2 + |c12|2,
(55)

D(θ ) = 2 Re(a0a∗
1 + a2a∗

12), (56)

F (θ ) = 2 Im(a0a∗
1 + a2a∗

12), (57)

G(θ ) = 2(|a1|2 + |a12|2), (58)

H (θ ) = 2|b12|2, (59)

K (θ ) = 2|c12|2, (60)

w = 2π

j

∫
dε f δ(ε f − εi )

ε f p f

(2π )3
= ε2

i

(2π )2
. (61)

A similar formula for the Coulomb scattering was derived in
[6,7].

Even if an unpolarized electron is scattered on an unpo-
larized ion, both electrons still become partially polarized. In
this case, the density matrix of the initial state ρ̂i reduces to the
density matrix of the completely unpolarized system ρ̂0 = 1

4 .
Using Eq. (48), we obtain the following expression for the
density matrix of the two-electron system after the scattering:

ρ̂ = 1
4 MM+. (62)

Any 4 × 4 matrix can be represented in terms of the direct
products of the 2 × 2 identity matrix I and Pauli matrices σ.
It is convenient to use the following representation for the
density matrix ρ̂ since the coefficients of the expansion have
clear physical meaning:

ρ̂ = Ĩ (θ )

(
1 + ζe(θ )σ1 + ηion(θ )σ2 +

∑
i j

Ci j (θ )σ1iσ2 j

)
.

(63)
Here ζe is the polarization vector of the scattered electron,
ηion is the polarization vector of the ion after the scattering,
and Ci j determines the correlation between polarizations of
the electron and the ion. Using Eq. (62) and comparing it with
Eqs. (50) and (54), the parameters introduced in Eq. (63) can
be expressed as

Ĩ (θ ) = 1

4
Tr(MM+) = I (θ ), (64)

ζe = Tr(MM+σ1)

Tr(MM+)
= n̂

D(θ )

I (θ )
, (65)

ηion = Tr(MM+σ2)

Tr(MM+)
= n̂

Dion(θ )

I (θ )
, (66)

Dion(θ ) = 2 Re(a0a∗
2 + a1a∗

12). (67)

The functions D and Dion determine the transverse polar-
ization of the electron and the ion acquired in the process
of scattering. The polarization vector of the scattered elec-
tron (ζe) can also be presented as the difference between the
cross sections for scattering of an unpolarized electron on
an unpolarized ion with the opposite scattered electron spin
projections on n̂ (μ⊥ = ± 1

2 ) divided by the total cross section

ζe = n̂ · S0n̂, (68)

where

Sζ̂i ζ̂ f
=

(
dσ
d�

)+
ζ̂i ζ̂ f

− (
dσ
d�

)−
ζ̂i ζ̂ f(

dσ
d�

)+
ζ̂i ζ̂ f

+ (
dσ
d�

)−
ζ̂i ζ̂ f

, (69)

(
dσ

d�

)±

ζ̂i ζ̂ f

= dσ

d�
(pi, ζ̂i; p f ,±ζ̂ f ). (70)

It follows from Eq. (54) that

S0n̂ = Sk̂n̂ = Sq̂n̂ = Sp̂i n̂, (71)

so scattering of electrons polarized in any direction in the
plane of scattering (for example, along momentum pi) can
also be used to determine ζe.

Using Eqs. (65), (68), and (71), we can write

S0n̂ = Sk̂n̂ = Sq̂n̂ = Sp̂in̂ = D(θ )

I (θ )
. (72)

Also, the following expressions can be derived for the remain-
ing functions:

Sq̂k̂ = −Sk̂q̂ = F (θ )

I (θ )
, (73)

Sn̂n̂ = 1 − H (θ ) + K (θ )

I (θ ) + D(θ )
, (74)

S−n̂−n̂ = 1 − H (θ ) + K (θ )

I (θ ) − D(θ )
, (75)

Sk̂k̂ = 1 − G(θ ) + K (θ )

I (θ )
, (76)

Sq̂q̂ = 1 − G(θ ) + H (θ )

I (θ )
. (77)

The differential cross section for the scattering of elec-
trons with nonzero projection of polarization in the direction
perpendicular to the momentum of the incident electron is de-
pendent not only on the polar angle θ but also on the azimuthal
angle ϕ (the direction of n̂ is defined by the plane of scattering
and changes with the azimuthal angle ϕ corresponding to the
momentum of the scattered electron):

dσ

d�
(θ, ϕ) = 1

4
wI (θ )

