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We present an ultrafast quantum state holography scheme based on the interference of photoelectron wave
packets from multiphoton ionization (MPI) using shaper-generated trichromatic pulse sequences. By superim-
posing a probe and a reference electron wave packet generated by MPI with a pump-probe-reference triple-pulse
sequence, the phases from the MPI dynamics are imprinted into the resulting photoelectron hologram. In the
experiment, we combine white-light supercontinuum pulse shaping with differential photoelectron detection
using a velocity-map-imaging spectrometer. To illustrate the holographic scheme, we study the interference of
a probe wave packet from (2+1) resonance-enhanced MPI of potassium atoms via the 3d state with a reference
wave packet from nonresonant three-photon MPI of its 4s ground state. Phase control of the hologram is
exerted by variation of the relative phases of the individual pulses in the sequence. We analyze the hologram
to determine the time- and energy-dependent quantum phases resulting from either the free time evolution of
the probe wave packet or the detuning of the pump pulse with respect to the resonance and the ensuing time
evolution in the excited state of the atom. Our results show that the trichromatic shaper-based photoelectron
holography scheme is a powerful tool for time-resolved and phase-sensitive background-free observation of
ultrafast quantum dynamics.
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I. INTRODUCTION

The wave function of a quantum-mechanical system, such
as an electron, atom, or a molecule, is characterized com-
pletely by its modulus and its phase. In general, only the
probability density, i.e., the modulus square, is directly ob-
servable [1,2]. However, knowledge of the phase is vital to
determine other observables, e.g., the momentum distribu-
tion [3–6] and the probability current density [7–10], and
to make predictions on the time evolution of the system. In
addition, detailed information about the system’s past is also
encoded in the phase, enabling us to draw conclusions on
the underlying physical mechanisms. Dynamical processes
are generally described by nonstationary wave functions, i.e.,
wave packets, which are usually expanded into energy eigen-
states. The relative phases between these states then determine
the time evolution of the system and encode dynamical infor-
mation. Measurement of the phase, in general, offers deeper
insights into the origin and history of the wave function.

Advanced experimental techniques have been devised to
retrieve quantum-mechanical phase information and deter-
mine the wave function [11–15]. Recent applications range
from the reconstruction of vibrational wave packets in
molecules [16,17] and the design and characterization of
Rydberg wave packets in atoms [11,18–21] to the phase-
sensitive detection and analysis of free-electron wave packets
from multiphoton [14,22] and tunneling ionization [13,23,24].
Especially, the principles of strong-field photoelectron holog-
raphy were recently reviewed in [6]. The common ground
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in these experiments is the use of holographic methods, in-
troduced in optics by Gábor [25,26] and later transferred to
quantum mechanics by Leichtle et al. [27,28], who coined
the term quantum state holography. Briefly, quantum state
holography is based on the interference of a probe state with
a well-characterized reference state. The probe state maps the
object or target state of interest, whereas the reference state
is excited directly. Suitable detection of the resulting inter-
ference pattern enables the reconstruction of the target-state
wave function.

Recently, we developed a pulse-shaper-based technique
for time-resolved holographic imaging of ultrafast elec-
tron dynamics [21]. Shaper-based quantum state holography
(SQuaSH) builds on the bichromatic pump-probe scheme
introduced in [29,30], using the pump pulse to initiate a dy-
namical process and the probe pulse to simultaneously map
the dynamics into the ionization continuum and provide a
reference by direct ground-state ionization. With a suitable de-
sign of commensurable central frequencies Npuωpu = Nprωpr,
where Npu is the number of pump photons used for the res-
onant excitation and Npr is the number of probe photons
adding up to the same energy, the created probe and reference
photoelectron wave packet interfere to form a photoelectron
hologram. Due to the bichromatic approach, the holographic
signal is disentangled energetically from the single-color
background. Measurement of the three-dimensional (3D) pho-
toelectron momentum distribution (PMD) of the hologram,
e.g., using photoelectron tomography [31], hence enables the
phase-sensitive and background-free reconstruction of the dy-
namics.

Here, we present a further development of the self-
referenced holographic scheme discussed in [21] by adding
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an independent reference pulse with a third color. Hence,
the new scheme is referred to as trichromatic SQuaSH. By
decoupling the probe from the reference step, the above con-
dition linking the frequencies of the pump and probe pulses
is lifted. This approach allows us to tailor the probe pulse
to the application at hand. The reference frequency ωref is
adapted to the pump and probe frequencies by the generalized
condition Npuωpu + Nprωpr = Nrefωref. Here, Npr and Nref are
the numbers of probe and reference photons used for ion-
ization from the excited state and ground state, respectively.
We note that if the photon numbers satisfy the additional
condition Npu + Npr = Nref, i.e., both ionization pathways are
of the same order, trichromatic SQuaSH is insensitive to the
carrier-envelope phase (CEP) of the laser field [32].

The trichromatic SQuaSH scheme is demonstrated in
a proof-of-concept experiment on the (2+1) resonance-
enhanced multiphoton ionization (REMPI) of potassium
atoms via the 3d state. The trichromatic pump-probe-
reference pulse sequences are generated by white-light
polarization pulse shaping [33]. The pump pulse is tuned
to the two-photon resonance 4s →→ 3d , while probe and
reference pulses are designed such that the probe photoelec-
tron wave packet from one-photon ionization of the 3d state
overlaps with the reference wave packet from three-photon
ionization of the 4s ground state. The resulting photoelectron
hologram is measured using velocity-map-imaging (VMI)
spectroscopy [3].

In the first part of the experiment, we demonstrate optical
phase control of the photoelectron hologram. By systemati-
cally varying the relative phase of each of the three pulses, we
record energy-resolved interference patterns. The interference
patterns exhibit a characteristic periodical phase dependency
reflecting the orders of the underlying multiphoton ionization
(MPI) processes. In the second part, we apply the trichromatic
SQuaSH technique to study quantum-dynamical phases im-
printed in the hologram by the ionization dynamics. While
the bound-state time evolution results in an overall phase shift
of the phase-resolved interference pattern, the time evolution
in the continuum manifests in a shearing of the interference
fringes. Our studies show that the structure of the interfer-
ence pattern reveals detailed information on the ionization
dynamics. In general, the trichromatic shaper-based approach
with fully tunable phases, time delays, and wavelengths of
the spectral bands provides unprecedented options for mul-
tidimensional spectroscopy and coherent control.

II. PHYSICAL SYSTEM AND THEORETICAL MODEL

We investigate the MPI of K atoms using phase-locked
trichromatic femtosecond laser pulse sequences. Here, we
introduce the physical system and provide a theoretical de-
scription of the photoelectron wave packets measured in the
experiment. The theoretical model is used for the analysis
and discussion of the experimental results. We motivate the
observables and derive analytical expressions to describe the
experimental data (see also Appendix A).

The excitation scheme of K interacting perturbatively with
a parallel linearly polarized (PLP) trichromatic pulse se-
quence is depicted in Fig. 1(a). The first pulse (red), centered
around ωpu = 2.03 rad/fs and denoted as pump, excites the

FIG. 1. (a) Excitation scheme of K atoms interacting perturba-
tively with a PLP pump-probe-reference pulse sequence. The pump
pulse (red) launches a d-type wave packet by two-photon excitation.
The time-delayed probe pulse (blue) maps the 3d population into an
f -type photoelectron wave packet. This wave packet is holographi-
cally superimposed with an f -type reference wave packet originating
from direct three-photon ionization of the 4s ground state with the
reference pulse (green). The inset shows a measured and tomograph-
ically reconstructed 3D PMD of the resulting wave packet for a PLP
pulse sequence. (b) and (c) show the measured 2D projection of
the PMD for τpu ≈ −215 fs and τpr ≈ −15 fs in Cartesian and polar
representations, where the addressed energy windows around ε1 to
ε4 are highlighted.

