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Reexamination of the ground-state Born-Oppenheimer Yb2 potential
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The precision of the photoassociation spectroscopy of the Yb dimer in degenerate gases is enough to
improve the constraints on short-range gravitylike forces if the theoretical knowledge of the Born-Oppenheimer
interatomic potential and non-Born-Oppenheimer interactions is refined [Borkowski et al., Sci. Rep. 9, 14807
(2019)]. The ground-state interaction potential of the ytterbium dimer is investigated at the exact two-component
core-correlated coupled-cluster method with singles, doubles, and noniterative triples [CCSD(T)] level of ab
initio theory in the complete-basis-set limit with extensive augmentation by diffuse functions. For the small
basis set the comparison is made with the four-component relativistic finite-nuclei CCSD(T) calculations to
identify the contraction of the dimer bond length as the main unrecoverable consequence of the scalar-relativistic
approximation. The empirical constraint on the number of bound vibrational energy levels of the 174Yb2 dimer
is accounted for by representing the global ab initio–based Born-Oppenheimer potential with the model semian-
alytical function containing the scale and shift parameters. The results support the previous evaluation of the Yb
dimer potentials from the photoassociation spectroscopy data and provide an accurate and flexible reference for
future refinement of the constraints on short-range gravitylike forces by ultracold atomic spectroscopy.
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I. INTRODUCTION

Recent advances in ultracold atomic physics have brought
the weakly bound ytterbium dimer, which has never been de-
tected spectroscopically at room temperature, to the forefront
of fundamental and applied research. An atomic energy-
level scheme convenient for laser confinement, cooling, and
narrow-band excitation was explored in the ultraprecise Yb
frequency standards for time measurements [1] and relativis-
tic geodesy applications [2]. Yet further refinement has been
predicted for a clock based on the Yb dimer [3]. Numerous
photoassociation spectroscopy (PAS) studies on the degen-
erate Yb gases have led to significant insight into ultracold
collision dynamics, long-range interactions, and exotic di-
atomic states [4–14]. A variety of naturally abundant isotopes
with bosonic and fermionic natures made the Yb dimer very
attractive for studying spectroscopic manifestations of non-
classical mass-dependent effects [11,15].

Particularly challenging is the use of PAS measurements to
constrain short-range gravitylike forces at the nanometer scale
to affirm and improve the results of neutron-scattering and
atomic-force-microscopy experiments [16]. It has been shown
that the unprecedented 0.5-kHz accuracy of the PAS data on
the near-threshold rovibrational levels of Yb2 is enough to im-
prove existing constraints on the Yukawa-type forces [17,18]
by almost two orders of magnitude. This, however, requires
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essential refinement of the underlying theoretical model for
PAS spectroscopy.

The beyond-Born-Oppenheimer (BBO) model introduced
in Ref. [11] relied on the Born-Oppenheimer (BO) reference,
in which the ab initio potential for the Yb2 ground 1�+

g (0+
g )

state [19] was used with the adjustable well-depth scaling pa-
rameter and the long-range tail. The BBO terms included were
the adiabatic mass-dependent corrections [15,20] and isotopic
field shift [15]. Initial approximations of each term were
taken from different sources and also contained adjustable
parameters. The best fits to the experimentally measured en-
ergies of 13 near-threshold levels of the bosonic isotopomers
168,170,174Yb2 gave rms deviations around 113 kHz (3.8 ×
10−6 cm−1) and 30 kHz (1.0 × 10−6 cm−1) for the reference
BO and BBO models, respectively.

Despite this seemingly impressive agreement, theoretical
rms deviations are 60 times larger than the experimental un-
certainty. Taking into account a limited number of the levels
probed experimentally and their predominant sensitivity to
long-range interatomic interactions, a plausible way of re-
fining the theory is to obtain more robust initial guesses for
molecular parameters, although a more thorough elaboration
of the nonadiabatic corrections and inclusion of subtle rela-
tivistic and quantum electrodynamic effects [16] by no means
can be discarded. An obvious first step is the refinement of the
BO Yb2 potential, which contributes by far the major share of
uncertainty and is not defined globally with suitable veracity
[6,19,21–24].