(
1 + D(θ )

I (θ )
(ζin̂)

)
. (78)

Now consider the scattering of a polarized electron on an
unpolarized ion. Similarly to Eq. (65), the polarization of the
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FIG. 1. Functions D(θ )/I (θ ) (left column), F (θ )/I (θ ) (middle column), and G(θ )/I (θ ) (right column) for nonresonant scattering on Ca19+

and Kr35+ (black solid line) and Coulomb scattering by the screened potential of the nucleus (red dashed line). The kinetic energy of incident
electron is 2.77 keV for Ca19+ and 9.22 keV for Kr35+.

scattered electron is given by

ζe = Tr[M(1 + ζiσ1)M+σ1]

Tr[M(1 + ζiσ1)M+]
. (79)

For polarizations directed along n̂ and perpendicular to n̂ we
get

ζi = ±n̂ −→ ζe
⊥ = ±n̂

(
1 − H + K

I ± D

)
= ±n̂S±n̂±n̂, (80)

ζin̂ = 0 −→ ζe
‖ = D

I
n̂ +

(
1 − G + K

I

)
(ζik̂)k̂

+
(

1 − G + H

I

)
(ζiq̂)q̂ − F

I
[ζi × n̂]

= S0n̂n̂ + Sk̂k̂(ζik̂)k̂ + Sq̂q̂(ζiq̂)q̂ + Sq̂k̂[ζi × n̂], (81)

respectively. The function F determines the change of polar-
ization in the scattering plane and the functions G, H , and K
describe the depolarization of the electron.

III. RESULTS AND DISCUSSION

The elastic scattering of an electron on a H-like ion can
proceed via nonresonant and resonant (with the formation
of intermediate autoionizing states) channels. We start our
discussion by considering the nonresonant channel.

A. Nonresonant scattering

Within our approach we distinguish between two interac-
tions contributing to the elastic electron scattering: Coulomb
interaction of the incident electron with the long-range poten-
tial of the ion (which does not change the polarization of the
ion) and its interaction with the 1s electron (which can result
in the spin exchange between two electrons). We note that the

Coulomb interaction with the 1s electron is partially taken into
account nonperturbatively, so the nucleus is considered to be
partially screened by the electron.

The amplitude defined by Eqs. (8) and (47) corresponds to
the Coulomb interaction with the partially screened nucleus
and describes the Coulomb scattering. The Coulomb scatter-
ing of polarized electrons has been thoroughly investigated
(see [1,6,7,44]). According to Eq. (65), the polarization of
the scattered electron is described by the function D(θ ). If
an unpolarized electron is scattered by the Coulomb field of
the nucleus, after scattering it has a degree of polarization
D(θ )/I (θ ), which then can be observed in the double-
scattering experiment by looking at the dependence on the
azimuthal angle of the differential cross section for the second
scattering [1,44]. The effect becomes particularly noticeable
for high Z . In order to check the accuracy of our calculations
for the Coulomb part of the amplitude, we compared our re-
sults for D(θ )/I (θ ) with those obtained in [8]. We found them
to be in excellent agreement. A special case of Eq. (54) for the
Coulomb scattering cross section [with H (θ ) = K (θ ) = 0] is
given in [6,7].

First we consider the nonresonant energy region of the
incident electron. Figure 1 shows D/I , F/I , and G/I as func-
tions of the polar angle θ for the electron scattering on Ca19+

and Kr35+. The incident electron kinetic energies (2.77 keV
for Ca19+ and 9.22 keV for Kr35+) are chosen so that the
resonances are far enough to make no contribution. The black
solid line corresponds to the scattering on the H-like ion and
red dashed line represents the results of an approximation in
which the role of the 1s electron is reduced to screening the
nucleus and the exchange interaction between electrons is not
taken into account. While for D/I and F/I the contribution
due to the exchange interaction with the 1s electron is rather
small and the shape of the curve is mainly determined by
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FIG. 2. Functions H (θ )/I (θ ) (black solid line) and K (θ )/I (θ ) (red dashed line) for nonresonant scattering on Ca19+ and Kr35+. The kinetic
energy of incident electron is 2.77 keV for Ca19+ and 9.22 keV for Kr35+.

the Coulomb interaction, for G/I the situation is different.
For small Z the main contribution to the function G comes
from the exchange of projections of spin between the inci-
dent electron and the 1s electron. Thus, removing the spinor
structure of the bound electron from consideration (red dashed
line) leads to a significant drop in the function G. At small Z ,
G/I reaches a maximum at 180◦. For higher Z the Coulomb
scattering contribution becomes more important. The shape of
the curve changes and the maximum moves to around 120◦.