3d state by two-photon absorption (Npu = 2). After a vari-
able time delay, the second pulse (blue), centered around
ωpr = 2.61 rad/fs and denoted as probe, maps the excited state
into an f -type continuum by one-photon ionization (Npr = 1).
This time-delayed (2+1) REMPI process creates a probe pho-
toelectron wave packet. For the holographic imaging of the
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bound-state excitation dynamics, the probe wave packet is
superimposed by a reference wave packet, created by nonres-
onant three-photon ionization (Nref = 3) of the 4s ground state
using a third pulse (green) centered around ωref = 2.22 rad/fs
and termed the reference pulse. The interference of probe and
reference wave packets yields an f (m = 0)-type photoelec-
tron hologram in a kinetic-energy window around

ε1 = Npuh̄ωpu+ Nprh̄ωpr− VIP = Nrefh̄ωref− VIP ≈ 0.05 eV,

(1)

which we refer to as the SQuaSH channel in the following.
Here, VIP = h̄ωIP denotes the ionization potential. Note that
for detuned excitation as discussed in Sec. IV B 2, Npuh̄ωpu

is replaced by h̄ω3d in Eq. (1) to preserve the overlap of
the probe and reference wave packets. A measured two-
dimensional (2D) projection of the PMD is depicted in
Figs. 1(b) and 1(c) in Cartesian and polar representation,
respectively. As shown in Appendix A, the hologram is sen-
sitive to the relative phases between the three pulses since
the (2+1) REMPI and direct three-photon ionization path-
ways are composed of different numbers of photons from
each color. Although different colors are involved, both path-
ways are of the same order, Npu + Npr = Nref = 3, so that the
CEP accumulated in each pathway is the same, rendering
the hologram insensitive to the CEP [32,34]. Following the
nomenclature introduced in [32], we denote this interference
the mixed intraband interference.

Besides the photoelectron hologram in the SQuaSH chan-
nel (highlighted in petrol blue at energy ε1), additional
contributions are observed at larger kinetic energies if the
probe and reference pulses overlap in time. These contribu-
tions are attributed to frequency mixing [35] of the probe and
reference pulses, creating photoelectron wave packets cen-
tered around ε2 = h̄ωpr + 2h̄ωref − VIP ≈ 0.30 eV and ε3 =
2h̄ωpr + h̄ωref − VIP ≈ 0.56 eV (both highlighted in gray). Fi-
nally, the single-color contribution of the probe pulse from
direct three-photon ground-state ionization is observed, sepa-
rated from the SQuaSH channel, around ε4 = 3h̄ωpr − VIP ≈
0.81 eV (highlighted in blue), allowing for background-free
measurements.

In the PLP case, the trichromatic pulse sequence is com-
pletely described by the scalar electric fields of the three
colors. The negative-frequency spectrum [36] of the total laser
electric field is given by

Ẽ−(ω) =
∑

i

Ẽ−
i (ω) =

∑
i

Ẽi(ω + ωi )e
i�i (ω), (2)

where i ∈ {pu, pr, ref} indicates the respective spectral com-
ponent. The functions Ẽi(ω) are the spectral envelopes cen-
tered around the corresponding frequencies ωi. In the exper-
iment, the spectral phase functions �i(ω) = ϕi − (ω + ωi )τi,
with the constant relative phases ϕi and the individual time
delays τi, are introduced by the pulse shaper. The common
CEP is omitted because in the perturbative limit, it contributes
only to the absolute phase of the photoelectron wave func-
tion (see Appendix A). The linear phases are applied relative
to the central frequency of the respective spectral compo-
nent (see the inset in Fig. 2). By this means, only the pulse
envelopes are shifted in time by varying τi, while the car-
riers remain fixed [37–39], allowing us to disentangle the

FIG. 2. Experimental setup for the shaper-based generation and
manipulation of photoelectron holograms in trichromatic SQuaSH.
The trichromatic pulse sequences are generated by amplitude and
phase modulation of a WLS using a 4 f polarization pulse shaper.
The insets show the measured WLS (gray-shaded background) and
the applied trichromatic amplitude profile together with a schematic
representation of spectral amplitudes and phases. Photoelectron wave
packets created by the interaction of K atoms with the trichromatic
pulse sequence are imaged by a VMI spectrometer. Projections of
the generated wave packets are measured by a position-sensitive 2D
detector and recorded by a CCD camera.

variation of the time delay and relative phase between the
pulses. In contrast, using an interferometer to shift a pulse in
time locks the pulse envelope to the carrier such that the time
delay is always accompanied by a constant phase offset. The
inverse Fourier transformation of Eq. (2) yields the laser field
in the time domain,

E−(t ) =
∑

i

E−
i (t ) =

∑
i

Ei(t − τi )e
−i(ωit−ϕi ). (3)

In the following, we choose τref = 0 fs as the time zero, im-
plying that the pump and probe pulses are advanced in time,
i.e., τpu < 0 fs and τpr < 0 fs.

Next, we consider the MPI of K with the field defined
in Eq. (3), focusing on the photoelectron hologram in the
SQuaSH channel. The wave function of the hologram in
the momentum representation, with photoelectron momentum
k = (k, θ, φ), is described by a superposition of the probe and
the reference wave packet [21],

	(k) ∝ (aref(k) + apr(k))ψ3,0(θ, φ). (4)

The corresponding amplitudes aref(k) and apr(k) determine
the radial part and hence the kinetic-energy distribution of the
photoelectron hologram. They are calculated using third-order
time-dependent perturbation theory (see Appendix A for de-
tails). The angular distribution ψ3,0(θ, φ) is determined by the
spherical harmonic Y3,0(θ ). Since Y3,0(θ ) is independent of the
azimuthal angle φ, the wave function—in the PLP case—is
cylindrically symmetric with respect to the y axis (polarization
direction). The PMD measured in the experiment is described
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by the photoelectron density �(k) = |	(k)|2, yielding an
expression of the form

�(k) ∝ [B(k) + S(k) cos(αopt + β(k) + γqm)]|ψ3,0(θ )|2.
(5)

The first term in the square brackets corresponds to a
background created by the probe and reference pulses in-
dependently. The second term describes the interference of
the probe and reference wave packets. Since both ionization
pathways lead to the same f (m = 0)-type continuum, imply-
ing the same angular distribution of both wave packets, the
interference is observed along only the radial coordinate, i.e.,
in the energy-resolved photoelectron spectrum. The interfer-
ence term is modulated by a cosine function with three phase
contributions. The first contribution

αopt = 3ϕref − (2ϕpu + ϕpr) (6)

is fully determined by the optical field, i.e., contains the
relative optical phases weighted by the number of photons
involved in the corresponding ionization processes (Npr = 1,
Npu = 2, Nref = 3). It describes the difference between the
optical phases accumulated along the (2+1) REMPI and
the nonresonant three-photon ionization pathway. The second
contribution is given by

