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Invariant subspaces of two-qubit quantum gates and their application in the verification
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We present a set of techniques, based on the repeated arbitrary application of CP, CNOT, and SWAPα (power-
of-SWAP) quantum gate operations to an n-qubit quantum computer that can be used in its verification. We find
isomorphisms between the groups generated by these gate operations and known groups and use techniques from
representation theory to determine their invariant subspaces. For the CP operation, we find an isomorphism to
the direct product of n(n − 1)/2 cyclic groups of order 2, and determine 2n one-dimensional invariant subspaces
corresponding to the computational-basis vectors. For the CNOT operation, we find an isomorphism to GL(n, 2),
and determine two one-dimensional invariant subspaces and one (2n − 2)-dimensional invariant subspace. For
the SWAPα operation we find a complex structure of invariant subspaces with varying dimensions and occurrences
and present a recursive procedure to construct them. Using knowledge of these invariant subspaces, we propose
a hardware verification scheme which tests the correct functioning of a quantum computer.
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I. INTRODUCTION

As quantum computers are now on the cusp of practical
use [1–3], there is a growing requirement for methods to
verify that they are working as intended. This requirement
is complicated by the fact that there are no quantum com-
puters available that could be used as a reference system,
so classical computers must be relied upon [3–5]. However,
the use of classical computers to fully simulate a quantum
circuit quickly becomes infeasible as the size of the quantum
computer increases. For example, for even a relatively small
quantum computer with 50 qubits, the wave function would
require 16 petabytes of data storage. Manipulating such a
large amount of data is cumbersome and expensive, and few
have tried it in this context [3,6,7].

Therefore, algorithms must be run on quantum hardware
whose outputs can easily be verified as correct or incorrect by
a classical computer. However, running a single algorithm and
getting a satisfactory outcome is not a particularly rigorous
test of the full functionality of a quantum computer. What
is required are classes of verification tests with effectively
infinite variability where the correctness of the output can be
easily checked using a classical computer.

We suggest a class of verification tests that utilize the
invariance of certain Hilbert subspaces under the action of
sets S of quantum gates. For some natural choices of S , these
invariant subspaces can be determined explicitly, and so it is
possible to prepare the quantum computer in an initial state
which is known to be fully contained within a chosen invariant
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subspace. Then, an arbitrary string of gates in S is applied. In
the absence of hardware errors, the final state would also lie
fully in the same invariant subspace. Hence, by measuring the
“leakage” of the state out of the invariant subspace, the fidelity
of the gates in S can be assessed.

Our proposal may be viewed as a hybrid prepare-and-send
and receive-and-measure scheme, under the classification
given in [8]. That is, the verifier, whose task is to verify
the correct functioning of the quantum computer, prepares a
state and sends it to the quantum computer, which performs
a computation and returns the final state to the verifier to be
measured. The result of this measurement determines whether
the quantum computer passes or fails the test. In our proposal,
the role of the verifier is simple: It prepares a state in a
given invariant subspace, and measures whether the state has
remained in that subspace during computation.

Whereas most proposed verification schemes (see [8] for
an overview) demand that the hardware output agrees with
the theoretical output of an error-free quantum computer, our
test only demands that the output lie in the correct invari-
ant subspace. Therefore our test is easier to pass than many
others: It is not sensitive to errors which preserve the invariant
subspaces. However, the benefit of our proposal is the essen-
tially infinite variability in choice of quantum circuits to run.
Rather than only running specific circuits where a classical
computer can easily verify that the output is precisely correct,
our proposal grants far more freedom to choose the sequence
of gates to be applied. Our test can therefore be used to gain
a broad overview of the performance of a given set of gates
when applied to different states and in different sequences.

Here, we consider three sets of quantum gate operations:
those generated by all possible CP (controlled-phase), CNOT

(controlled-NOT), and the SWAPα (power-of-SWAP) quantum
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gate operations on an n-qubit system, respectively. These
two-qubit quantum gates are commonly used in basic-gate
sets [9–11] for universal, gate-based [9,12–14] quantum com-
puting. Measuring their performance is critical for verifying
the operation of NISQ devices [1–3] and early fault-tolerant
quantum computers [11,15,16].

