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A quantum internet, i.e., a global interconnection of quantum devices, is the long-term goal of quantum
communications and has so far been based on two-dimensional systems (qubits). Recent years have seen a
significant development of high-dimensional quantum systems (qudits). While qudits present higher photon
information efficiency and robustness to noise, their use in quantum networks presents experimental challenges
due to the impractical resources required in high-dimensional quantum repeaters. Here, we show that such
challenges can be met via the use of standard quantum optical resources, such as weak coherent states or weak
squeezed states, and linear optics. We report a concrete design and simulations of an entanglement swapping
scheme for three- and four-dimensional systems, showing how the network parameters can be tuned to optimize
secret key rates and analyzing the enhanced noise robustness at different dimensions. Our work significantly
simplifies the implementation of high-dimensional quantum networks, fostering their development with current
technology.
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I. INTRODUCTION

The advent of quantum information has strongly influenced
modern technological progress. Intense research activities
have been carried out in the last two decades, producing
outstanding results in fields such as, e.g., quantum computing
[1], quantum communication [2–6], and quantum simulation
[7,8] with the final goal of realizing a quantum computer and
a quantum internet. The quantum computer will, for example,
enable accurate simulations of chemical and biological com-
pounds, while the quantum internet will allow communication
between users (either classical or quantum) guaranteeing mul-
tiple applications, from secure communications to remote
quantum computing [9,10].

Both in the quantum computer infrastructure and in the
quantum internet, it is crucial to transport quantum states,
i.e., perform quantum communications, either between com-
ponents in the same quantum device [11] or between nodes
in a network [12]. Independently from the technology which
will master the challenge of realizing the quantum computer,
photons are the only candidates for transmitting quantum
information over long distances [3,4]. In the case of con-
tinental applications, these photons are easily transportable
by optical fibers, and since this medium is already deployed
worldwide in the context classical communication, the quan-
tum community plans to reuse the same fiber infrastructure.
Unfortunately, the transmission of photons, over long dis-
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tances, is limited by the intrinsic loss of the optical fibers,
and by the external noise due to the interaction with the
outside environment, which destroys the quantum states. An-
other hurdle comes from central laws of physics, which state
the infeasibility of creating an identical copy of an arbitrary
unknown quantum state [13]. A solution to these problems
is provided by quantum repeaters (QRs), i.e., the quantum
counterpart of classical repeaters [14–17]. Different kinds of
quantum repeater protocols can be identified and are usu-
ally classified into three distinct categories or generations
(first generation, quantum memory and purification protocol;
second generation, quantum repeater with error correction
against operational errors; third generation, fully fault-tolerant
quantum repeaters [15,16,18]). Current quantum repeater pro-
posals mainly rely on a two-dimensional encoding scheme
(qubit) as an information unit, which due to the decoherence
processes, caused by interaction with the external environ-
ment, lose their ability to stay in superposition and/or in an
entangled state. This can be directly translated to a limited
robustness to noise and thus limit the overall applicability.

A potential workaround is provided by high-dimensional
quantum states (qudits), which offer an intrinsic advantage in
terms of photon information efficiency and robustness to noise
[19,20]. In recent years many advances towards the devel-
opment of high-dimensional (Hi-D) quantum networks have
been achieved. High-quality generation and manipulation of
high-dimensional entangled states have been demonstrated
using the orbital angular momentum (OAM), time-bin, fre-
quency, and path degrees of freedom using bulk or fiber optics,
as well as in integrated quantum photonics [21]. Low-loss
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FIG. 1. Imaginative view of a multidimensional quantum network. The inset describes a potential building block of such a network. Two
sources of entangled photons (cyan boxes) emit high-dimensional quantum states which are propagated through different quantum channels. An
intermediate node (red box) measures the two multidimensional photons using ancillary quantum states. Once the Hi-D quantum interference
generates a positive outcome, multidimensional entanglement is generated between the two users (light blue boxes).

transmission of high-dimensional states has been reported
through fiber and free-space with high fidelities [22].