Figure 2 presents the functions H/I and K/I for the same
energies as in Fig. 1. For the Coulomb scattering H (θ ) =
K (θ ) = 0, which means that the electron polarization per-
pendicular to the plane of scattering is not changed by the
scattering. In the presence of one bound electron transverse
polarization change becomes possible due to the spin ex-
change between electrons. Since the only contribution to H/I
and K/I is due to the interaction with the bound electron, these
functions decrease with Z .

For the nonresonant scattering, the difference between the
functions H (θ ) and K (θ ) is minimal (especially for small Z).
Provided that H (θ ) = K (θ ), we can choose b12 = c12 [see
Eqs. (43), (59), and (60)]. Then the matrix M defined by
Eq. (43) is symmetric with respect to the rotation around n̂ and
the directions k̂ and q̂ are no longer special. This approximate
symmetry also holds for some of the resonances (see Figs. 8
and 9).

B. Resonant scattering

In the process of electron scattering by H-like ions, the
energy region of the incident electron at which scattering
occurs with the formation and subsequent Auger decay of
autoionizing states is of particular interest. In the case of
intermediate- and small-Z ions, the resonant channel becomes
influential. Below we discuss that the appearance of the reso-
nant channel leads to both qualitative and quantitative changes
in the polarization parameters.

The function D(θ )/I (θ ), also known as the Sherman asym-
metry function [8], determines the polarization the initially
unpolarized electron acquires in the process of scattering

[Eq. (65)] as well as asymmetry with respect to the azimuthal
angle ϕ if the scattered electron has nonzero polarization
perpendicular to its momentum [Eq. (78)]. The results of
our calculations of D(θ )/I (θ ) for the scattering on Ca19+

as a function of the incident electron kinetic energy in the
vicinity of the resonances are presented in Fig. 3 for five
different angles. The resonance shape strongly depends on
the scattered electron angle. Depending on the resonance,
D(θ )/I (θ ) reaches a maximum at θ = 90◦–150◦. Therefore,
we chose θ = 120◦ to study the behavior of D(θ )/I (θ ) for the
scattering on different ions. The parameter D/I at θ = 120◦
for the electron scattering on B4+, Ca19+, Kr35+, and Xe53+

is presented in Fig. 4 as a function of the incident electron
kinetic energy. We see that for the scattering on low- and
intermediate-Z ions the formation of autoionizing states can
cause a significant increase of the spin asymmetry (up to 60%
for scattering on B4+), which is otherwise very small (up to
2% for scattering on Ca19+ and even less for lighter ions).
With the growth of Z , the role of the background becomes
more significant.

In Figs. 5 and 6 the results for F (θ )/I (θ ) are pre-
sented in the same manner. The physical meaning of the
function F/I is as follows. If the incident electron is

TABLE I. Order of resonances in Figs. 4–11.

Resonance Intermediate
number autoionizing state

1 (2s)2
0

2 (2s2p1/2)1

3 (2s2p1/2)0

4 (2s2p3/2)2

5 (2p1/2)2
0

6 (2p3/2)2
2

7 (2p1/22p3/2)1

8 (2p1/22p3/2)2

9 (2s2p3/2)1

10 (2p3/2)2
0
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FIG. 3. Function D(θ )/I (θ ) for electron scattering on Ca19+ near the resonances for five different angles θ of the scattered electron. The
vertical gray dashed line denotes the resonance energy.

longitudinally polarized, F (θ )/I (θ ) determines the scat-
tered electron polarization component lying in the plane
of scattering and perpendicular to the incident electron
momentum.