Indeed, this potential is accurately defined only in the
long-range region. The dispersion coefficients were the sub-
ject of reliable ab initio calculations [25–28]. In addition,

2469-9926/2021/104(5)/052807(7) 052807-1 ©2021 American Physical Society

https://orcid.org/0000-0002-0857-9497
https://orcid.org/0000-0003-0701-5531
https://orcid.org/0000-0001-6347-878X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.052807&domain=pdf&date_stamp=2021-11-10
https://doi.org/10.1038/s41598-019-51346-y
https://doi.org/10.1103/PhysRevA.104.052807


VISENTIN, BUCHACHENKO, AND TECMER PHYSICAL REVIEW A 104, 052807 (2021)

very high sensitivity of the ultracold data to the lowest-order
C6 and C8 coefficients permitted their high-precision adjust-
ment [6,11,21]. However, PAS and scattering length data are
not sensitive enough to interatomic interaction at short and
medium ranges. In terms of the semiclassical analysis by
Gribakin and Flambaum [29], they can fix the area of the
potential minimum but not its position Re and depth De. The
number of bound vibrational energy levels Nmax is therefore
known, and Nmax = 72 for the reference 174Yb2 dimer was
used to test the BO models [6,11,21]. Model potentials satis-
fying this condition with Re = 4.50 Å and De = 1083 cm−1

were able to fit the PAS data with an rms deviation of
54 kHz (1.8 × 10−6 cm−1) [6,21], which is better than the BO
model did, with the ab initio potential having Re = 4.55 Å
and De adjusted to 743 cm−1 (113 kHz cited above) [11].
Worse still, no room-temperature experimental data attesting
to the Yb2 potential minimum exist. An exception is the
mass-spectrometric dissociation energy estimation of 1400 ±
1400 cm−1 [30]. To that end, it is extremely important to
provide a reliable ab initio electronic structure model for Yb2

and fully understand its limitations.
Consistent ab initio treatment of all the effects physically

important for the interaction of two Yb atoms is not feasible.
The predominantly dispersion bonding character implies ex-
tensive recovery of the dynamic electron correlation, includ-
ing the core-valence and outer-core correlations, in a highly
saturated basis set heavily augmented with a diffuse com-
ponent. The scalar-relativistic (SR) coupled-cluster method
with singles, doubles, and noniterative triples [CCSD(T)]
and extrapolation to the complete-basis-set (CBS) limit pro-
vide the only tractable means to meet these requirements. It
disregards, however, essential contributions from high-order
cluster excitations. Furthermore, vectorial relativistic effects,
such as spin-orbit coupling (SOC), are not negligible for
lanthanides [31]. To estimate them quantitatively, one should
assess the SR results against the sophisticated four-component
calculations, which are far more restrictive with regard to
the basis-set size and extent of the correlation treatment.
All of these factors together led to a considerable mismatch
between the literature ab initio results for Yb2 [19,22–24],
which calls into question what should be considered as a
reference. The first goal of the present work is therefore
to address that challenge by performing the most reliable
all-electron SR CCSD(T) calculations and assessing their con-
vergence. Because it is performed within the conventional ab
initio frames, our analysis is expected to be useful for simi-
lar dispersion-bound molecules containing lanthanide atoms.
The second goal is to provide improved representation of
the global BO Yb2 potential with its preliminary uncertainty
estimation. We thus describe the semiclassical scaling of the
CCSD(T) potentials to make a preliminary assessment of their
compliance with the ultracold data, explore the sensitivity to
the parameters of the potential minimum, and estimate the
BO contributions not included in the ab initio calculations.
On the one hand, our results support the previous BO and
BBO models [11,16]; on the other hand, they provide a more
reliable and flexible reference BO potential function for use in
the more sophisticated BO and BBO spectroscopic models.

The next section combines detailed descriptions of the ab
initio approaches and results. The high degree of technicality

is indispensable to make sure that our findings are repro-
ducible and transferable. In Sec. II C, we present the results
of the semiclassical analysis of the ab initio–based global
BO potential and discuss their implications for BO and BBO
modeling. Our conclusions follow.