β(k) = �puτpu + �holo(k)τpr ≡ βb + βf(k), (7)

with the detunings �pu = 2ωpu − ω3d and �holo(k) = 3ωref −
ωIP − ωk ≡ ωpr + ω3d − ωIP − ωk (see Appendix A for de-
tails). Equation (7) describes both the bound time evolution
of the excited atom, with the term βb = �puτpu, and the
free time evolution of the probe wave packet, with the
energy-dependent phase term βf(k) = �holo(k)τpr. Varying
the detuning �pu of the pump pulse induces a constant phase
shift βb of the interference pattern due to the time evolution
of the excited 3d state in the bound system. A probe pulse
time delay induces a k-dependent phase βf(k), reflecting the
free time evolution of the probe wave packet in the contin-
uum before it interferes with the reference wave packet [40].
This radial phase shifts the interference fringes differently
for each continuum state ε(k) = h̄ωk = (h̄k)2

2me
, resulting in a

tilt or shearing of the energy-resolved interference pattern
(see Sec. IV B). To investigate this effect experimentally,
we separated the probe from the reference pulse by τpr ≈
−15 fs in all measurements. The third phase contribution in
Eq. (5), γqm = χref − χpr, describes the difference between the
multiphoton ionization phases acquired along each pathway
due to, e.g., the energy-level structure of the atom [41] (see
Appendix A) or, in stronger laser fields, the dynamic Stark
effect [42].

Because for PLP pulse sequences the phase information is
encoded in the radial part of the photoelectron hologram, it
is sufficient to analyze the kinetic-energy distribution of the
measured projected PMDs. For a quantitative analysis of the
experimental data, we apply the Abel inversion to retrieve a
2D section �(k, θ ) through the PMD in the y-z plane (parallel
to the detector plane). This section is integrated over the polar
angle θ , yielding the momentum-resolved spectrum

�int(k) =
∫ 2π

0
�(k, θ )dθ, (8)

which is then energy calibrated [43] to obtain the kinetic-
energy-resolved photoelectron spectrum �int(ε). In the exper-
iment, we study coherent control of the hologram by mea-
suring energy-resolved photoelectron spectra while varying
the relative optical phases. For this purpose, we decompose
the phase αopt = αv + α0 into the phase to be varied αv (i.e.
−2ϕpu, −ϕpr, or 3ϕref) and the sum of the two remaining phase
terms α0. The recorded energy-resolved spectra �int(ε, αv; α0)
plotted as a function of the variable phase αv display an inter-
ference pattern in the SQuaSH channel (ε1 ≈ 0.05 eV), which
we refer to as a phase map. The phase map is manipulated
parametrically by the constant phase α0. In particular, Eq. (5)
shows that switching α0 from 0 to π leads to an inversion of
the phase map. This inversion is utilized to separate the inter-
ference term in Eq. (5) from the phase-insensitive background.
Specifically, we perform two measurements of �int(ε, αv; α0)
for α0 = 0 and π and calculate the energy-resolved phase
contrast

C(ε, αv) = �int(ε, αv; 0) − �int(ε, αv; π )

max[�int(ε, αv; 0) + �int(ε, αv; π )]

∝ cos(αv + β(ε) + γqm). (9)

The phase contrast C(ε, αv) reveals the interference pat-
tern without distortion by the energy-dependent background,
which facilitates the retrieval of the energy-dependent phases
imprinted in the hologram.

The theoretical model described by Eqs. (5)–(7) is em-
ployed in Sec. IV to obtain analytical expressions for physical
quantities, e.g., the periodicity of the recorded phase maps
(Sec. IV A), the tilt or shearing of the interference fringes
due to the time-delayed creation of the reference wave packet
(Sec. IV B 1), and the overall phase shift of the interfer-
ence pattern due to the detuned excitation of the 3d state
(Sec. IV B 2). These analytical expressions are compared with
the experimental results.

III. EXPERIMENT

A. Experimental setup

In our experiment, we combine trichromatic white-light
polarization pulse shaping with photoelectron imaging [3]. In-
frared pulses provided by a multipass chirped-pulse amplifier
(Femtolasers Rainbow 500, CEP4 module, Femtopower HR
3 kHz; λ0 = 790 nm, 0.9 mJ pulse energy) are used to seed a
neon-filled hollow-core fiber (absolute gas pressure of 2.0 bar)
for the generation of an octave-spanning white-light supercon-
tinuum (WLS). The white-light pulses are modulated in the
frequency domain using a home-built 4 f polarization pulse
shaper [44–46] specifically adapted to the ultrabroadband
WLS [33]. Trichromatic amplitude and phase modulation is
implemented by a dual-layer liquid-crystal spatial light mod-
ulator (LC-SLM; Jenoptik SLM-640d) and a broadband p
polarizer (Codixx colorPol) mounted in the Fourier plane of
the 4 f setup. To achieve highly accurate spectral amplitude
and phase modulation, we performed a wavelength-to-pixel
calibration utilizing spectral amplitude modulation of indi-
vidual LC-display pixels in conjunction with a broadband
spectrometer [47]. A measured trichromatic spectrum of the
resulting PLP field employed in the experiment is shown
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in the inset in Fig. 2. The central wavelengths are set to
λpu = 928 nm (pump), tuned to the two-photon resonance
of the 3d state, λpr = 722 nm (probe) and λref = 848 nm
(reference). The spectral FWHMs of the pump (red), probe
(blue), and reference (green) pulses are chosen to be �ωpu =
0.02 rad/fs and �ωpr = �ωref = 0.035 rad/fs, correspond-
ing to bandwidth-limited pulse durations of �tpu ≈ 139 fs
and �tpr = �tref ≈ 79 fs, assuming Gaussian envelopes. The
spectral widths �ωpr and �ωref are adapted for optimal en-
ergetic overlap of the generated photoelectron wave packets,
while the bandwidth of �ωpu is chosen to be narrower to
ensure selective excitation of the 3d state [48]. The energetic
overlap of the probe and the reference wave packet in the
continuum occurs around the kinetic energy ε1 ≈ 0.05 eV
[see Fig. 1(a)]. The spectral amplitudes of each color are
optimized manually for maximum interference contrast in
the SQuaSH channel. To individually advance or delay the
pulses in time, we apply linear spectral phase functions using
the LC-SLM (see Sec. II and the inset in Fig. 2). Owing to
the common-path geometry of the shaper-based scheme, the
generated trichromatic pulse sequences are inherently phase
locked, allowing for low-jitter and high-precision variation of
the relative phases of all three pulses independently [49].

The trichromatic pulse sequences are focused via a spheri-
cal mirror ( f = 250 mm) into the interaction region of a VMI
spectrometer [3] filled with K vapor from a dispenser source
(Saes Getters). Using a small inclination angle of about 10◦
minimizes the aberrations of our focusing optics. The laser
peak intensity of the temporally overlapping trichromatic field
is on the order of I0 ≈ 5 × 1012 W/cm2. The pump pulse
alone has an intensity on the order of Ipu ≈ 5 × 1011 W/cm2.
This estimate results from a measured beam waist of about
28 μm in the interaction region and the measured pulse dura-
tions from Sec. III B. The photoelectron wave packets created
by MPI of the K atoms are imaged onto a position-sensitive
2D detector (German Image Detector Systems MCP-77-2-
60-P43-CF160-HR) consisting of a dual-layer microchannel
plate in the chevron configuration stacked with a phosphor
screen. The 2D projections of the PMD are recorded by a
CCD camera (Lumenera LW165M). To reconstruct the full
3D PMD, shown in the insets in Figs. 1(a) and 2, we apply
photoelectron tomography. To this end, we rotate the input
pulse sequence about the laser propagation direction by a
superachromatic λ/2 wave plate [31]. The PMD is retrieved
from 45 projections, with an angular step size of δφ = 4◦,
using the Fourier slice algorithm [50] (see [21,35,37,51] for
details). The result confirms the cylindrical symmetry of the
hologram. Therefore, we employ Abel inversion techniques,
based on the PBASEX algorithm, to reconstruct the PMDs from
the 2D projections acquired in the different measurements and
determine the corresponding energy-resolved photoelectron
spectra [see Eq. (8)].