We begin by identifying the groups formed by each of the
three two-qubit quantum gate operations mentioned above.
We then determine the invariant Hilbert subspaces corre-
sponding to each of the three groups. For the CP operation,
we determine 2n one-dimensional invariant subspaces corre-
sponding to the computational state vectors. For the CNOT

operation, we determine two one-dimensional invariant sub-
spaces and one (2n − 2)-dimensional invariant subspace. For
the SWAPα operation we find a number of O(n2) distinct invari-
ant subspaces, and present a recursive algorithm to explicitly
construct these subspaces. Then, we discuss the use of these
invariant subspaces in a verification procedure for quantum
hardware.

The paper is organized as follows: In Sec. II, we outline our
theoretical framework and notation. In Sec. III we present our
analysis of the group theoretic properties of the CP (Sec. III A),
the CNOT (Sec. III B), and the SWAPα (Sec. III C) gate opera-
tions, and outline our verification procedure (Sec. III D). We
conclude in Sec. IV.

II. THEORETICAL APPROACH AND NOTATION

A quantum gate operation is a unitary map on the Hilbert
space of a qubit system. Given a set S of quantum gate
operations, there is an associated group of unitary maps gen-
erated by the elements of S: the group of all the maps that
can be formed by sequentially performing a finite number
of operations in S as well as their inverses. For an n-qubit
system, we will denote the groups associated with the sets of
CP, CNOT, and SWAPα gate operations by CP(n), CNOT(n), and
SWAPα(n), respectively. We will denote gate operations over an
ordered pair of qubits i and j by CP

(n)
i j , CNOT

(n)
i j , and SWAP

α(n)
i j .

To determine the elements and orders of these groups we must
find all distinct operations that can be performed with the
corresponding quantum gate operations.

As an example, for a two-qubit system one can easily
verify by hand that the CNOT(2) group consists of the iden-
tity map, the two CNOT operations CNOT

(2)
0,1 and CNOT

(2)
1,0, and

their unique distinct combinations, CNOT
(2)
0,1 CNOT

(2)
1,0, CNOT

(2)
1,0

CNOT
(2)
0,1 and CNOT

(2)
0,1 CNOT

(2)
1,0 CNOT

(2)
0,1. Hence |CNOT(2)| = 6.

Throughout this work we use the “natural” matrix rep-
resentations of the CP(n), CNOT(n), and SWAPα(n) groups: the
2n × 2n matrix representations which are obtained when the
corresponding maps are written in the computational basis for
the n-qubit Hilbert space.

III. RESULTS

A. The CP(n) group and invariant subspaces

The controlled-phase CP gate is a two-qubit quantum gate
that performs a controlled z rotation by π on a target qubit if
a control qubit is in the state |1〉. The CP gate is maximally
entangling. Therefore it is extensively used as an entangling

gate in basic-gate sets for universal gate-based quantum com-
putation, and in measurement-based quantum computation
[16–18] to construct cluster states [17].

The CP operations are invariant under the exchange of con-
trol and target qubits, and are their own inverses. This means
that the CP(2) group has only one generator of order 2. Hence
the CP(2) group is isomorphic to the cyclic group of order 2,
which is denoted by C2. The CP(n) group is generated by the
n(n − 1)/2 distinct CP operations on n qubits, which are all
group elements of order 2. Since these operations commute,
CP(n) is an abelian group. Moreover, these operations form a
minimal generating set: None of the operations can be written
as a product of the others and their inverses. As each CP oper-
ation has order 2, it follows that the CP(n) group is isomorphic
to the direct product of n(n − 1)/2 cyclic groups of order 2:
CP(n) ∼= Cn(n−1)/2

2 . The order of the CP(n) group is given by

|CP(n)| = 2n(n−1)/2. (1)

The matrices in the matrix representation of the CP(2) group
are

CP
(2)
0,1 →

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

and CP
(2)
0,1

2 →

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (2)

Similarly, the matrix representation of the CP(n) group for
n > 2 is diagonal with {−1,+1} entries. Therefore each com-
putational basis state vector spans a one-dimensional invariant
Hilbert subspace by itself.

B. The CNOT(n) group and invariant subspaces

The CNOT operation is a two-qubit quantum gate which
flips the state of a target qubit if a control qubit is in the state
|1〉. In the computational basis, the two generating elements
of CNOT(2) are represented by the following matrices:

CNOT
(2)
1,0 →

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠,

and CNOT
(2)
0,1 →

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠. (3)

Like the CP gate, the CNOT gate is maximally entangling, ca-
pable of transforming separable states to maximally entangled
states. It is another commonly implemented two-qubit gate in
gate-based quantum computers [9–11].