However, the realization of high-dimensional quantum re-
peaters has remained an open experimental challenge mainly
due to the lack of schemes for Bell measurements in higher
dimensions, i.e., a fundamental action in the quantum repeater
schemes. Indeed, it has been proved that, without ancillary
photons, the projection into a high-dimensional Bell state
is unattainable with only linear optics [23]. Very recently,
two different schemes have been proposed to perform linear-
optical Bell measurements in high dimensions with the use of
ancillary single photons and have been demonstrated for d =
3 [24,25]. However, the lack of deterministic single-photon
sources makes the requirements of such ancillary single pho-
tons a stringent hurdle for current technologies, limiting the
practicability of developing high-dimensional quantum net-
works.

Here, we show that schemes for high-dimensional Bell
measurements can operate with high fidelity, using prac-
tical resources: weak-coherent states and sources of weak
squeezing. We numerically test the performances of this
scheme for realistic quantum repeaters by developing a sim-
ulator of the Gaussian resources and evolutions employed,
and single-photon measurements with the use of threshold
detectors (which distinguish between vacuum and nonva-
cuum outcomes). Even though the experimental resources
are significantly simplified, we numerically identify regimes
where high-dimensional quantum states offer advantages in
entanglement-based quantum network protocols. Our pro-
posal paves the way for a practical implementation of
high-dimensional quantum states in future quantum networks.

II. PROTOCOLS

Future quantum networks will be constituted of quantum
nodes (i.e., repeater station) where nonclassical correlation
will be shared between different users. In order to achieve this
goal, it is possible to define three main operations, which are
reported in Fig. 1: generation, transmission, and interference

of high-dimensional quantum states. Regarding the generation
and transmission of Hi-D quantum states, an increasing num-
ber of demonstrations have been achieved during the last five
years. However, Hi-D Bell state measurement (BSM) remains
still challenging due to its limited practicability and efficiency.

Linear-optical circuit for Bell measurements in high di-
mensions. Let us consider the simplest building block for a
quantum network based on high-dimensional quantum states,
as depicted in Fig. 1. The goal is to extend the achievable dis-
tance by connecting two high-dimensional entangled quantum
states with a repeater. Here we envision the simplest quantum
repeater, an optical Bell measurement.

An optical Bell measurement is a detectable projection of
two single photons into a maximally entangled Bell state.
For two-dimensional photons, the Bell measurement can be
performed by a single beam-splitter and two single-photon
detectors at the outputs. The trick is to utilize two-photon in-
terference at a 50/50 beam-splitter, namely, Hong-Ou-Mandel
interference, and detect the two photons simultaneously after
the beam-splitter in two different outputs. If such an event
occurs, we know that the two photons have been projected
into an asymmetric Bell state at the beam-splitter. This Bell
measurement is the key part of every photonic quantum
teleportation or entanglement-swapping experiment as it can
entangle two photons that have never interacted before.

Luo et al. [24] extended these ideas and proposed a gener-
alized BSM in higher dimensions. They replaced the beam-
splitter with a generalized Fourier-transform interferometer
(FTI). The FTI interferes with different photons {a, b, c, d}
that all occupy the same mode m, e.g., |1〉a|1〉c|1〉d |1〉b, as
depicted in Fig. 2, according to

|m〉p → 1√
d

∑
�∈{b,c,d,e}

exp

[
m

2π i

d
�(p)

]
|m〉�, (1)

with �(p) denoting a path-dependent phase (see
Appendix A). The FTI is a linear operation, but using
linear optics only is not sufficient to project two photons into
a d-dimensional Bell state [23]. Therefore, d − 2 ancillary
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FIG. 2. Scheme of the high-dimensional quantum interference with linear optics. (a) Overview scheme. Input 1 and input 2 are the two
high-dimensional quantum states encoded in path degrees of freedom (d-dimensionality of the Hilbert space). The scheme requires d − 2
ancillary quantum states and d2 outputs for a complete measurement. (b) Overview scheme. Detailed setup for the high-dimensional Bell
state measurements (BSM). TMS, two-mode squeezed state; WCS, weak coherent state; HSPS, heralded single-photon source; DFTn, discrete
Fourier transform in an n-dimensional system.

photons are added to the protocol. Finally, an extended
unitary transformation in U4+1 dimensions combined
with postselection of specific detection click-patterns
is performed. Note that in d-dimensional Hilbert space,
d × d outputs are required. Observing these click-patterns
indicates the unambiguous projection of the two incoming
photons into a four-dimensional Bell state. This completes
the four-dimensional entanglement swapping protocol;
further details are presented in Appendix A. To perform
Bell measurements in dimension d , we here only use the
d heralding patterns that are known to provide perfect
correlations after the entanglement swapping [24]. However,
we note that many other heralding patterns are possible,
resulting in high-dimensional entanglement being shared
between the parties, although not maximally entangled. These
could be used to significantly boost the success probability of
the Bell measurement (see Appendix A).