II. AB INITIO CCSD(T) CALCULATIONS

A. Scalar-relativistic calculations with MOLPRO

The CCSD(T) calculations were performed using the exact
two-component (X2C) scalar-relativistic Hamiltonian [32–37]
as realized in the MOLPRO 2015.1 program package [38]. In all
our calculations the energy convergence threshold was set to
10−10Eh. The sequence of the correlation-consistent polarized
valence n zeta (cc-pVnZ) basis sets with cardinal numbers
n = D, T, Q (hereinafter VnZ for brevity) contracted for use
with the X2C approximation [39] was used. To compensate
for the lack of optimized diffuse augmentation in the cc-pVnZ
sets, we added one or two primitives for each symmetry type,
with the exponents continuing the sequence of basis expo-
nents in an even-tempered manner with the default parameters
of the MOLPRO package. In what follows, these options are
denoted as e1 and e2, respectively. The 3s3p2d2 f 1g set of
bond functions (bf) [40] placed at the midpoint of the Yb-Yb
distance was also used for the same purpose. The calculations
were performed in the D2h symmetry group for the dimer
and the C2v group for the Yb atom in the full dimer basis
to implement the counterpoise (CP) correction [41] using
the restricted Hartree-Fock reference functions. Two series
of the CCSD(T) calculations correlated 5s, 5p, 4 f , and 6s
orbitals (the c46 option, with 46 electrons within the core
per atom) and 4s, 4p, and 4d orbitals (the c28 option). A
negligible effect of correlating deeper shells (orbitals below
4s) on the potential-energy-well parameters and dispersion co-
efficients of the dimer was proven in Refs. [24,28]. We should
also note in this regard that we encountered difficulty with
convergence when using the correlation-consistent polarized
weighted core-valence basis sets (cc-pwCVnZ) with n > 2.
Thus, the results for that basis-set family, which is more
appropriate for the c28 correlation option, are not reported.
The counterpoised potentials obtained with the VDZ, VTZ,
and VQZ basis sets were extrapolated to the CBS limit using
the mixed exponential-Gaussian formula [42,43].

A nonuniform grid of 57 internuclear distances spanning
the range from 2 to 50 Å was used. At distances longer
than 25 Å, erratic nonsmooth variations of energies were
detected. This prevents a firm determination of the dominant
C6 dispersion coefficient by fitting and limits the accuracy of
interaction energies by 0.05 cm−1. The Supplemental Material
[44] tabulates the potential energies obtained with each VnZ
basis set extrapolated to the CBS limit.

To establish the connection to the relativistic calculations
with the DIRAC code described in the next section, a few
auxiliary X2C CCSD(T) calculations were performed on a
slightly shorter grid. They used the c48 correlation option
(5p, 4 f , and 6s orbitals correlated) and the original VDZ,
uncontracted VDZ (uVDZ), and uncontracted Dyall double-ζ
[45] bases, all without further augmentation.
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TABLE I. Parameters of the CCSD(T) c48 potentials calculated
with the double-ζ basis sets. Calculations with DIRAC used the Gaus-
sian nuclear model unless stated otherwise.

Method Package σ (Å) Re (Å) De (cm−1)

X2C VDZ MOLPRO 4.080 4.741 475.4
X2C uVDZ MOLPRO 4.062 4.727 478.0
X2C Dyall MOLPRO 4.022 4.694 531.9
SF-X2C Dyall point charge DIRAC 4.022 4.694 531.9
SF-X2C Dyall DIRAC 4.018 4.692 533.0
SF-DC Dyall DIRAC 4.024 4.694 526.0
4C-DC Dyall DIRAC 4.012 4.686 532.3

B. Assessment of the scalar-relativistic
approximation with DIRAC

All the CCSD(T) calculations were carried out using the
DIRAC19 relativistic software package [46] and utilized a lin-
ear D∗

∞h symmetry, the valence double-ζ basis set of Dyall
[45], and the Gaussian nuclear model, if not stated otherwise.
The calculations kept 4 f , 5p, and 6s spinors (orbitals) corre-
lated (leaving 48 inner electrons within the core per atom, the
c48 option), and all virtuals were active.

We assessed the performance of various relativistic Hamil-
tonians. Specifically, these include (i) the four-component
Dirac-Coulomb Hamiltonian (with a default setup [47]),
denoted as 4C-DC; (ii) the spin-free Dirac-Coulomb Hamil-
tonian, denoted as SF-DC [48]; and (iii) the spin-free X2C
Hamiltonian [32–37], denoted as SF-X2C. An additional set
of calculations was performed for the SF-X2C Hamiltonian
with the point-charge nuclear model. That allowed for direct
comparison with the SR calculations carried out in the MOL-
PRO software package described above.