In order to investigate the CNOT(n) group, it is useful to
associate each computational basis state vector with an ele-
ment of Fn

2 , the n-dimensional vector space over the field with
two elements. We do this in the natural way: For example,
we associate the state vector |010〉 with the vector (0,1,0).
Since each CNOT operation sends the computational basis to
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itself (each basis state vector is transformed to a basis state
vector), we can further associate each element g ∈ CNOTn

with a corresponding function, call it θ (g), on Fn
2 . It can be

shown (see Appendix A) that θ (g) ∈ GL(n, 2), the group of
invertible linear maps from Fn

2 to itself, and moreover that the
map θ : CNOT(n) → GL(n, 2) is a group isomorphism. Hence
CNOT(n) ∼= GL(n, 2).

By inspection we find that CNOT(n) has two one-
dimensional invariant subspaces: V0 = span{|0〉} and V1 =
span{ 1√

2n−1

∑2n−1
i=1 |i〉}. The invariance of V0 is evident, while

for V1 one should note that each CNOT operation is a bijec-
tion when restricted to the set formed of all computational
basis states except |0...0〉. Furthermore, it can be shown
(see Appendix B) that the Hilbert subspace orthogonal to V0

can be decomposed into two irreducible invariant subspaces,
one of which is V1. Therefore, we deduce that the (2n − 2)-
dimensional subspace V2, that is orthogonal to V0, and V1, is
itself an irreducible invariant subspace. Hence, the action of
CNOT(n) on the Hilbert space of n qubits has three irreducible
invariant subspaces that can be defined in terms of basis
vectors as

V0 = span{|0〉}, (4)

V1 = span{|v1〉}, where |v1〉 = 1√
2n − 1

2n−1∑
i=1

|i〉, and (5)

V2 = span

{√
2n − 1|i〉 − |v1〉

2n/2
: i = 1, ..., 2n − 1

}
(6)

We can also use the isomorphism CNOT(n) ∼= GL(n, 2) to find
the order of the CNOT group. For large numbers of qubits n, it
can approximated as

|CNOT(n)| = |GL(n, 2)| =
n−1∏
i=0

(2n − 2i ) ≈ 0.29 × 2n2
. (7)

C. The SWAPα(n) group and invariant subspaces

The SWAPα is a two-qubit quantum-gate operation that con-
tinuously exchanges the values of two qubits as α is varied.
The action of the SWAPα on a two-qubit system can be illus-
trated by its matrix representation:

SWAP
α(2)
01 →

⎛
⎜⎜⎜⎝

1 0 0 0
0 1

2 (1 + eiπα ) 1
2 (1 − eiπα ) 0

0 1
2 (1 − eiπα ) 1

2 (1 + eiπα ) 0
0 0 0 1

⎞
⎟⎟⎟⎠. (8)

The SWAPα gate can entangle for noninteger values of α. It is
often implemented in spin-qubit quantum computing architec-
tures [19–22], since it arises naturally from the spin exchange
interaction [23–26]. Finding a group isomorphism and the
invariant subspaces for the SWAPα(n) group is challenging for
a general value of α. Therefore, we first consider the simpler
case of α = 1, and then we generalize.

1. The SWAP(n) group and invariant subspaces

The SWAP gate is a two-qubit quantum gate operation that
exchanges two qubits, and is not entangling. The SWAP(n)

group on a n-qubit system is isomorphic to Sn, the group
of permutations over n distinguishable objects (this can be
seen by regarding each qubit as a distinguishable object). To
determine the invariant subspace structure of SWAP(n), we first
note that the SWAP operation conserves the Hamming weight
(the number of qubits in state |1〉) of a state. Therefore, all
states with Hamming weight i span an invariant subspace Vi

of order

|Vi| = n!