B. Experimental strategy

In this section, we describe our strategy to design and
characterize the shaper-generated trichromatic pump-probe-
reference pulse sequences employed in the experiment.
First, the WLS is compressed using a shaper-based adaptive
optimization procedure to maximize the second-harmonic

yield from a thin β-barium borate crystal (Gwu-Lasertechnik,
cutting angle θ = 29.2 ◦, 5 μm thick) [52,53]. The temporal
characterization of the pulse sequence is performed in situ,
i.e., in the interaction region of the VMI spectrometer, by mea-
suring energy-resolved photoelectron spectra from MPI of K
as a function of the time delays τpu and τref [46]. In particular,
we investigate three-photon frequency mixing of the probe
and reference pulses, which results in two different photo-
electron signals [35] centered around ε2 ≈ 0.30 eV and ε3 ≈
0.56 eV. These contributions are referred to as green-blue
signals. In addition, we investigate the nonresonant frequency
mixing of the pump and probe pulses, creating a photoelec-
tron signal around ε6 = h̄ωpu + 2h̄ωpr − VIP ≈ 0.43 eV. This
signal is denoted as the red-blue-blue signal.

First, we perform a time-resolved measurement using only
the probe and reference pulses without the pump pulse. In
this setup, we vary the time delay of the reference pulse
τref ∈ [−100 fs, 100 fs] in steps of δτref = 5 fs. The time delay
of the probe pulse is fixed to τpr = −15 fs in order to study
the influence of the energy-dependent time-evolution phase
�holo(ε)τpr [see Eq. (7)] but maintain sufficient temporal over-
lap between the probe and reference pulses. The latter ensures
that the green-blue frequency-mixing signals are still observ-
able in the phase-resolved measurements (see Sec. IV A). The
resulting photoelectron spectra �int(ε; τref ) are presented in the
top frame of Fig. 3(a), showing the two green-blue signals
(gray arrows). Both signals are centered temporally around
τref = (−15 ± 5) fs, confirming the time delay of the probe
pulse. The bottom frame of Fig. 3(a) depicts energy sections
through both green-blue frequency-mixing contributions to-
gether with Gaussian fits. The fits have FWHMs of (89 ± 7) fs
and (96 ± 6) fs. Since we assume equal pulse durations due to
the same spectral widths of the probe and reference pulses,
we use the average FWHM of (93 ± 7) fs of these Gaus-
sian fits to determine the pulse durations. Using �tFWHM =√

3
2�tpr/ref, which is derived from the relation between the

multiphoton spectrum and the multiphoton field as discussed
in Appendixes A.1. and A.2. in [32], we obtain a pulse du-
ration of �tpr = �tref = (76 ± 6) fs, in good agreement with
the bandwidth-limited estimation given in Sec. III A.

Next, we perform a time-resolved measurement using the
complete trichromatic sequence, which allows for the tempo-
ral characterization of the pump pulse. In this measurement,
we vary the time delay τpu ∈ [−215 fs, 135 fs] in steps of
δτpu = 8.75 fs, setting τpr = −15 fs and τref = 0 fs as in the
experiment. The resulting photoelectron spectra are depicted
in the top panel of Fig. 3(b). In between the green-blue
signals centered at ε2 and ε3, we additionally observe the
red-blue-blue signal around ε6 (magenta arrow) and a contri-
bution centered at ε5 = h̄(ωpu + ωpr + ωref ) − VIP ≈ 0.18 eV
(brown arrow). The latter is attributed to trichromatic fre-
quency mixing of the pump, probe, and reference pulses, with
each color contributing one photon, and is hence denoted
the red-blue-green signal. This signal serves to indicate the
temporal overlap of all three pulses. However, since the probe
and reference pulses are temporally shifted relative to each
other, the red-blue-blue signal at ε6 is better suited to retrieve
the FWHM of the pump pulse. The bottom panel of Fig. 3(b)
depicts a section through the red-blue-blue signal along with
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FIG. 3. Time-resolved in situ characterization of the laser electric
field to temporally characterize the applied pulse sequence. (a) Time-
resolved measurement of only the probe (blue) and reference (green)
pulses by variation of τref. The green-blue frequency-mixing signals
at ε2 and ε3 are temporally centered around τref ≈ −15 fs, the time
delay of the probe pulse. (b) Time-resolved measurement of the
trichromatic pulse sequence by variation of τpu. The red-blue-blue
frequency-mixing signal at ε6 is also centered around τpu ≈ −15 fs.
The frames on the right-hand sides of (a) and (b) show simplified
excitation schemes containing only the relevant frequency-mixing
terms.

a Gaussian fit. The fit indicates a maximum overlap of both
pulses at τpu = (−15 ± 5)fs, again confirming the temporal
shift of the probe pulse. With the probe pulse duration �tpr

determined above and an FWHM of (162 ± 15) fs extracted
from the Gaussian fit, we find �tpu = (153 ± 17) fs. The ac-
tual deviations of the measured spectrum in Fig. 2 from a
Gaussian shape indicate a slightly larger pulse duration in the
experiment. Nevertheless, this result is also in good agreement
with the bandwidth-limited estimation from Sec. III A. In the
experiment, we separated the pump pulse in time by choos-
ing τpu = (−215 ± 7) fs in order to reduce the nonresonant
frequency-mixing contribution in the photoelectron spectrum
and minimize pump-induced Stark shifts during the probe
step.

IV. RESULTS AND DISCUSSION

The experiment is performed in two parts. In the first
part, we vary the relative phases of all three pulses in the
sequence to exert phase control on the photoelectron holo-

gram. We record phase maps �int(ε, αv; α0) by continuous
variation of either ϕref or ϕpu and manipulate the phase maps
systematically by making use of the remaining phases com-
prising α0. The results are presented in Sec. IV A. In the
second part, we apply the holographic scheme to investigate
dynamic quantum phases imprinted in the hologram by the
transient dynamics of the excited atomic system. To this end,
we utilize the phase-control results from the first part to re-
move the phase-insensitive yet energy-dependent background
from the phase maps. Evaluation of the corresponding phase
contrasts C(ε, αv) [see Eq. (9)] highlights the effect of the
energy-dependent time-evolution phases on the phase map.
In addition, we investigate the dynamic phase accumulated in
the bound system due to the detuning of the pump pulse from
the atomic resonance by measuring ϕpr-resolved phase maps.
These results are presented in Sec. IV B.