As we aimed to analyze the relativistic effects on the equi-
librium parameters, the grid of 27 internuclear distances R was
restricted to 5a0–20a0 (roughly 2.6–10.6 Å) interval. The CP
correction [41] was applied by imposing the C∗

∞v point-group
symmetry. Tabulated ab initio potential energies with different
relativistic Hamiltonians are available in the Supplemental
Material [44].

Table I compares the parameters of the CCSD(T) c48
Yb2 interaction potentials, namely, the inflection point at zero
kinetic energy σ and equilibrium parameters Re and De, as
obtained for the basis sets of double-ζ quality without further
augmentations. Implementations of the X2C Hamiltonian in
the DIRAC and MOLPRO packages gave identical results for the
Dyall basis set. The MOLPRO calculations with the cc-pVnZ-
type basis showed a weaker bonding. This indicates that the
VDZ basis, even in its uncontracted form, is not optimal for
the predominantly dispersion interaction we are dealing with
here. The contraction alters De marginally but reduces Re by
almost 0.02 Å. Such a significant increment should persist for
the VnZ sets of higher cardinal numbers and thus cannot be
recovered by extrapolation to the CBS limit. The calculations
with the DIRAC package demonstrated that a slight increase
in the binding energy due to SOC and finite-nuclei effects is
nearly canceled for the SF X2C Hamiltonian. By contrast,
the related contraction of Re by 0.01 Å reflects the main
deficiency of the scalar-relativistic approximation.

TABLE II. Parameters of the present extrapolated X2C CCSD(T)
Yb2 potentials and those from literature.

Method σ (Å) Re (Å) De (cm−1) N

VnZ c46 3.916 4.593 617.5 66.99
VnZe1 c46 3.907 4.596 646.1 68.15
VnZe2 c46 3.907 4.598 646.9 68.20
VnZbf c46 3.906 4.594 654.6 68.35
VnZ c28 3.915 4.590 615.0 66.90
VnZe1 c28 3.906 4.596 643.6 68.12
VnZbf c28 3.896 4.585 657.5 68.54
ANO-RCC c28 [24] 4.665 580
ECP28MWB [19] 3.870 4.522 723.7 70.97
ECP28MWB [22] 4.549 742
28e GRECP+OC [23] 4.683 642
28e GRECP+OC+iTQ [23] 4.615 767
28e GRECP+OC+iTQ+SOC [23] 4.582 787

C. Convergence of the scalar-relativistic results

To assess the convergence of the Yb2 X2C CCSD(T) cal-
culations with respect to the diffuse basis augmentation and
the core-correlation treatment it is instructive to analyze the
results at the CBS limit, which accounts for the convergence
with respect to the cardinal number of the primary basis set.
As the CBS extrapolation procedure cannot be rigorously
defined, it introduces additional uncertainty [42,43,49–54].
Moreover, additional ambiguity might originate from the CBS
extrapolation of the basis-set sequences augmented with bond
functions. This quite technical issue is discussed in the Sup-
plemental Material.

Table II lists the values of the interaction-potential pa-
rameters after the CBS extrapolation and the semiclassical
estimates of the number of bound vibrational energy levels N
obtained with the potential model introduced in this section
(see below).

The difference between the c46 and c28 calculations (all
else being equal) indicates that the correlation of the 4s4p4d
shells reduces the bonding of Yb atoms to a minor extent. That
is in line with the previous calculations for the Yb2 potential
[24]. Diffuse augmentation is essential to better recover the
dispersion interactions. While involving the atom-centered
even-tempered diffuse primitives (e1) is suboptimal, it still
results in good convergence that follows from the marginal
effect of including the second primitive set (e2). The addi-
tion of the bond functions enhances Yb2 bonding to a larger
extent. For this reason and for smaller CBS uncertainty due to
faster convergence with the cardinal basis number, we took the
present VnZbf c28 result as the reference to estimate the con-
verged X2C CCSD(T) potential parameters as Re = 4.585 ±
0.01 Å and De = 658 ± 15 cm−1, where the major share of
uncertainties belongs to the form of diffuse augmentation
and the minor share belongs to the CBS extrapolation. The
deviation between the X2C CCSD(T) calculations with the
cc-pVnZ-type and Dyall-type basis sets discussed in Sec. II B
creates an additional source of uncertainty. To estimate it bet-
ter, we consider an artificial CBS extrapolation of the SF-X2C
CCSD(T) results for the Dyall VDZ basis set with extrapola-
tion coefficients taken from the corresponding X2C CCSD(T)
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VnZ c48 series. It results in Re ≈ 4.54 Å and De ≈ 670 cm−1