Practical ancillary quantum states. Since the deterministic
generation of single photons in high dimensions at 1550 nm
is still an open challenge, we have proposed the possibility of
replacing the ancillary single photons with ancillary quantum
states which are easier to generate. As reported in Fig. 2,
we consider three different kind of quantum states for the
ancillas: weak coherent states (WCS), two-mode squeezed
states (TMS), and heralded single-photon sources (HSPS).

In particular, in the case of three-dimensional systems, we
propose to use weak coherent states generated from an atten-
uated laser. If the photon number per pulse is lower than 1,
on average we can approximate the weak coherent states with
a single photon and successfully reveal the Hi-D swapping
scheme.

Weak coherent states cannot, however, be applied to
four-dimensional quantum states. In fact, because in the four-
dimensional Hi-D Bell measurement the number of additional
particles needed is two, if two separate WCS are used the
probability that two ancillary photons are generated is less
than the probability of having two photons in just a sin-
gle ancillary mode. The multiphoton contamination, thus,
becomes significant in this scenario and reduces the measure-
ment fidelity. However, we can exploit the photon-number

correlations in two-mode squeezed states to mitigate such
multiphoton noises between the two ancillary inputs. In fact,
in the low squeezing regime, a TMS state approximates the
ideal pair of ancillary photons with no intramode multipho-
ton contamination. Furthermore, the generation of a weakly
squeezed quantum state is practical and experimentally simple
to realize using both bulk and integrated optics [26].

Furthermore, for both d = 3 and d = 4, another possi-
bility is to use heralded single photons from a TMS source
as ancillas [27]. Note that HSPS can be also used with
higher dimensionalities, but require twice the number of pho-
tons compared to the WC or TMS configurations considered
above.

We now have introduced the main building block of a
single repeater quantum communication protocol based on
high-dimensional quantum states and practical ancillary re-
sources. We will now investigate the performance of the
different systems as a function of the dimensionality of the
Hilbert space.

III. PERFORMANCE SIMULATION

Efficient scheme simulator. In order to simulate the per-
formance of a practical high-dimensional quantum network,
we simulate the linear-optical circuit described in Fig. 2 in-
cluding the cases where two-mode squeezing, weak coherent,
or heralded single-photon states are used for the ancillas,
and threshold detectors (non-number-resolving) are used at
the outputs. To perform a faithful simulation of all noises,
and in particular multiphoton contamination from squeezed
and weak-coherent states, we perform no truncation on the
photon numbers in the states but rather describe their full
photon statistics via the Gaussian formalism [28]. A first
challenge when building the simulator is that, when increasing
the dimensionality d , the total number of photons increases
significantly. This makes the calculation of the output detec-
tion probabilities rapidly inefficient for classical computers
as the system size is increased. To maintain a good effi-
ciency, we exploited the fact that, prior to the detection,
we only use processes which have Hamiltonians that are at
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most quadratic in creation and annhilation operators. This
means the states can be represented by multivariate Gaus-
sian quasiprobability distributions in phase space, allowing
for time- and memory-efficient exact simulation [28]. The
non-Gaussian measurement with threshold detectors can then
be simulated adapting techniques from Gaussian boson sam-
pling [29]. In particular, to include weak-coherent states as
possible inputs, we adopt a generalization of the Torontonian
function used in Gaussian boson sampling to calculate output
threshold detection probabilities for squeezed states [30], for
the case where nonzero displacement is present [31]. Using
this approach we are able to simulate qudit Bell measurement
circuits with up to >20 detector clicks on a standard laptop,
which we estimate to be compatible with high-dimensional
quantum networks with a dimensionality exceeding d = 15.
This is fast enough to perform a detailed analysis of the
circuits studied here.