For the description of depolarization of an electron in the
process of scattering, it is convenient to alternate between the
functions G(θ )/I (θ ), H (θ )/I (θ ), and K (θ )/I (θ ) [Eqs. (58)–
(60)] and parameters Sk̂k̂, Sq̂q̂, and Sn̂n̂. The parameters Sζ̂ζ̂
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FIG. 4. Function D/I for scattering of electrons on B4+, Ca19+,
Kr35+ and Xe53+ to the angle θ = 120◦. The vertical dashed lines
mark the positions of resonances. The corresponding autoionizing
states are presented in Table I.

describe the scattering of an electron with + 1
2 spin projec-

tion in the direction ζ̂ and represent the difference between
the number of electrons that have the spin projections + 1

2
and − 1

2 in the direction ζ̂ after scattering normalized by
the total number of scattered electrons [Eqs. (69) and (70)].
The parameters Sk̂k̂, Sq̂q̂, and Sn̂n̂ directly correspond to the
change of projection of spin in a certain direction for three
special directions, while the functions G(θ )/I (θ ), H (θ )/I (θ ),
and K (θ )/I (θ ) have a clear connection to the coefficients b12

and c12 from Eq. (43). The connection between G(θ )/I (θ ),
H (θ )/I (θ ), and K (θ )/I (θ ) and depolarization tensor intro-
duced in [20] is presented in Appendix B.

Figures 7, 8, and 9 present the functions G(θ )/I (θ ),
H (θ )/I (θ ), and K (θ )/I (θ ), respectively, for energies close
to the resonances and for five different scattered electron
angles. For most resonances the maxima of these functions
are reached at θ = 180◦.

Figures 10 and 11 present Sk̂k̂(180◦) and Sq̂q̂(180◦), re-
spectively, for scattering on B4+, Ca19+, Kr35+, and Xe53+.
We note that for the backward scattering, k̂ is zero for elastic
scattering and n̂ is not well defined. The parameters Sk̂k̂ and
Sn̂n̂ still exist in the limit θ → ∞ and Sk̂k̂(180◦) = Sn̂n̂(180◦).
These figures show that the probability of a change in the
spin projection is highly dependent on the specific resonance.
Since the depolarization of the electron in the direction n̂ is
determined solely by the spin exchange, the significant devi-
ation of the parameter Sn̂n̂ from unity indicates the presence
of a strong exchange interaction between incident and bound
electrons. While the depolarization of an electron in the plane
of scattering can occur in the absence of spin exchange due to
the spin-orbit interaction, in the case of the elastic scattering
on H-like ions the corresponding parameters Sk̂k̂ and Sq̂q̂ are
heavily influenced by the exchange interaction.

Figure 12 shows the depolarization asymmetry for the scat-
tering of electrons on B4+ with opposite polarizations along n̂.
The asymmetry manifests in the difference between Sn̂n̂ and
S−n̂−n̂. The incident electron energy and the scattering angle
were chosen to maximize the asymmetry function D/I . Again,
we see that the asymmetry is significant in the resonance
region.

C. Change of ionic polarization

In the collisions of an unpolarized electron with an unpo-
larized ion the ion also acquires polarization perpendicular
to the plane of scattering equal to Dion(θ )/I (θ ). Figure 13
presents the function Dion(θ )/I (θ ) for the electron scattering
on B4+ as a function of the incident electron kinetic energy
(on the left) and as a function of the scattered electron angle
(on the right).

This parameter determines the polarization that an initially
unpolarized ion acquires in the process of scattering as well
as the asymmetry of the differential cross section for the
scattering on polarized ions. It is the analog of the Sherman
asymmetry function for ions. We found that for B4+ the
asymmetry is significant and for certain impact energies and
scattering angles it can reach 70%. As in the case of electrons,
this asymmetry can be used for producing or measuring ion
polarization.

The function Dion(θ )/I (θ ) also determines the cross-
section asymmetry with respect to the azimuthal angle ϕ.
If an unpolarized electron is scattered from a polarized ion,
the differential cross section is dependent on both polar and
azimuthal angles. If the polarization of the ion η is given
by the degree of polarization P, the polar angle χ , and the
azimuthal angle ω, the cross section can be written as

dσ

d�
(θ, ϕ) ∼ I (θ ) + Dion(θ )P sin χ sin(ω − ϕ). (82)

This formula is completely analogous to Eq. (78) with ζ and
D(θ ) switched to η and Dion(θ ).