or ≈4.53 Å and ≈700 cm−1 if the increments due to diffuse
function augmentation are added. Because the physical origin
of such a significant mismatch is not clear, the latter values
can be taken only as an indication that the present calculations
likely underestimate the bonding of Yb atoms at the CCSD(T)
level of theory.

The results of the previous SR CCSD(T) calculations are
presented in Table II as well. The only available all-electron
calculations from Ref. [24] underestimate the present De val-
ues by around 10% and overestimate Re by 0.07 Å. Besides
the minor difference in the applied scalar-relativistic Hamil-
tonians (X2C vs Douglas-Kroll-Hess of the second order),
this mismatch is likely due to the lack of diffuse functions
in the atomic natural orbital relativistic semicore correlation
(ANO-RCC) basis set and the absence of the CP correc-
tion. Even though the ANO-RCC basis set was designed to
correlate Yb orbitals starting from the 5s shell, the corre-
lation of deeper shells did not result in any problems as
reported in Ref. [24]. The best ANO-RCC estimation falls
between the present VTZe1 and VQZ results, despite the fact
that the ANO-RCC basis set was used in its uncontracted
form.

The potential from Refs. [19] is based on the small-core
effective core potential ECP28MWB [55] combined with the
corresponding ANO basis set [56] augmented by the specially
designed atom-centered diffuse function set [57] and the bf
set [40] simultaneously. It implies stronger bonding of Yb
atoms than the present series does; namely, the binding energy
is larger by 11%, and the equilibrium distance is shorter by
1.5%. This difference should be attributed to the uncertainties
of the effective-core-potential description of the inner shells
and of the quality of the ANO basis, as corroborated by the
calculations by Cao and Dolg with the same basis but differ-
ent diffuse augmentation [22]. Mosyagin and coworkers [23]
investigated the bonding of Yb atoms using the 28-electron
generalized relativistic effective core potential (GRECP) and
a series of supplementary basis sets. Only four outer 6s elec-
trons were correlated in their reference CCSD(T) calculations
with the largest basis. Correction to outer core correlation
(OC, equivalent to the present c46 core option) was evaluated
with a smaller basis. At this level, their result for binding
energy almost falls within the error bars we predicted, but the
equilibrium distance is strongly overestimated.

To go beyond the X2C CCSD(T) approximation, one
should consider the vectorial relativistic effects and con-
tributions from the higher-order cluster excitation. For the
former, we can use the present 4C-DC calculations. Table I
indicates that for the double-ζ basis, the main effect with
respect to the X2C approximation is the contraction of the
dimer bond length. Artificial CBS extrapolation with the co-
efficients derived from the X2C CCSD(T) VnZ c48 series
infers the shrinkage of Re by 0.01 Å and an increase of
De by 9 cm−1. Reference [23] reported a correction twice
as large (Table II, labeled “+SOC”), but the quasirelativistic
two-component density-functional theory employed therein is
certainly much less accurate. Mosyagin et al. [23] provided
the only (indirect) estimation for the higher-order cluster
corrections. Iterative contributions of triples and quadruples
were recovered by subtracting CCSD(T) energy from the full

configuration-interaction energy, both obtained by correlat-
ing four outer electrons in a medium-size basis set, labeled
“+iTQ” in Table II. The effect, a 1.5% reduction of Re and
20% increase of De, is quite significant. However, it is not
possible to guess how it would behave upon expanding the
basis set and the depth of the shells included in the correlation
treatment.

Adding the present estimate for SOC and the iTQ correc-
tion from Ref. [23] to the converged X2C results cited above,
we obtain Re ≈ 4.45 Å and De ≈ 825 cm−1 as a guess for
the true Yb2 BO potential. Uncertainties of these values are
hard to quantify, but they are likely not less than 0.1 Å and
100 cm−1, respectively.