A. Phase control of the photoelectron hologram

In this first part of the experiment, we study the sensitiv-
ity of the photoelectron hologram to the optical phases of
each pulse in the trichromatic sequence. For this purpose,
we record phase maps by varying the relative phase of ei-
ther the reference or the pump pulse for different settings of
the remaining phases. The time delays τpu = (−215 ± 7) fs
and τpr = (−15 ± 5) fs are kept fix as described in Sec. III B
(see also the inset in Fig. 1). The measured 2D projections
of the PMD are Abel inverted, energy calibrated (see Wi-
tuschek et al. [43] for details), and angularly integrated to
obtain the phase map �int(ε, αv; α0) (see Sec. II). The ex-
perimental results are presented in Fig. 4. The top frame
in Fig. 4(a) shows the phase map measured by varying
ϕref ∈ [−π, π ] with a step size of δϕref = 0.13 rad. The re-
maining phases are set to ϕpu =ϕpr = 0, resulting in α0 = 0.
The energy range of the map from ε = 0 eV to ε = 0.9 eV
shows all photoelectron contributions in the spectrum. Be-
sides the photoelectron hologram in the SQuaSH channel
centered around ε1, we observe the green-blue signals at
ε2 and ε3 and the single-color signal created by the probe
pulse around ε4. While the constancy of the blue single-color
signal confirms the stability of the experimental system, the
green-blue frequency-mixing contributions around ε2 and ε3

additionally underscore the amplitude stability of the refer-
ence pulse, especially under phase-variations. The hologram,
however, is strongly modulated upon variation of ϕref, indi-
cating the efficient manipulation of the interference between
the probe and reference wave packets by the relative phase of
the reference pulse. The circular insets display measured 2D
projections of the PMD for two distinct phases corresponding
to maximum constructive interference at ϕref = −1.64 rad and
maximum destructive interference at ϕref = −0.64 rad of both
wave packets. The yield modulation of the hologram due to
variation of ϕref is periodic, with a period of 2π/3. The peri-
odicity is in accordance with Eqs. (5) and (6) and is due to the
fact that the reference wave packet is created via three-photon
ionization by the reference pulse. Hence, the periodicity of
the phase map with respect to the variation of an optical phase
provides information about the ionization dynamics, e.g., the
role of the corresponding subpulse in the MPI process. Small
deviations in the periodicity of the modulation are attributed
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FIG. 4. Phase-sensitive photoelectron hologram from trichromatic SQuaSH of a (2+1) REMPI and a nonresonant three-photon ionization
pathway. (a) Measured phase map �int(ε, 3ϕref; 0) for the relative optical phase ϕref of the reference pulse in the energy windows of ε ∈
[0, 0.9] eV (top frame) and ε ∈ [0.01, 0.1] eV (middle frame) for ϕpu = ϕpr = 0. Besides the frequency mixing (ε2 and ε3) and single-color
(ε4) contributions in the top frame, we observe a pronounced interference pattern around ε1 with a 2π

3 periodicity resulting from wave-packet
interferences according to Eq. (5). The insets depict measured and energy-calibrated PMDs at ϕref = −1.64 rad (left) and −0.64 rad (right). In
the bottom frame of (a) we show �int(ε, 3ϕref; −π ), i.e., the inverted interference structure which is generated by applying ϕpu = π

2 . (b) Sections
through the interference patterns of (a) (crosses and circles) together with cosine fits (solid and dotted lines), emphasizing the sinusoidal
behavior according to Eq. (5). (c) Same as (a), but for a phase map �int(ε, −2ϕpu; α0) regarding the relative phase ϕpu. The two frames at
the top of (c) show the measured and simulated ϕpu phase maps �int(ε,−2ϕpu; 0) with a periodicity of π for ϕref = ϕpr = 0. The bottom two
frames show �int(ε, −2ϕpu; −π ) and �int(ε,−2ϕpu; π ), i.e., the inverted interferences using either ϕpr = π or ϕref = π

3 . (d) Sections through
the measured phase maps of (c) (crosses, squares, and circles) together with cosine-fits (solid, dashed, and dotted lines).

to slight spectral amplitude modulations due to diffraction
at the discrete phase pattern applied to the pixelated LC-
SLM [54,55]. The phase map in the middle frame of Fig. 4(a)
shows a magnification of the relevant SQuaSH channel. In this
representation, we see not only that the hologram is modulated
in yield but that the lobes of the interference pattern are also
tilted. The tilt indicates the energy-dependent quantum phase
ετ/h̄ [see Eq. (7)] due to the free time evolution of the probe
wave packet prior to the creation of the reference wave packet.
A closer investigation of this tilt is the subject of Sec. IV B 1.
Next, we manipulate the interference pattern by setting the
relative phase of the pump pulse to ϕpu = π/2. Since the
pump contributes two photons to the hologram generation
[see Fig. 1(a)], this additional optical phase is expected to
shift the interference pattern by α0 = π [see Eq. (6)]. The π

phase shift is confirmed by the measured phase map shown
in the bottom frame of Fig. 4(a), which is inverted relative
to the one shown in the middle frame. To emphasize this
inversion, we plot sections through both maps along the phase
axis at ε = 0.06 eV in Fig. 4(b), together with cosine fits
through the data. The fits reproduce the 2π/3 periodicity
of the oscillations and emphasize the antiphase relation of
the two measured phase maps with a measured phase shift
of �ϕref,exp = (3.1 ± 0.1) rad.

In the next step, we vary the relative phase of the pump
pulse continuously in the range ϕpu ∈ [−π, π ] with a step size
of δϕpu = 0.21 rad, set ϕref = ϕpr = 0, and record the phase
map �int(ε,−2ϕpu; 0). The experimental result is presented in
the top frame of Fig. 4(c). Below, we compare the experimen-
tal results to a numerical simulation. The calculation is based
on the numerical solution of the time-dependent Schrödinger
equation for the perturbative interaction of a hydrogenlike
four-level atom, including the potassium ground state 4s and
the excited states 4p, 5s, and 3d , with a sequence of three
Gaussian-shaped pulses similar to those used in the exper-
iment. Building on the numerically calculated bound-state
population dynamics, the energy-resolved photoelectron spec-
tra are calculated using time-dependent perturbation theory
(see, e.g., [56] for a more detailed description). The simulation
result agrees very well with the measured phase map. Both
display a pronounced yield oscillation of the hologram as a
function of ϕpu with a period of 2π/2 = π . This period is
expected from Eq. (6) since the pump pulse excites the 3d
state by absorption of two photons (see also the discussion
above). The absolute phase in the simulation was adapted to
reproduce the measured data. To demonstrate the full control-
lability of the photoelectron hologram via the phases of all
three pulses, we repeated the measurement for either ϕpr = π
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or ϕref = π/3. According to Eq. (6), these settings result in
α0 = −π and α0 = π , respectively. Hence, both settings are
expected to invert the interference pattern, which is confirmed
by the recorded phase maps shown in the two bottom frames
of Fig. 4(c). The inversion is emphasized by direct compar-
ison of sections taken through the measured phase maps at
ε = 0.06 eV and is depicted in Fig. 4(d). The measured phase
shifts are �ϕpu,exp = −(3.1 ± 0.2) rad and �ϕpu,exp = (3.3 ±
0.2) rad, respectively. The minor phase shift between the two
inverted phase maps [light blue dashed and dark blue dotted
lines in Fig. 4(d)] is within the estimated errors of ±0.2 rad.
The good agreement of the measured phase maps with the
theoretical prediction and the simulation results highlights
the fidelity of the trichromatic SQuaSH scheme regarding its
phase stability and shows the potential to optically manipulate
the photoelectron hologram, which will be utilized in the next
part of the experiment.

B. Analysis of dynamic quantum phases

In the second part of the experiment, we investigate
dynamic quantum phases originating from the free time evo-
lution βf(k) = �holo(k)τpr of the created probe wave packet
in the continuum prior to the creation of the reference wave
packet (Sec. IV B 1), as well as the phase βb = �puτpu as-
sociated with the time evolution in the bound system after
the excitation by the pump pulse (Sec. IV B 2). The former
induces an energy-dependent phase which shears the entire
interference pattern along the phase axis, whereas the latter
results in a constant phase shift of the interference pattern,
similar to the relative optical phases in Sec. IV A. In addition,
we show that a time-resolved measurement of the photoelec-
tron hologram by variation of τpu reveals a beating of the 3d
state with the second harmonic of the pump pulse, which is
highly sensitive to the pump detuning �pu.