Entanglement-based quantum key distribution through the
network. One of the most basic quantum communication pro-
tocols is quantum key distribution (QKD), in which two users
generate a shared string of private random numbers. Using
entanglement for this task unlocks the potential for device-
independent security and makes the system impervious to
attacks on the source. Just as for qubits, the high-dimensional
protocol for QKD works on the same principle: random local
measurements are performed in multiple rounds on a shared
entangled state. The rounds are divided into key rounds (in
a predefined computational basis with high correlations) and
test rounds (in multiple incompatible bases) for estimating
privacy and the need for further classical error correction.
While entanglement in high dimensions is highly robust to
noise, error correction in noisy states could still obliterate
the actual key rates. Here, a recent protocol [32] provides a
workaround: simultaneously using multiple low-dimensional
subspaces keeps the advantages of noise robust entangle-
ment, while limiting error correction to lower-dimensional
subspaces. In our work, we used the simultaneously coding
technique for estimating the secret key rate between Alice and
Bob for different Hilbert space dimensionalities. In particular,
we evaluate the performance of our system as a function of
the cross-talk parameter θ . The secret key rate per round, in
the asynthotic regime, has been calculated according to the
following equation:

K � H (X |ET ) − H (X |Y ), (2)

where H (X |ET ) is the von Neumann entropy of Alice’s key
round outcome X conditioned on the total information avail-
able to the eavesdropper Eve at the end of the parameter
estimation procedure and H (X |Y ) is the conditional Shannon
entropy between Alice’s and Bob’s key round outcomes [32].

Optimizing key rates for high-dimensional network. In
our proposal, the photons encoding the high-dimensional en-
tangled states as well as the ancillary ones are generated
probabilistically via TMS or coherent states. We define s as
the two-mode squeezing parameters at the Alice and Bob en-
tanglement sources, and ξ (α) as the squeezing (displacement)
parameter used for the ancillary photons. All these parameters
affect the total key rate obtained from Alice and Bob after the
high-dimensional entanglement swapping in two contrasting
ways. On one hand, larger values indicate higher probabilities

of generating photons, thus initially increasing the rate. On
the other hand, if the squeezing or displacement parameters
are too large, multiphoton contamination becomes significant,
amplifying noises and decreasing the effective fidelity of the
shared state after entanglement swapping, reducing the secure
key rate. A central feature in the scheme is, thus, finding
the optimal trade-off between these two processes, finding
the parameters for Alice’s and Bob’s sources and ancillary
photons that optimize the total key rate.

In Fig. 3, we numerically investigate the optimization for
the networks in dimensions d = 3 and d = 4. The key rate
is obtained from the simulator for different values of the
parameters, types of ancillary states, and encoding subspaces.
It can be observed that the source and ancilla parameters
affect the rate in different ways, which also depends on the
dimensionality and types of ancillas and encodings. The opti-
mization is thus nontrivial for each configuration. Moreover,
more noise-robust configurations can be achieved by encoding
the quantum information in a subspace of dimension k (with
k � d) of a high-dimensional system [32]. For example, one
can encode a two-dimensional (k = 2) qubit in the subspace
of a d = 4 system spanned by {|0〉 , |3〉} [33]. Interestingly, the
higher noise robustness of these configurations, in particular,
the k = 2 dimensional subspace encoding for d = 4, allows us
to use higher squeezing parameters before multiphoton noises
become significant, which significantly improves the optimal
key rates.

Noise robustness. One of the main features of high-
dimensional QKD systems is an improved noise robustness
compared to qubit-based systems [19]. In order to identify
regimes where the high-dimensional entanglement swapping
scheme outperforms simpler qubit networks, it is important to
analyze how performances are affected by realistic noises of
practical relevance. We numerically investigate this by sim-
ulating noises coming from unitary linear-optical errors. In
particular, we consider a crosstalk model which can arise, for
example, due to intermode contamination when transmitting
OAM- and path-encoded qudits through fibers [22,34]. In this
model, Alice’s and Bob’s idler photons [see Fig. 2(b)] undergo
an additional unitary evolution Û = exp(−iĤθ ), where Ĥ =∑d−1

i=0 |i〉 〈i + 1 mod d| + H.c. is a nearest-neighbor cou-
pling Hamiltonian and the crosstalk parameter θ ∈ [0,∞)
embeds both the crosstalk coupling strength and the coupling
length.