III. GLOBAL BO POTENTIAL BY
SEMICLASSICAL SCALING

As was already mentioned, PAS and scattering length mea-
surements established the number of the bound vibrational
levels Nmax of the Yb2 dimer. Previous analysis indicated that
this condition can be applied to the BO potentials, as the BBO
contributions are too small to alter the number of levels [11].

To test the present ab initio results, we accepted the semi-
analytical representation of the global BO potential V (R)
introduced in Ref. [11]:

V (R) = [1 − f (R)]sVSR(R) + f (R)VLR(R), (1)

where the ab initio points interpolated by cubic splines stand
for the short-range part VSR and the long-range part contains
the two lowest dispersion-interaction terms,

VLR(R) = −C6/R6 − C8/R8, (2)

as the PAS data are not sensitive to the next C10 term [11]. The
switching function has the fixed form

f (R) =
⎧⎨
⎩

0 if R � a,
1
2 + 1

4 sin πx
2

(
3 − sin2 πx

2

)
if a < R < b,

1 if R > b,
(3)

with x = [(R − a) + (R − b)]/(b − a), a = 10a0 (5.292 Å),
b = 19a0 (10.054 Å). The values of the dispersion coefficients
C6 = 1937.27 and C8 = 226517 a.u. were taken as fitted in
Ref. [11] and were kept fixed. The scaling parameter s is
adjustable. If s = 1, Eq. (1) describes the interpolation of the
original ab initio points at R � a.

The number of bound vibrational levels was obtained semi-
classically following the procedure described in Ref. [29]. The
semiclassical phase at zero kinetic energy is given by

� = 1

h̄

∫ ∞

σ

√
2μ[−V (R)]dR, (4)

where μ is the reduced mass of the Yb dimer, for which we
used the atomic reduced mass of the 174Yb2 dimer. Note that
Eqs. (1) and (3) permit analytical integration of the phase
from R = b to infinity, which greatly facilitates an accurate
numerical evaluation of the integral (4). Then Nmax = [N ],
with N = �/π + 3/8. The N values for the original (s = 1)
X2C CCSD(T) potentials are given in Table II. The best ones
consistently support 68 bound levels.

Next, we vary parameter s until N exceeds 72 to get smin

and until N remains less than 73 to get smax. The resulting
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TABLE III. Scaling dimensionless factors s and binding energies
(cm−1) of the X2C CCSD(T) potentials for the 174Yb2 dimer.

Potential smin sminDe smax smaxDe mean De

VnZ c46 1.233 761.4 1.281 791.0 776 ± 15
VnZe1 c46 1.172 757.2 1.218 786.9 772 ± 15
VnZe2 c46 1.170 757.2 1.215 786.0 772 ± 15
VnZbf c46 1.162 760.6 1.208 790.7 776 ± 15
VnZ c28 1.238 761.4 1.286 790.9 776 ± 15
VnZe1 c28 1.174 755.6 1.219 784.5 770 ± 15
VnZbf c28 1.153 758.0 1.198 787.7 773 ± 15

values of s, scaled binding energies, and mean binding en-
ergies computed with the X2C CCSD(T) VSR potentials are
listed in Table III. First, it is evident that the constraint on the
bound level projects the original potentials, whose binding en-
ergies vary by 43 cm−1, to much narrower intervals of 6 cm−1

for the limiting and mean values. Such mapping reflects the
similarity in the overall shapes of the attractive potentials
calculated using the different ab initio schemes. Second, the
variations of De values that obey the constraint is 30 cm−1.
As follows from the numerical solutions of the vibrational
Schrödinger equation, the position of the last near-threshold
Nmax − 1 = 71 level in the same range of s varies by around
0.02 cm−1. It gives a clue that uncertainty in fixing the near-
threshold levels (e.g., by PAS data) increases by three orders
of magnitude upon propagation to the equilibrium properties.