(n − i)!i!
=

(
n

i

)
. (9)

However Vi can be further decomposed to smaller, irreducible,
invariant subspaces. Using the fact that SWAP(n) ∼= Sn, we
show in Appendix C that for i � � n

2	, each Vi can be decom-
posed as

Vi = Vi,0 ⊕ Vi,1 ⊕ ..Vi,i, (10)

where Vi, j are irreducible invariant subspaces. The second
subscript j denotes correspondence to the same irreducible
representation (irrep) of SWAP(n). This implies that

|Vi, j | = |Vi′, j | for any j � i < i′. (11)

For i � � n
2, the irreducible invariant subspaces Vi, j are iden-

tical upon flipping the values of all qubits. Therefore, we
consider only the case i � � n

2	. From Eq. (10), it follows that
the total number of irreducible invariant subspaces is

N =
⎧⎨
⎩

∑ n
2 −1
i=0 (i + 1) + n+2

2 = (n+2)2

4 , n even

2
∑ n−1

2
i=0 (i + 1) = (n+1)(n+3)

4 , n odd,
(12)

and that the number of irreducible invariant subspaces Vi j for
a given value of j is

Nj = |n − 2 j| + 1. (13)

From Eq. (11) it follows that the dimensions of the Vi js are
given by

|Vi, j | =
{(n

j

)
, for j = 0(n

j

) − ( n
j−1

)
, for 1 � j � n/2.

(14)

Based on Eqs. (10) and (11), and using the fact that the
subspaces Vi, j and Vi′, j correspond to the same irreducible
representation of SWAP(n), we designed and implemented a
recursive computational procedure, outlined in Appendix D,
to find explicit sets of basis vectors for each of the Vi, j .

We demonstrate our procedure with the example of the
SWAP(8) group. We find bases for its subspaces Vi js, and use
these bases to construct a transformation matrix, which we use
to block diagonalize the matrix representation of the SWAP(8)

group. The transformed block-diagonal form of the matrix
representation of SWAP(8) is given in the form of a matrix plot
in Fig. 1.

Each diagonal block in the transformed matrix in Fig. 1
corresponds to an irreducible invariant subspace Vi j (ordered,
from left to right, in terms of increasing i and decreasing j).
Therefore the number of occurrences and the dimensions of
the blocks should match those of the Vi js, given by Eqs. (13)
and (14), respectively. It can be verified by inspection that this
is indeed true.
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FIG. 1. Matrix color plot of the 28 × 28 block diagonalized
matrix representation of the SWAP(8) group. The matrix plot is ob-
tained by summing and block diagonalizing a large number of
matrices from the matrix representation of the SWAP(8). Blue-green
elements correspond to negative values. Yellow-red elements corre-
spond to positive values. Pale colored matrix elements outside the
diagonal blocks correspond to small rounding errors.

2. Invariant subspaces of SWAPα

We show that the SWAPα(n) has the same irreducible in-
variant subspaces for any real α �= 0, including the case of
α = 1. To see why this is true, we decompose the matrix
representation of SWAP

α(2)
01 , given in Eq. (8), as

SWAP
α(2)
01 = c SWAP

(2)
01 + b I (2), (15)

where c = 1
2 (1 − eiπα ), b = 1

2 (1 + eiπα ), and I is the identity.
This decomposition is true for any number of qubits n, so we
can write

SWAPα(n)
pq = c SWAP(n)

pq + b I (n). (16)

Suppose |ψ〉 ∈ Vi, j , where Vi, j is the invariant subspace of
SWAP(n) as described above. Then

SWAPα(n)
pq |ψ〉 = c SWAP(n)

pq |ψ〉 + b|ψ〉, (17)

since the invariance of Vi, j under SWAP(n) implies that
SWAP(n)

pq |ψ〉 ∈ Vi, j . Hence the invariant subspaces of SWAPα(n)

are contained within those of SWAP(n). Conversely, provided
α �= 0, so that c �= 0, we may invert (16) to get

SWAP(n)
pq = SWAPα(n)

pq − b I (n)

c
, (18)

and the previous argument shows that the invariant subspaces
of SWAP(n) are contained in those of SWAPα(n). Therefore
SWAP(n) and SWAPα(n) share the same irreducible invariant
subspaces Vi, j .

D. Invariant subspace verification test

In this section we outline a procedure that uses our knowl-
edge of the invariant subspaces of a group G(n) generated by
a set S of gates on an n-qubit system (e.g., G(n) = CNOT(n)) to
test the performance of a quantum computer. Let the invariant
irreducible subspaces of G(n) be {Ui}, and let Pi be the orthog-
onal projector onto Ui.

The procedure consists of the following three steps.
(1) Choose an i, and initialize the quantum computer in a

state |ψin〉 ∈ Ui.
(2) Apply a sequence of gates from S . This sequence

could be randomly generated. The more gates applied, the
more difficult the test is to pass.