1. Time evolution of the probe wave packet

We start with the analysis of the time-evolution phase
accumulated by the probe photoelectron wave packet after
its creation by the probe pulse and before the generation
of the reference wave packet (τref = 0 fs). Because each
continuum state contributing to the probe wave packet accu-
mulates a different time-evolution phase ετpr/h̄, the resulting
phase βf(k) imprinted in the hologram [see Eq. (7)] depends
linearly on the photoelectron energy ε. This linear radial
phase results in the shearing of the interference pattern ob-
served in the recorded phase maps in Figs. 4(a) and 4(c).
For a background-free analysis of this shearing—and hence
of the energy-dependent time-evolution phase of the probe
wave packet—we determine the corresponding phase con-
trasts C(ε, αv) according to Eq. (9). The experimental results
are shown in Fig. 5 and compared to the results of the numeri-
cal simulation. The experimental phase contrast C(ε, 3ϕref ) in
Fig. 5(a) is derived from the two phase maps in Fig. 4(a), while
the phase contrast C(ε,−2ϕpu) in Fig. 5(b) is calculated using
the first and third (ϕref = π/3) phase maps from Fig. 4(c).
Both phase contrasts exhibit modulations of about 50% and
display a tilt of the interference lobes with a negative slope
[Fig. 5(a)] and a positive slope [Fig. 5(b)]. For a theoretical
description of these slopes, we consider the position of the

FIG. 5. Measured and simulated phase contrasts C(ε, αv) of the
phase maps from Fig. 4, according to Eq. (9). (a) corresponds to
the ϕref phase maps from Fig. 4(a) (second and third frames), and
(b) is calculated from the ϕpu phase maps in Fig. 4(c) (first and
third frames). The black circles correspond to the extracted maxima
at each energy section, and the orange solid lines represent the
theoretical delay-induced tilt according to Eq. (10). The slopes of
the interference fringes (indicated in black) and the extracted delay
of τpr ≈ −22 fs are in good agreement with theoretical results from
Sec. IV B 1 and the measurements from Sec. III B. For the simula-
tions and the calculation of the theoretical slopes we assumed a time
delay of τpr = −15 fs.

interference lobes, i.e., the maxima of the density in Eq. (5),
on the phase axis as a function of ε, analogous to the treatment
in [22,37,57]. The relation between the photoelectron kinetic
energy of the interference lobes and the optical phases reads
(see Appendix B)

ε = h̄

τpr
(3ϕref − 2ϕpu − ϕpr). (10)

Thus, we find slopes of mref = 3h̄/τpr and mpu = −2h̄/τpr

for the phase contrasts recorded upon variation of ϕref and
ϕpu, respectively. Note the negative time delay of the probe
pulse, i.e., τpr < 0. The different signs of the slopes re-
sult from the fact that the relative phases of the pump
and reference pulse are introduced in different ionization
pathways. The slopes derived from the theoretical model
are indicated as orange lines in the corresponding simu-
lation in Fig. 5. Black circles indicate the slopes of the
measured phase contrasts. Assuming τpr = (−15 ± 5) fs,
Eq. (10) predicts slopes of mref = (−132 ± 44) meV/rad
and mpu = (88 ± 29) meV/rad. The slopes of the measured
contrasts, extracted from linear fits indicated as black lines
in Fig. 5, are mref,exp = (−91 ± 19) meV/rad and mpu,exp =
(58 ± 8) meV/rad. The corresponding probe-pulse time delay
is τpr = (−22 ± 4) fs. These results are in reasonable agree-
ment with the theoretical model and in accordance with the
characterization results from Sec. III B taking into account the
energy resolution of the VMI and the error of the measured
pulse delays. Besides these errors, a minor systematic error

052805-8



TRICHROMATIC SHAPER-BASED QUANTUM STATE … PHYSICAL REVIEW A 104, 052805 (2021)

FIG. 6. Simulated time-resolved studies of the bound time evo-
lution of the 3d state for different central wavelengths of the pump
pulse, resulting in different beatings between the pump pulse and the
atomic oscillation. While a near-resonant excitation of the 3d state
in (a), (c), and (d) leads to a pronounced beating pattern with the
corresponding frequencies �pu, resonant excitation in (b) yields a
constant signal in accordance with �pu = 0. The tilts of the lobes in
the interference patterns indicate the direction of the detuning and
change from the blue-detuned case in (a) to the red-detuned cases in
(c) and (d).

in the energy calibration may also affect the reconstructed
slopes.

These findings show that, besides the period of the
recorded phase maps, phase-sensitive information on the ion-
ization dynamics is imprinted in the tilt of the interference
pattern, similar to what was found in [22,37,57]. Our method
utilizing the optical phases to invert the interference pattern
allows for the background-free investigation, as exemplified
by the quantitative analysis of the observed results.

2. Time evolution of the bound state

Next, we examine the influence of dynamic quantum
phases that are accumulated in the bound system on the holo-
gram. After the excitation by the pump pulse, the excited
3d state undergoes a field-free time evolution with eigen-
frequency ω3d until the second pulse probes the population.
In a time-resolved study using an interferometer, this time
evolution manifests as a phase of ω3d (τpr − τpu). In this case,
a variation of either the pump or the probe time delay leads
to a fast yield oscillation of the hologram with a frequency
of ω3d , corresponding to a period of about 1.5 fs. In contrast,
our shaper-based approach permits us to temporally shift only
the pulse envelope instead of the entire pulse by applying
the linear phases relative to the respective central frequen-

cies [38,39] [see Eq. (2)]. The additionally acquired phase of
2ωpuτpu partially compensates for the phase of the atomic os-
cillation. This manifests in the reduced time-evolution phase
in Eq. (5) given by βb = 2ωpu − ω3d ≡ �puτpu [see Eq. (7)].
Thus, the oscillation in Fig. 6 shows a slow beating with
frequency �pu [21] between the pump pulse and the natural
atomic oscillation of the 3d state, instead of the eigenfre-
quency ω3d . Analogous to a stroboscopic experiment, where
the frequency of the stroboscope is matched to a rapid oscilla-
tory process, a slight detuning between the two (represented in
our experiment by �pu) reveals a much slower and easily de-
tectable dynamics. Knowledge of the stroboscopic frequency
then allows us to reconstruct the process dynamics. Figure 6
shows τpu-resolved simulations of the beating for different
two-photon detunings of the pump pulse from the 3d state. On
resonance (λres

pu = 928.7 nm, �pu = 0), no signature of the 3d
time evolution is imprinted in the τpu-resolved map shown in
Fig. 6(b). For the detuned case (�pu �= 0), we vary the central
wavelength of the pump pulse in three steps, λ(0)

pu = 928 nm
(blue detuned) and λ(1)

pu = 930 nm and λ(2)
pu = 933 nm (both

red detuned). The corresponding beating periods of T (0) =
1964 fs, T (1) = 1122 fs, and T (2) = 308 fs are reproduced in
the simulated τpu-resolved spectra shown in Figs. 6(a), 6(c)
and 6(d), respectively. Thus, the beating frequency of the
signal, associated with the dynamic of interest, can be adapted
to the resolution of the measurement. The vanishing of the
modulation in the time-resolved measurement for �pu = 0
allows us to experimentally fine-tune the laser field to the
resonance of the system.