The preceding analysis of the ab initio results points out
that X2C CCSD(T) CBS calculations significantly overesti-
mate the dimer equilibrium distance. The shift of the potential
towards a shorter range should obviously affect the scaling
by increasing the phase �. To take this uncertainty into ac-
count, we introduced the shift parameter d and replaced the
ab initio part of the model function (1) by the shifted potential
VSR(R − d ). For each d ∈ [−0.02, 0.14] the limiting scaling
parameters smin and smax were found using the same criteria
as above. Figure 1 shows the results in terms of shifted and
scaled equilibrium parameters for the VnZbf c28 ab initio
potential. The position and mean depth of the potential well
are correlated linearly with the coefficient 200 ± 1 cm−1/Å.
The limits of De variation weakly depend on d and amount to
±15 cm−1. If we add the uncertainty of the scaled dissociation
energies from Table III, the margins expand to ±18 cm−1.
Figure 1 also shows the result from Ref. [11], where the
ECP28MWB potential [19] was used as the reference. It lies
on the extended lower bound of the present calculations.
We believe that Fig. 1 identifies the most likely ranges for
equilibrium parameter variations, i.e., Re ∈ [4.45, 4.55] Å and
De = 755 ± 20 cm−1.

Another implication of the present analysis is the possibil-
ity to replace the model function (1) with a more flexible form,

V (R) = [1 − f (R)]s(d )VSR(R − d ) + f (R)VLR(R), (5)

where the constraint s(d ) = −0.304d + 1.176 results from
the correlation between De and Re and VSR is the present X2C
CCSD(T) VnZbf c28 pointwise potential, whereas Eqs. (2)
and (3) and their parameters remain unchanged. Keeping a
single adjustable parameter [d instead of s in Eq. (1)], the new

FIG. 1. Correlation of the scaled binding energy and shifted equi-
librium distance of the Yb2 interaction potential based on the ab
initio VnZbf c28 data. Solid lines represents the linear fit. The cross
indicates the scaled Born-Oppenheimer result from Ref. [11].

function features a sensitivity to both the position and depth of
the potential minimum and thus should have better properties
for accurate BO or BBO fitting of the PAS data.

IV. CONCLUSIONS

The present calculations set the scalar-relativistic
CCSD(T) benchmark for the ground-state potential of the Yb
dimer. Achieving the convergence with respect to the basis-set
saturation and the extent of the core-correlation treatment, we
estimated its equilibrium parameters as Re = 4.585 ± 0.01 Å
and De = 658 ± 15 cm−1 and explained the main sources of
disagreements in the previous ab initio calculations. The first
four-component relativistic CCSD(T) calculations performed
with a double-ζ basis generally support the validity of the
X2C approximation but pointed to bond length shrinkage
of about 0.01 Å as the main effect caused by relativistic
contraction. The quoted uncertainties, not exceeding 3%, can
be narrowed down only by customizing the basis set for the
Yb atom and/or the bond function for the Yb2 molecule.
The design principle of general-purpose bases may well
be suboptimal for the particular system considered and the
accuracy level required.

The X2C CCSD(T) potentials were used to approximate
the BO Yb2 potential represented by the model semianalytical
function. On the one hand, semiclassical scaling to the known
number of bound vibrational levels reduces the uncertainty in
Yb2 binding energy by almost an order of magnitude. This
indicates that variations of the ab initio computational scheme
alter the shape of the bound potential insignificantly. On the
other hand, the constraint on the number of bound levels has
its own uncertainty of the same order (30 cm−1, or 4%) as that
of initial ab initio potential. It reflects the weak sensitivity of
the ultracold PAS data to the potential minimum parameters.
We found that the quoted uncertainty for De is three orders
of magnitude larger than the uncertainty in the position of the
last bound vibrational level.
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We also analyzed the effect of uncertainty on the equi-
librium distance established in the ab initio calculations. As
a result, we bound the potential parameters of the BO Yb2

potential as Re ∈ [4.45, 4.55] Å and De ∈ [735, 775] cm−1.
This supports the reliability of the previous BO fit to PAS
data made with the potential having Re = 4.52 and optimized
De = 743.0 ± 2.4 cm−1 [11]. We suggested modifying the
model BO potential function to account for strong correlation
of the position and depth of the potential well.

Finally, we should stress that the sophisticated BO fit to
PAS data [11] was able to reduce uncertainty in the De value
from 20 to 2 cm−1 to ensure 4 × 10−6 rms deviation from
the measured energies of the near-threshold levels. Thus, the

model function and its uncertainty obtained here promise re-
markable improvements of the above-mentioned fits.
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