We note that polarized ion beams can be used for tests
of fundamental symmetries [45–47]. However, at present the
production of polarized beams of highly charged ions as
well as the control and measurement of the polarization is a
challenge for experimentalists [47,48]. The asymmetry of the
cross section caused by the polarization of the ion beam, given
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FIG. 5. Same as in Fig. 3 but for F (θ )/I (θ ).
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FIG. 6. Same as in Fig. 4 but for F/I .

by Eq. (82), can be used to measure the ion beam polarization.
By looking at the asymmetry of the cross section with respect
to ϕ one can determine the ion polarization component trans-
verse to the incident electron momentum. If θ is fixed then the
maximum and the minimum of the differential cross sections
are reached at ϕ = ω − π/2 and ϕ = ω + π/2, respectively,
and the difference between the maximum and the minimum is
equal to 2Dion(θ )P⊥, where P⊥ is the ion polarization compo-
nent transverse to the incident electron momentum. A similar
principle is used in Mott polarimetry [3]. In the case of reso-
nant electron scattering, the asymmetry increases significantly
and its measurement can be used to determine the polarization
of the beams of highly charged ions.

IV. CONCLUSION

We have presented a detailed study of the polarization
properties of the elastic electron scattering on H-like ions. Our
study was carried out within the framework of the relativistic
QED theory, which is perfectly suited to describe both the
spin-orbit and exchange interactions determining the change

of polarization in this process. We have considered the scat-
tering on a wide range of ions (from B4+ to Xe53+), paying
special attention to impact energies at which intermediate LL-
shell autoionizing states are formed. We have explicitly shown
that the involvement of the autoionization states leads to quan-
titative and qualitative changes in the polarization parameters,
in particular, significantly increasing the spin asymmetry. In
our case the effect of autoionizing states turned out to be much
stronger than that reported in [20] for the electron scattering
on a neutral atom.

We have also demonstrated that for the resonant electron
scattering on ions with Z up to 50, not only the relativistic
spin-orbit but also the exchange interaction plays a crucial
role and, as a result, the polarization properties are determined
by their joint action. In particular, the exchange interaction,
by enabling spin transfer between the incident and bound
electrons, can fundamentally change the polarization of the
scattered electron.

Our main focus was on the scattering of electrons on unpo-
larized ions. The electron polarization change in this process
can be completely described by the five parameters D, F ,
G, H , and K together with the unpolarized differential cross
section I [see Eqs. (31)–(37)]. These five parameters were
calculated and thoroughly investigated for both the nonres-
onant and resonant energy regions as functions of the incident
electron energy and the scattered electron angle. Unlike pre-
vious studies, our method allows us to accurately account for
the possible spin exchange between the incident electron and
the ion and to investigate the behavior of parameters G, H ,
and K , which are heavily influenced by the spin exchange. In
fact, the parameters H and K become nonzero only when the
spin-exchange interaction is taken into account.

We have shown that, unlike the case of electron potential
scattering on light ions (where the unpolarized incident elec-
tron essentially does not acquire polarization), in the process
of resonant scattering on unpolarized light ions the initially
unpolarized electron can gain very significant polarization (up
to 60% for B4+ ions). In turn, the ion also acquires significant
polarization.

We have also considered the elastic scattering of unpolar-
ized electrons by polarized ions. The nonzero polarization
of the ion beam leads to the asymmetry of the differential
cross section with respect to the rotation around the incident
electron momentum. The fact that this asymmetry increases
significantly in the resonance region can be used to measure
the polarization of low- and intermediate-Z highly charged
H-like ions.
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FIG. 7. Same as in Fig. 3 but for G(θ )/I (θ ).
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APPENDIX A

For the sake of convenience, we choose the indices of the
matrix M to be in the order (++,+−,−+,−−), where the
first index refers to the polarization μ and the second index
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FIG. 8. Same as in Fig. 3 but for H (θ )/I (θ ).

refers to the spin projection to the z axis m of the bound
electron. Also, we set the initial polarization μi equal to +1/2.
Then the corresponding eight matrix elements can be written
as

M11 = Umi=+1/2,μi=+1/2;m f =+1/2,μ f =+1/2, (A1)

M21 = Umi=+1/2,μi=+1/2;m f =−1/2,μ f =+1/2, (A2)

M31 = Umi=+1/2,μi=+1/2;m f =+1/2,μ f =−1/2, (A3)

M41 = Umi=+1/2,μi=+1/2;m f =−1/2,μ f =−1/2, (A4)
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FIG. 9. Same as in Fig. 3 but for K (θ )/I (θ ).