Here, we study the beating by analyzing the phase maps
analogous to the results in Sec. IV A. The measured phase
maps for the fixed pump time delay of τpu ≈ −215 fs allow
us to retrieve the phase shifts between the lobes in Fig. 6 (red
dashed vertical line). To this end, we vary ϕpr to extract the
phase shifts (modulo 2π ) as described by Eq. (6). This pro-
cedure also complements the demonstration of phase control
discussed in Sec. IV A by using the relative phase of the probe
pulse as αv. Figure 7 shows the phase maps �int(ε,−ϕpr; 0)
corresponding to the previous chosen wavelengths with ϕpr ∈
[−π, π ] and a step size of δϕpr = 0.21 rad while setting ϕpu =
ϕref = 0. Figures 7(a)–7(c) depict the phase maps recorded
for λ(0)

pu , λ(1)
pu , and λ(2)

pu . Sections taken at ε = 0.06 eV are
shown in Fig. 7(d) together with the respective cosine fits for
a quantitative analysis. Comparison of the different sections
reveals a pronounced phase shift of the interference patterns in
Figs. 7(b) and Fig. 7(c) compared to Fig. 7(a). The phase shifts
�ϕpr,exp obtained from the cosine fits in Fig. 7(d), indicated by
red circles, are given in Table I (second column). The phase
shift �ϕpr,theo for the variation of the pump pulse frequency
�ωpu is derived from the theoretical model in Appendix B as

�ϕpr,theo = 2�ωpuτpu. (11)

The factor of 2 is due to the two-photon excitation of the
3d state by the pump pulse. The theoretical phase shifts de-
termined with Eq. (11) are presented in the third column of
Table I. Both values are in good agreement with the extracted
phase shifts from the measured data. These results under-
score the fidelity of the shaper-based scheme regarding the
fine tunability of the colors in the trichromatic field and the
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FIG. 7. Measured phase maps �int(ε,−ϕpr; 0) and extracted
phase shifts due to a variation of the central wavelength λpu of
the pump pulse. (a)–(c) The energy-resolved phase maps for λ(0)

pu =
928 nm, λ(1)

pu = 930 nm, and λ(2)
pu = 933 nm exhibit a 2π period-

icity. (d) Energy sections at ε1 of the measured phase maps in
(a)–(c) (crosses, squares, and triangles) together with corresponding
cosine fits (solid, dashed, and dotted lines). The detuning-induced
phase shifts relative to the resonant case (black circle) are highlighted
by red circles. The red dashed line corresponds to the red dashed line
in Fig. 6 and indicates the τpu section in the simulated time-resolved
studies.

precise retrieval of quantum-mechanical phases from the cre-
ated hologram.

V. SUMMARY AND CONCLUSION

In this paper, we presented a trichromatic shaper-based
quantum state holography (SQuaSH) scheme to measure
phase-sensitive multiphoton ionization (MPI) dynamics. The
trichromatic scheme builds on the shaper-based bichromatic
pump-probe technique introduced in [30] and extends the self-
referenced bichromatic holography technique reported in [21]
by introducing an independent reference pulse with a third
color. The concept is based on the use of trichromatic pump-
probe-reference pulse sequences, with the central frequencies
chosen such that Npuωpu + Nprωpr = Nrefωref in order to en-
sure energetic overlap in the continuum. In an (Npu + Npr)
resonance-enhanced MPI (REMPI) process, the pump pulse
resonantly excites bound-state dynamics which are subse-

TABLE I. Theoretical and experimentally extracted relative
phase shifts �ϕpr,exp and �ϕpr,theo of the SQuaSH channel interfer-
ences in a phase map �int(ε, −ϕpr; 0) due to the variation of the
pump-pulse wavelength λpu. The theoretical phase shifts were cal-
culated according to Eq. (11).

Detuning λpu (nm) �ϕpr,exp (rad) �ϕpr,theo (rad)

(1) 930 ± 0.8 2.18 ± 0.30 1.89 ± 0.06
(2) 933 ± 0.8 4.60 ± 0.30 4.69 ± 0.15

quently mapped into the continuum by the probe pulse. The
created probe photoelectron wave packet interferes with a
reference wave packet from direct Nref-photon ionization of
the ground state by the reference pulse. In the experiment,
we combined trichromatic white-light supercontinuum pulse
shaping with photoelectron velocity map imaging (VMI) and
measured energy- and angle-resolved photoelectron spectra.
For the analysis, the experiments were complemented by
a theoretical model of perturbative trichromatic MPI of a
one-electron atom and by numerical simulations based on
the short-time propagation of the time-dependent Schrödinger
equation for a multilevel atom interacting with a trichro-
matic laser field. We demonstrated the trichromatic SQuaSH
scheme on the (2 + 1) REMPI of potassium atoms us-
ing shaper-generated parallel linearly polarized trichromatic
pump-probe-reference sequences. Two-photon excitation of
the potassium 3d state by the pump pulse was mapped into the
continuum by one-photon ionization with the time-delayed
probe pulse. The probe wave packet was superimposed by a
reference wave packet created by nonresonant three-photon
ionization of the 4s ground state by the reference pulse. The
photoelectron momentum distribution (PMD) of the result-
ing hologram was reconstructed from the measured VMI
images using Abel inversion. We first demonstrated phase
control of the hologram by systematic variation of the rela-
tive phases of all three pulses in the trichromatic sequence.
The measured phase maps, i.e., energy-resolved photoelectron
spectra recorded as a function of the different optical phases,
exhibited high-contrast interference patterns. The character-
istic periodicity observed in the SQuaSH channel of the
hologram unambiguously revealed the number of photons of
each color required for MPI, i.e., one blue photon and two
red photons versus three green photons. In the second step,
we applied the holographic scheme to investigate quantum
phases imprinted in the hologram. Our approach enabled
background-free examination of time-evolution phases accu-
mulated in the continuum by the probe wave packet via the
shearing of the interference pattern. In contrast, the time-
evolution phase accumulated in the bound system by the
excited 3d state introduced a constant phase, resulting in an
overall shift of the interference pattern. The experimental
results were in good agreement with our numerical simulation
and consistent with the theoretical model.

In conclusion, the shaper-based trichromatic holography
scheme introduced here is a powerful tool for the phase-
sensitive investigation of ultrafast quantum dynamics in atoms
and molecules. Due to the common-path geometry, pump,
probe, and reference pulses are inherently phase locked, en-
suring a maximum interference contrast in the measured
phase maps. Independent control of the phase, the time delay,
and the central wavelength of all three pulses renders the
shaper-based approach very versatile and adaptable to various
applications. Our results for the potassium model system show
that the structure of the interference pattern contains detailed
phase information about the underlying bound and free ion-
ization dynamics.