In the presence of noise, we observe a change in the op-
timal source parameters which change for the noise level,
as described in Fig. 3. Therefore, for a given character-
ized level of noise, new optimal source parameters have
to be calculated. In Fig. 4 we show the secure key rates
per round, optimized over the source parameters, for dif-
ferent levels of crosstalk and dimensions. For low levels of
noise the qubit-based entanglement swapping provides bet-
ter rates compared to high-dimensional systems, due to the
higher Bell-measurement success probability. However, using
high-dimensional systems becomes advantageous due to their
higher noise robustness. In fact, increasing the dimensionality
allows us to achieve secure keys even in regimes where qubit-
based schemes are no longer secure, although at lower rates.
In particular, the d = 4 and k = 2 configuration shows good
rates even for very high levels of noises, which is promising
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FIG. 3. Optimization of source and ancillary states parameters in the high-dimensional network. Color-coded are the secrets bits per
round of the simultaneous subspace coding protocol in different configurations and for different values of sources squeezing (s) and ancillary
parameters. (a) d = 3 and k = 3 using a heralded single photon from a TMS state, with squeezing ξ as the ancilla. (b) d = 3 and k = 3 using
a weak coherent state, with amplitude α, for the ancilla. (c) d = 4 and k = 4 and (d) d = 4 and k = 2 using a TMS state with squeezing ξ for
the ancillas.

for near-term networks where noises are expected to be sig-
nificant.

Another typical experimental obstacle that will affect
secret key rates in practical implementations is the finite ef-
ficiency of single-photon detectors (e.g., a typical value of
superconductive single-photon detectors is around 90% and
for noncryogenic single-photon detectors a typical value is
30% [35]). In a realistic network, imperfect detectors with
efficiency η < 1 and channel noises, such as the ones studied

FIG. 4. Optimal secret key rates in noisy quantum networks.
Represented are the secure bits per round using the simultaneous sub-
space coding protocol as a function of the cross-talk noise parameter
θ . For each value of θ , the key rates are optimized over all source and
ancillary squeezing and/or amplitude parameters.

above, are likely to happen simultaneously. It is thus import to
analyze how the presence of both affect the quantum network
performance. In Fig. 5 we report simulation results of the op-
timal rates as a function of the detector inefficiency 1 − η and
for different values of the crosstalk parameter characterizing
the channel noise. In the simulations, η is the probability that
a threshold detector fails to herald the presence of one or more
photons, which is considered to be uniform for all detectors.
As expected, lower detector efficiency is always detrimental

FIG. 5. Optimal key rates in noisy quantum networks with im-
perfect detectors. Secure bits per round against detector inefficiency
1 − η, for two exemplary values of crosstalk noise values in the
network: (a) θ = 0, (b) θ = 0.272. Plotted lines refer to the same
legend as in Fig. 4.
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for the secret key rates, and the effect is, in general, stronger
when increasing the system dimensionality due to having to
detect additional ancillary photons in the Bell measurement.
This may imply that smaller dimensions can become favored
when η gets too small, as shown in Fig. 5(b). Therefore, both
experimental noise parameters η and θ can play an important
role when determining the optimal dimensionality that maxi-
mizes secret key rates in a quantum network.

IV. CONCLUSIONS

Hi-D quantum states, in general, exhibit special properties
especially useful in practical quantum technologies experienc-
ing noisy environments. In this article, we investigated the
possibility of creating a repeater-based quantum network with
Hi-D states using state-of-the-art devices. We have studied the
expected performance of Hi-D systems and compared them to
the standard qubit approach. Furthermore, we have presented
an alternative tool for processing high-dimensional quantum
states, which is useful for low-dimensional spaces, i.e., d < 5
in which ad hoc quantum states can replace real single-photon
sources for simplicity.