(3) Perform a projective measurement with projection op-
erators Pi and 1 − Pi. If the state is found to lie in Ui (i.e., the
measurement result corresponding to the projector Pi), then
the test is passed; otherwise the test is failed.

If the gate operations are implemented perfectly, then the
final state |ψout〉 of the quantum computer remains confined
within the initial invariant subspace Ui. However, in practice,
the gate operations are implemented with fidelity less than
one. Hence, the state of the quantum computer will “leak” out
of the initial invariant subspace: the failure probability of the
test pfail = 1 − 〈ψout|Pi|ψout〉 will become nonzero.

Let pfail(k) be the test failure probability when a sequence
of k gates is applied during step 2. The speed at which pfail(k)
grows with k depends on the form and severity of errors that
occur when applying gates. To gain a basic intuition for this
growth, consider the following simple error model: Whenever
a gate is applied during step 2, move a small distance in a ran-
dom direction orthogonal to the current state, and then rescale
the result to ensure correct normalization. More precisely, fix
a small ε > 0. After applying each gate, choose |φ〉 uniformly
randomly from the set of states orthogonal to the current state
|ψ〉, and update the state via |ψ〉 → |ψ〉+ε|φ〉√

1+ε2 .
In this model, the initial growth of pfail is easily quanti-

fied. Let d = dim Ui, and D = 2n be the dimension of the
full Hilbert space. Then pfail(k) ≈ kε2(1 − d−1

D−1 ), where the
approximation holds when ε � 1 and k is small enough that
pfail(k) � 1 (the proof is elementary, but only tangentially
related to the bulk of this paper, so we omit it). Note that the
growth is fastest when d is small compared to D, and slowest
when d is of comparable size to D. Although we have only
discussed a very simple error model, we expect this feature to
remain true for more realistic models.

We remark that on the current NISQ computers, the ini-
tialization and the measurement steps, 1 and 3, respectively,
might incur errors of comparable magnitudes to the error
incurred from the multiple gate operations, which we want
to measure. A possible solution to mitigate the initialization
and measurement errors would be to use POVMs [27–30]
followed by post-processing, to initialize and measure the
state in steps 1 and 3, respectively. We will consider such error
mitigation in a future work.

1. Verification with CP

As noted in Sec. III A, the individual n-qubit computational
basis states are one-dimensional invariant subspaces under the
action of the CP(n) group. Multiple CP operations do not change
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the Z-basis measurement probabilities. Therefore, the veri-
fication procedure outlined above will require simply (1) an
initial measurement in the Z basis, (2) application of multiple
different CP(n) operations, and (3) a final measurement in the Z
basis. Any deviation from the measurement probabilities will
indicate an error. Since the CP operation can be created in a
number of different ways, for example, from a combination of
CNOT operations and single-qubit operations, this simple test
can be used to test multiple operations of a quantum computer.

2. Verification with \text{\sc cnot}

As shown in Sec. III B the CNOT(n) group has a large
(2n − 2)-dimensional irreducible invariant subspace. This im-
plies that the CNOT operation alone is of limited value in our
verification procedure described above. Even imperfect CNOT

operations acting on a qubit state, initialized within the large
subspace, would be likely to produce small projections onto
the two one-dimensional invariant subspaces. Alternatively,
initializing a state in either of the two one-dimensional invari-
ant subspaces would be a useful test, but not as comprehensive
as the CP operation.

3. Verification with SWAPα

The SWAPα gate is the most interesting and resourceful
when it comes to invariant subspaces and their use in our
verification procedure. The most simple procedure involving
the SWAPα gate would be to check if multiple applications of
randomly chosen operations conserves the Hamming weight
of the initial state. This would correspond to testing the
invariance of the Vi subspaces. A more complicated and
comprehensive test would utilize the irreducible invariant
subspaces Vi j . Such a test would require a more elaborate
procedure to initialize the state in a given irreducible invariant
subspace Vi j and subsequently to perform a measurement
projecting onto the basis of this subspace. Again, this test
can be made more comprehensive by constructing the SWAPα

operation from combinations of the other entangling gates and
single-qubit operations.