M12 = Umi=−1/2,μi=+1/2;m f =+1/2,μ f =+1/2, (A5)

M22 = Umi=−1/2,μi=+1/2;m f =−1/2,μ f =+1/2, (A6)

M32 = Umi=−1/2,μi=+1/2;m f =+1/2,μ f =−1/2, (A7)

M42 = Umi=−1/2,μi=+1/2;m f =−1/2,μ f =−1/2. (A8)
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FIG. 10. Parameter Sk̂k̂ for scattering of electrons on B4+, Ca19+,
Kr35+, and Xe53+ to the angle θ = 180◦. For the backward scattering
Sn̂n̂ coincides with Sk̂k̂. The vertical dashed lines mark the positions
of resonances. The corresponding autoionizing states are presented
in Table I.

If these matrix elements are known, the remaining eight can
be easily found since

Umi,μi;m f ,μ f = U−mi,−μi;−m f ,−μ f e
2i(mi+μi−m f −μ f )ϕ

(−1)mi+μi−m f −μ f . (A9)

Then for the coefficients in the expansion of M [Eq. (43)] we
can write

a0 = M11 + M22

2
, (A10)

a1 = M31 + M42

2i
e−iϕ, (A11)

a2 = M21e−iϕ − M12eiϕ

2i
, (A12)

a12 = M32 − M41e−2iϕ

2
, (A13)

FIG. 11. Same as in Fig. 4 but for Sq̂q̂.

FIG. 12. Parameters Sn̂n̂ (black solid line) and S−n̂−n̂ (red dashed
line) for scattering on B4+ to the angle θ = 120◦ in the vicinity of
(2s2p1/2)1, (2s2p1/2)0, and (2s2p3/2)2 resonances.
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FIG. 13. Plot of Dion(θ )/I (θ ) for scattering on B4+ as a function of incident electron energy ε in the vicinity of (2s2p1/2)0 and (2s2p3/2)2

resonances (graph on the left) and as a function of θ at energies marked by black dotted lines on the left graph (graphs on the right).

b12 = (1 + sec θ )
M11 − M22

4
+ (1 − sec θ )

M41e−2iϕ + M32

4
(A14)

= M11 − M22

2
+ tan

θ

2

M21e−iϕ + M12eiϕ

2
, (A15)

c12 = (1 − sec θ )
M11 − M22

4
+ (1 + sec θ )

M41e−2iϕ + M32

4
(A16)

= M11 − M22

2
− cot

θ

2

M21e−iϕ + M12eiϕ

2
. (A17)

Also, since M can be described with six complex numbers,
out of the eight matrix elements defined above only six are
independent:

M42 − M31 + M21 + M12e2iϕ = 0, (A18)

sin θ (M11 − M22 − M32 − M41e−2iϕ )

−2 cos θ (M21e−iϕ + M12eiϕ ) = 0. (A19)

The additional symmetry at θ = π results in additional
limitations on the functions D, F , G, and H at this angle. Con-
sider backward scattering (θ = π and p̂i = q̂). If the incident
electron is polarized along the direction of its momentum, the
process is symmetric with respect to the z axis, which means
that the cross section does not depend on the electron polar-
ization perpendicular to the z axis. Therefore, Sp̂in̂ = Sp̂i k̂

= 0
and Sn̂n̂ = Sk̂k̂. This, along with Eqs. (69), (70), and (72)–(77),
immediately leads to

D(π ) = 0, F (π ) = 0, G(π ) = H (π ). (A20)

APPENDIX B

In previous investigations of the electron scattering a
number of parameters were introduced to characterize the

polarization properties. In this paper we adapted the set of
parameters used to describe the Coulomb scattering in [7] to
the electron scattering on H-like ions. The following formulas
can be used to switch to the notation introduced by Burke for
the electron scattering on H-like ions [20]:

I0 = I, (B1)

P = D

I
, (B2)

Dkq = F

I
, (B3)

Dnn = 1 − H + K

I
, (B4)

Dkk = 1 − G + K

I
, (B5)

Dqq = 1 − G + H

I
. (B6)

In order to describe the polarization properties of the electron
scattering on atoms, the parameters S, T , and U are usually
introduced [18]. While for the resonant electron scattering
on H-like ions the use of only three parameters is clearly
insufficient, we can still establish the connection between S,
T , and U and the parameters introduced in this paper. If we
neglect the spin exchange between the incident and bound
electrons, the parameters H (θ ) and K (θ ) become zero. In that
case,

S(θ ) = D(θ )

I (θ )
, (B7)

T (θ ) = 1 − G(θ )

I (θ )
, (B8)

U (θ ) = F (θ )

I (θ )
, (B9)

and

S2 + T 2 + U 2 = 1. (B10)
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