Our work represents a concrete study of a possible quan-
tum network based on high-dimensional quantum repeaters,
but open questions remain. For example, we expect that the
success probability of the Hi-D Bell state measurements at the
repeater stage, an important factor reducing Hi-D key rates,
can be significantly improved considering additional herald-
ing patterns resulting in high-dimensional entangled states.
Besides, computer-aided design methods could be used to find
more efficient schemes for Hi-D Bell state measurements [36].

Furthermore, in our analysis we focused on the robustness
to operational noise in high-dimensional networks compared
to the simple qubit case, but not considered loss correction.
We point out that losses affect the key rates as in the qubit
case and that quantum memories will thus be required in
order to overcome the rate-distance limit [2]. The reduced suc-
cess probability of Bell measurements in the Hi-D quantum
repeaters means that longer coherence times for memories
will be required. The improved noise robustness we showed
here could compensate additional errors due to longer storage
time. Further investigation on this point will thus require ad-
vances in Hi-D quantum memories, currently in their infancy
[37–40].

Our results promise an advantage in using Hi-D quantum
repeaters for QKD networks in noisy environments. The re-
sults could open a pathway for practical applications where
environmental noise cannot be neglected. Clearly, more work
in this direction is needed to find a realistic trade-off for
repeater-based QKD networks among dimensionality, secure
key rates, loss tolerance, and noise tolerance.
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APPENDIX A: DETAILED CALCULATIONS FOR THE
CONTAINED INFORMATION IN THE Hi-D

ENTANGLEMENT-SWAPPING PROCEDURE

We start with the ideal input state |ψ〉4d
in in the four-

dimensional case without double-pair emissions or coherent
states reading

|ψ〉4d
in

= 1

16
(|0〉c + |1〉c + |2〉c + |3〉c)(|0〉d + |1〉d + |2〉d + |3〉d )

(|0〉a|0〉e + |1〉a|1〉e + |2〉a|2〉e + |3〉a|3〉e)

(|0〉b|0〉 f + |1〉b|1〉 f + |2〉b|2〉 f + |3〉b|3〉 f ), (A1)

where photons a and f are to be entangled in this swapping
process (see Fig. 2 and note that we slightly change notation
such that xy → |y − 1〉x). Following the recipe given in Luo
et al., we apply an extended unitary transformation U4+1 on
one of the entangled pairs, where we here choose photon b
reading

|0〉b → −2|0〉b + |1〉b + |2〉b + |3〉b + |4〉b/2
√

2,

|1〉b → |0〉b − 2|1〉b + |2〉b + |3〉b + |4〉b/2
√

2,

|2〉b → |0〉b + |1〉b − 2|2〉b + |3〉b + |4〉b/2
√

2,

|3〉b → |0〉b + |1〉b + |2〉b − 2|3〉b + |4〉b2
√

2,

|4〉b → |0〉b + |1〉b + |2〉b + |3〉b − 2|4〉b/2
√

2, (A2)

and note that the input mode |4〉b is left empty or is not
occupied and the output mode |4〉b is ignored. Hence, the
extended unitary transformation U4+1 is not unitary in the
subspace spanned by the modes |0〉b, |1〉b, |2〉b, and |3〉b.

The generalization of a usual beam-splitter utilized in
two-dimensional entanglement swapping experiments, is the
quantum Fourier transformation (QFT). In our case, the QFT
is defined by

|m〉p → 1√
d

∑
k∈{b,c,d,e}

exp

[
m

2π i

d
�(p)

]
|m〉k, (A3)

where the mode m is constant and the sum is over all pos-
sible paths k ∈ {a, b, c, d} in the four-dimensional case. The
function �(p) describes a path-dependent phase assignment
according to

�(p) =

⎧⎪⎨
⎪⎩

0 for p = a,

1 for p = c,
2 for p = d,

3 for p = b.

(A4)

Hence, the QFT does not change the incoming mode m, but
mixes all modes from all inputs equally with relative phases
depending on their mode m and input path p.
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FIG. 6. Optimization of the source and ancillary squeezing parameters for different levels of crosstalk noise for the d = 3 and k = 3 case
and ancillas from heralded TMS states.