IV. CONCLUSION

In this work we analyzed the operation of the CP, the CNOT,
and the SWAPα quantum gate operations from a group theoretic
point of view. We found that the group of CP operations on n
qubits is isomorphic to the direct product of n(n − 1)/2 cyclic
groups of order 2 and determined that its irreducible invariant
subspaces correspond to the individual computational basis
state vectors. We found that the group of CNOT operations
on n qubits is isomorphic to the general linear group of n-
dimensional space over a field with two elements, GL(n, 2).
We used this result to demonstrate that the group generated
by CNOT operations on n qubits has one (2n − 2)-dimensional
and two one-dimensional irreducible invariant subspaces. For
the SWAPα operation we showed that its irreducible invariant
subspaces are the same for all values of α. We therefore inves-
tigated the simpler case of the SWAP operation and constructed
a method to determine its irreducible invariant subspaces.

For each group we considered, we suggested how to
construct verification tests for the operation of a quantum

computer, using the invariant subspaces discovered. These
tests initialize a state in a particular invariant subspace, and
measure by how much the state has deviated out of subspace
after multiple applications of the corresponding quantum gate
operations. We believe that these tests will be important for
verifying the operation of NISQ and early fault-tolerant quan-
tum computers.
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APPENDIX A: PROOF THAT CNOT(n) ∼= GL(n, 2)

For each g ∈ CNOT(n), let θ (g) be the function from Fn
2 →

Fn
2 obtained by associating computational basis elements with

elements of Fn
2 as previously described. First note that for

all f , g ∈ CNOT(n), we have θ ( f ◦ g) = θ ( f ) ◦ θ (g) (this fol-
lows trivially from the one-to-one association between the
computational basis and Fn

2 ). Hence, if we can show that
θ (CNOT

(n)
i j ) ∈ GL(n, 2) for all i, j, then since the CNOT

(n)
i j s

generate CNOT(n) it will follow that θ (g) ∈ GL(n, 2) for all
g ∈ CNOT(n).

Let g = CNOT
(n)
i j . Since θ (g) leaves all but the ith and jth en-

tries unaffected, it suffices to consider only the two-qubit case
with g = CNOT

(2)
01 , and show that θ (g) is linear and invertible.

To do so, we simply write down the effect of θ (g) on each ele-
ment of F2

2 : (0, 0) �→ (0, 0), (0, 1) �→ (0, 1), (1, 0) �→ (1, 1),
and (1, 1) �→ (1, 0). One can easily see that θ (g) is invertible,
and remembering that addition is modulo 2, θ (g) is also linear
as required.

So θ maps into GL(n, 2), and since it is structure preserv-
ing [i.e., θ ( f ◦ g) = θ ( f ) ◦ θ (g)] it is a group homomorphism
from CNOT(n) → GL(n, 2). In order to show that θ is an
isomorphism, we must further show that it is a bijection.
Injectivity is immediate, since ker θ = {id}. In order to show
surjectivity, it suffices to show that imθ contains a generating
set. It can be shown [31] that GL(n, 2) is generated by the lin-
ear maps m1 and m2 given in the standard basis by the matrices

M1 :=
⎛
⎝1

1
. . .

1 1

⎞
⎠ and M2 :=

⎛
⎝0 1

0 1
. . . 1

1 0

⎞
⎠.

Since m1 = θ (CNOT
(n)
n−1 0), m1 ∈ imθ . The map m2 acts

on elements of Fn
2 by applying the permutation (01...n-1)

to entries. Since CNOT
(n)
i j CNOT

(n)
ji CNOT

(n)
i j = SWAP

(n)
i j , the group

CNOT(n) contains all SWAPs and hence imθ contains all maps
which are transpositions of tuple entries. Since transpositions
generate Sn, we conclude that m2 ∈ imθ and hence that θ is
surjective, finishing the proof.
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APPENDIX B: IRREDUCIBLE INVARIANT SUBSPACES
OF CNOT(n)

Here we consider the decomposition of the Hilbert space
of n qubits to subspaces that are invariant under the action
of the CNOT(n) group. First we note that the CNOT operations
do not affect the zeroth state |0〉 = |00..0〉, so it spans a one-
dimensional invariant subspace V0 = span{|0〉}, on its own.
Let us denote the set of computational basis states excluding
the zeroth as X , so that X = {|i〉 : i = 1, ..., 2n − 1}, and the
Hilbert space spanned by the set as V ⊥

0 . To find the decompo-
sition to irreducible invariant subspaces of V ⊥

0 , we first show
that the action of the CNOT(n) group on X is doubly transitive.1