Possible applications of the scheme include shaper-based
multidimensional spectroscopy [58,59] and the time-resolved
holographic imaging of nonadiabatic molecular dynam-
ics [60]. Polarization-tailored [33] trichromatic pump-probe-
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reference sequences will be useful for studying polarization-
sensitive MPI dynamics, such as spin-orbit wave-packet
dynamics in atoms [29] and vibronic wave-packet dynam-
ics in molecules [61]. In these cases, the phase information
imprinted in the angular distribution of the hologram will
reveal additional information on the dynamics. In gen-
eral, the use of polarization-shaped pulses for trichromatic
SQuaSH breaks the cylinder symmetry of the PMD, requir-
ing tomographic techniques [31] for its 3D reconstruction.
Trichromatic SQuaSH will enable the investigation of more
complex (phase) dynamics, e.g., time delays in strong-field
ionization of atoms [62] and geometrical phases in the nona-
diabatic electron-nuclear dynamics at conical intersections in
molecules [63]. Also the development of SQuaSH for the
nonperturbative interaction regime and its application to the
selective population of dressed states [64] is currently being
investigated in our labs.
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APPENDIX A: THEORETICAL DESCRIPTION
OF PHOTOELECTRON HOLOGRAMS FROM

TRICHROMATIC SQuaSH

The trichromatic pump-probe-reference pulse sequence de-
scribed by Eq. (3) induces the interference of two f (m =
0)-type photoelectron wave packets with angular distribution
ψ3,0(θ, φ) ∝ Y3,0(θ, φ). The superposition wave function in
the momentum representation and spherical coordinates k =
(k, θ, φ) is written as

	(k) ∝ [aref(k) + apr(k)]ψ3,0(θ, φ), (A1)

where aref(k) and apr(k) describe the amplitudes of the refer-
ence and probe wave packets, respectively. These amplitudes
describe the radial part of the resulting photoelectron holo-
gram. In the weak-field limit, the amplitudes aref(k) and apr(k)
are calculated using third-order time-dependent perturbation
theory [21,65–67]. Initially, the 3d state is excited by the
pump pulse by two-photon absorption, leading to a time-
dependent amplitude of [21]

d (t ) = μ
(2)
ds

(ih̄)2

∫ t

−∞
E2

pu(t ′ − τpu)e−i[�put ′−2ϕpu]dt ′ (A2)

and hence to a final amplitude of

lim
t→∞ d (t ) = d∞ = μ

(2)
ds

(ih̄)2
Ẽ (2)

pu (�pu)e−i�puτpu e2iϕpu , (A3)

where μ
(2)
ds describes the effective two-photon transition

dipole moment between the ground state and the 3d state.
Further, we introduced the pump detuning

�pu = 2ωpu − ω3d (A4)

with respect to the 3d resonance. In the next step the re-
sulting 3d-state population is mapped by the probe pulse via
one-photon ionization into an f -type continuum with a final

amplitude of

apr(k) = μkd

ih̄
d∞(τpu)

∫ ∞

−∞
Epr(t − τpr)e

−i[�prt−ϕpr]dt

= cpr(k)e−i(�puτpu+�prτpr )ei(2ϕpu+ϕpr ), (A5)

using

�pr(k) = ωpr − ωk − ωIP + ω3d . (A6)

After the time τpr, since the probe is advanced in time, the ref-
erence wave packet is generated by nonresonant three-photon
ionization of the 4s ground state into an f -type continuum.
The final amplitude of the reference wave packet reads

aref(k) = μ
(3)
ks

(ih̄)3

∫ ∞

−∞
E3

ref(t − τref )e
−i(�reft−3ϕref )dt

= cref(k)e−i�refτref e3iϕref , (A7)

with

�ref(k) = 3ωref − ωk − ωIP. (A8)

Note that, owing to the condition 3ωref = ω3d + ωpr for the
energetic overlap of the interfering wave packets, we find the
detuning

�holo(k) := �ref(k) ≡ �pr(k). (A9)

Finally, the photoelectron hologram is written as

	(k) ∝ (cref(k)e−i�holo (k)τref e3iϕref

+ cpr(k)e−i[�puτpu+�holo(k)τpr]ei(2ϕpu+ϕpr ) )ψ3,0(θ, φ).
(A10)

Introducing the real-valued shorthand notations B(k) =
|cref(k)|2 + |cpr(k)|2 and S(k) = 2|cref(k)||cpr(k)|, we obtain
the electron density �(k) = |	(k)|2 as

�(k) ∝[B(k) + S(k) cos(αopt + β(k) + γqm)]|ψ3,0(θ, φ)|2,
(A11)

with the phases

αopt = 3ϕref − 2ϕpu − ϕpr, (A12)

β(k) = �puτpu + �holo(k)(τpr − τref )

≡ βb + βf(k), (A13)

and γqm = χref − χpr, where χref and χpr describe the phases
of the corresponding amplitudes cref and cpr. In Eq. (A13), we
identify the phases βb = �puτpu and βf(k) = �holo(k)(τpr −
τref ) with the bound and free time evolutions of the system,
respectively. The electron density in Eq. (A11) describes a
yield modulation around the energy ε = h̄ωk dependent on
the optical phases ϕpr, ϕpu, and ϕref as well as the dynamic
quantum phases βb and βf(k). In the experiment, we use
τref = 0 fs as the time zero.

APPENDIX B: THEORETICAL DESCRIPTION OF FREE
AND BOUND-STATE TIME EVOLUTIONS

To investigate the free and bound time evolutions of the
electron wave packet, we consider the maxima of the density
in Eq. (A11). To incorporate a frequency variation of the pump
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pulse �ωpu = ω
(1)/(2)
pu − ω(0)

pu we adapt Eq. (A13), resulting in
the condition for constructive interference

2�ωpuτpu + βb + βf(k) + αopt = 2πn − γqm, (B1)

with n ∈ Z and ω(0)
pu = 2.03 rad/fs. The first term in Eq. (B1)

represents the modified beating phase between the bound-
state time evolution and the laser electric field. This beating
modification allows us to tune the laser field to a specific
bound-state dynamics of interest. While the bound-state dy-
namics itself is very fast and thus difficult to detect in a
time-resolved measurement, the modified photoelectron beat-
ing signal is significantly slower and requires a much lower
temporal resolution for its retrieval (see Sec. IV B 2).

All relative optical phases are incorporated in the quantity
αopt. The term βb represents a constant phase offset originating
from the bound-state time evolution, whereas the term βf(k),
describing the free time evolution, also exhibits an additional
k dependence, resulting in a tilt of the interference fringes in
the phase map. Setting τref = 0 fs as in the experiment and
omitting the constant phase terms on the right-hand side of
Eq. (B1), we obtain

2�ωpuτpu + �puτpu + �holo(k)τpr = −αopt, (B2)

using the definitions in Eq. (A13).
a. Free time evolution. First, we study the influence of

the free time evolution introduced by a nonvanishing time
delay τpr, assuming that the pump pulse is tuned on resonance,

i.e., �pu = 0. The application of Eq. (B2) leads to a relation
between the photoelectron kinetic energy ε = h̄ωk and the
relative optical phases

ε = (3ϕref − 2ϕpu − ϕpr)h̄

τpr
, (B3)

which describes the tilt of the interference fringes in the phase
maps in Sec. IV B 1. Here, we made use of the definition of
�holo(k) and αopt and neglected other constant phase terms.

b. Bound-state time evolution. In the next step we inves-
tigate the beating between the bound-state time evolution
and the laser electric field which is affected by a frequency
variation �ωpu of the pump pulse. Since we are interested in
a relative phase shift in a phase map, all parameters except
for the frequency variation and the relative optical phases are
assumed to be constant, and we neglect additional constant
phase terms. The resulting expression

2�ωpuτpu = −�αopt (B4)

describes the relation between a phase shift in a phase map and
the detuning of the pump frequency �ωpu. Hence, the relation

2�ωpuτpu = �ϕpr (B5)

describes the phase shift in a ϕpr-resolved phase map by using
�ϕref = �ϕpu = 0, as studied in Sec. IV B 2.
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