Proof. Note that it suffices to provide a single tuple of states
(|ψ1〉, |ψ2〉) such that any other tuple (|ψ ′

1〉, |ψ ′
2〉) with |ψ ′

1〉 �=
|ψ ′

2〉 may be obtained by successive application of CNOT gates:
Double transitivity will then follow. Consider (|ψ1〉, |ψ2〉) =
(|010..0〉, |100..0〉). Using CNOT operations with the zeroth
and first qubits as control qubits, we can change the values
of the other n − 2 qubits of each state separately, and take the
initial tuple to any other tuple of states where the first two
qubits are unchanged. Therefore we only need to show that
CNOT(2) acts doubly transitively on the set {|01〉, |10〉, |11〉}.
This can be verified easily by hand, completing the proof.

We now use proposition 4.4.4 from [32], which states that
for a group G that acts doubly transitively on a set of vectors
S, the space spanned by S decomposes to two irreducible
invariant subspaces. Transferring this result to the context of
our problem, it means that V ⊥

0 decomposes to two irreducible
invariant subspaces under the action of CNOT(n).

Finally we note that the state vector v1 = 1√
2n−1

∑2n−1
i=1 |i〉

is invariant under CNOT(n) because each CNOT operation is
a bijection (one-to-one and onto) between all computational
basis state vectors, except the zeroth state vector. Therefore
the (2n − 2)-dimensional subspace V2, that is orthogonal to
both V0 and V1, is an irreducible invariant subspace.

APPENDIX C: IRREDUCIBLE INVARIANT
SUBSPACES OF SWAP(n)

Since SWAP operations conserve the Hamming weight of
quantum states, the subspace Vi spanned by all state vectors of
Hamming weight i is invariant under SWAP(n). However Vi can
be decomposed further to smaller invariant subspaces.

Consider the action of the group SWAP(n) on n qubits. For
i � n

2 , let xi be the set of i-element subsets of X (so that
the action of Sn on xi is isomorphic to the action of SWAP(n)

on Vi).
Let πi be the permutation representation character of the

action of Sn on xi. The Hermitian product of two such charac-
ters πk and πl is given by

〈πk, πl〉 = 1

|Sn|
∑
s∈Sn

πk (s)πl (s) = 〈πkπl , 1G〉 = l + 1, (C1)

1An action of a group on a set of elements is doubly transitive if for
any two ordered tuples, each having a pair of distinct elements from
the set, there is a group element taking one ordered tuple to the other.

where 0 � l � k � n
2 , and 1G denotes the trivial

representation.
Fix k � �n	 and assume for our inductive hypothesis that

for 0 � i � k − 1,

πi = χ (n,0) + χ (n−1,1) + ... + χ (n−i,i) (C2)

where the χs are irreducible characters (characters of irre-
ducible representation of Sn).

For r = 0, x0 has one element so Sn acts trivially on it, thus
π0 = 1G. This implies that χ (n,0) = 1G.

For 1 � i � k − 1, writing χ (n−i,i) = πi − πi−1, and using
(C1) we get

〈πk, χ
(n−i,i)〉 = 〈πk, πi〉 − 〈πk, πi−1〉 = 1. (C3)

Therefore χ (n−i,i) is a component of πk with multiplicity 1.
Hence we can write

πk = χ (n,0) + χ (n−1,1) + ... + χ (n+1−k,k−1) + χ ′ (C4)

for some χ ′.
But 〈πk, πk〉 = k + 1 from (C1), and 〈πk, πk〉 = k +

〈χ ′, χ ′〉 from (C4), so 〈χ ′, χ ′〉 = 1. Therefore χ ′ is an irre-
ducible character which we denote as χ (n−k,k). Hence:

πk = χ (n,0) + χ (n−1,1) + ... + χ (n−k,k), (C5)

where each χ is an irreducible character (corresponding to
an irreducible invariant subspace). Thus the inductive step is
complete. This result implies that for an n-qubit system, Vi de-
composes into irreducible invariant subspaces, under SWAP(n),
as

Vi = Vi,0 ⊕ Vi,1 ⊕ ..Vi,i, (C6)

where subspace Vi, j corresponds to irrep χ (n− j, j).

APPENDIX D: CONSTRUCTING BASIS STATE
VECTORS FOR THE IRREDUCIBLE INVARIANT

SUBSPACES OF SWAP(n)

The Hilbert subspaces Vi corresponding to n-qubit states of
Hamming weight i are invariant under the action of SWAP(n).
However, as proved in Appendix C, the subspaces Vi can be
decomposed further as Vi = Vi,0

⊕
Vi,1

⊕
...

⊕
Vi,i where Vi, j

are irreducible invariant subspaces, and the second subscript j
denotes correspondence to the same irrep. of SWAP(n). In par-
ticular, we have |Vi, j | = |Vi′, j | for any j � i < i′. Below we
outline a procedure to construct a set of basis state vectors
for the subspaces Vi, j for an n-qubit system. We consider the
case of i � � n

2	 only, since the case for i > � n
2	 is identical

upon global qubit flip.
Constructing basis state vectors for Vi, j .
(1.) For i = 0, we have the one-dimensional invariant sub-

space V0 spanned by the zeroth state vector,

V0 = V0,0 = span{|0..0〉}. (D1)

(2.) For i = 1, |V1| = n, and V1 = V1,0
⊕

V1,1. Also
|V0,0| = |V1,0| = 1 and |V1,1| = |V1| − |V0,0| = n − 1. The sin-
gle state vector of V1,0 can be written as the sum of all
computational state vectors in V1 (all state vectors with
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Hamming weight 1):

V1,0 = span

{
1√
n

∑
|φ〉∈V1

|φ〉
}

= 1√
n

n−1∑
i=0

|..0i−11i0i+1..〉
}

.

(D2)

V1,1 can be determined by taking an arbitrary set of basis state
vectors for the orthogonal compliment of V1,0 in V1.

(3.) For i � 2, Vi = Vi,0
⊕

Vi,1
⊕

...
⊕

Vi,i and |Vi| = (n
i

)
.

Let V ⊥
i,i denote the orthogonal complement of Vi,i in Vi.

First we need to find sets of basis state vectors that span
Vi,i and V ⊥

i,i . Note that |V ⊥
i,i | = |Vi−1|, since the two spaces

consist of irreducible subspaces that correspond to the same
irreps of SWAP(n) (V ⊥

i,i = Vi,0
⊕

Vi,1
⊕

...
⊕

Vi,i−1 and Vi−1 =
Vi−1,0

⊕
Vi−1,1

⊕
...

⊕
Vi−1,i−1, respectively). Furthermore,

this means that we can construct basis state vectors for V ⊥
i,i

such that they transform, under SWAP operations, in the same
way as the computational state vectors in Vi−1 (the state vec-
tors with Hamming weight i − 1). Then we will be able to
decompose V ⊥

i,i in the same way as we decomposed Vi−1. In
practice this can be conveniently implemented recursively.

The basis state vectors for V ⊥
i,i can be constructed in the

following way.
(1) Denote the

( n
i−1

)
basis state vectors for V ⊥

i,i by vi
sk

,
where {sk} are all subsets of size i − 1 of the set {0, .., n −
1}, for k = 0, ...,

( n
i−1

) − 1; e.g., for n = 4, i = 2: s0 = {0},
s1 = {1}, s2 = {2}, s3 = {3}.

(2) Construct v(i)
sk

by summing over all computational
state vectors, with Hamming weight i, whose qubits in

positions given by the elements of sk are in the |1〉 state;
e.g., for n = 4, i = 2:

∣∣v(2)
0

〉 = |1100〉 + |1010〉 + |1001〉√
3∣∣v(2)

1

〉 = |1100〉 + |0110〉 + |0101〉√
3

,

∣∣v(2)
2

〉 = |1010〉 + |0110〉 + |0011〉√
3

,

∣∣v(2)
3

〉 = |1001〉 + |0101〉 + |0011〉√
3

.

The SWAP(n) action on the {|v(i)
k 〉} basis is isomorphic to the

SWAP(n) action on the computational basis of Vi−1, where the
isomorphism is the map taking v(i)

sk
to the computational state

vector with Hamming weight i − 1 and qubits in positions
given by the elements of sk , in the |1〉 state. Therefore V ⊥

i,i
can be decomposed to irreducible invariant subspaces in the
same way as Vi−1, by regarding the state vectors {|v(i)

k 〉} as the
new basis for V ⊥

i,i .
Vi,i can be found by taking the orthogonal complement of

V ⊥
i,i in Vi.

This procedure is implemented as a recursive method on
MATHEMATICA. The code is available upon request from the
authors.
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