We denote the output state after the extended unitary
transformation U b

4+1 = 1a,c,d,e, f ⊗ U b
4+1 on photon f , the

cancellation Cb
m=4 of the additional mode |4〉b in path b,

and the quantum Fourier transformation in four dimensions

QFTa,c,b,d
4 on photons a, b, c, and d according to Eq. (A3)

with

|ψ〉4d
out = QFTa,c,b,d

4 · Cb
m=4 · U b

4+1|ψ〉4d
in . (A5)

FIG. 7. Optimization of the source squeezing parameter and ancillary weak-coherent amplitude for different levels of crosstalk noise for
the d = 3-k = 3 case and WC ancillas.
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FIG. 8. Optimization of the source and ancillary squeezing parameters for different levels of cross-talk noise for the d = 4-k = 4 case.

The final step in the high-dimensional entanglement swap-
ping protocol is to postselect on specific photon detection
click-patterns. Mathematically, this is described by projecting
onto specific modes for photons {a, b, c, d} and then tracing
out the detected photon space. Here, only projections into
the space of four photons simultaneously are considered. An
example for such a projection is to postselect only states that
simultaneously triggered clicks in all b detectors, that is, to
project onto the following subspace:

P(|0〉b|1〉b|2〉b|3〉b) = |0〉b|1〉b|2〉b|3〉b〈3|b〈2|b〈1|b〈0|b. (A6)

The remaining state of photons e and f now reads

|ϕ〉ef = P(|0〉b|1〉b|2〉b|3〉b)|ψ〉4d
out

= 3

256
√

2
(|0〉e|0〉 f + |1〉e|1〉 f + |2〉e|2〉 f + |3〉e|3〉 f ),

(A7)

which describes a maximally entangled four-dimensional
quantum state. The probability for this event to occur is given
by |ef〈ϕ|ϕ〉ef |2 = 9

8192 . Hence, in approximately 1 of 1000
events this particular click-pattern is observed, which allows
us to conclude that the entanglement swapping procedure was
successful, and hence we can use it to utilize it in the quan-
tum key distribution protocol. Fortunately, there exist more
click-patterns that lead to a successful swapping protocol.
Specifically, all click-patterns

p(i)[m1] × p( j)[m2] × p(k)[m3] × p(l )[m4] (A8)

where m1 to m4 are elements of {0, 1, 2, 3} and de-
scribe the modes that fulfill m1 	= m2 	= m3 	= m4 are valid

click-patterns. The paths p(i), p( j), p(k), and p(l ) can take
any value according to

p(x) =

⎧⎪⎨
⎪⎩

b for x = 1,

c for x = 2,

d for x = 3,

e for x = 4.

(A9)

In total there exist 192 valid click-patterns. Not all click-
patterns occur with the same probability and or lead to
maximally entangled states. To account for this, we calculate
the probability for each click-pattern to occur and also the von
Neumann entropy of the reduced density matrix, that is,

S
(
ρ (i)

a

) = −Tr
[
ρ (i)

a ln(ρ (i)
a )

]
, (A10)

where ρ (i)
a describes the reduced density matrix of photon a

for the observed click-pattern (i) only:

ρ (i)
a = Tr f

(|ϕ〉(i)
a f 〈ϕ|). (A11)

Finally, we calculate the contained information I of the
swapping procedure as the sum over all 192 click-patterns (i)
of the product of the occurrence probability and the contained
information, according to

I =
192∑
i=1

|〈ϕ(i)|ϕ(i)〉|2 · S
(
ρ (i)

a

)
, (A12)

and this leads in the four-dimensional case to 0.07945 bits.
Repeating and adapting the above steps described from

Eq. (A1) to Eq. (A12) for the two-dimensional case and the
three-dimensional case results in

I (d = 2) = 0.5 bits, I (d = 3) = 0.184 bits. (A13)
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FIG. 9. Optimization of the source and ancillary squeezing parameters for different levels of cross-talk noise for the d = 4-k = 2 case.

APPENDIX B: OPTIMIZATION OF SQUEEZING AND
AMPLITUDE PARAMETERS FOR
DIFFERENT LEVELS OF NOISE

As discussed in the main text, for different levels of
noise due to crosstalk, dark counts, and losses, the optimal

squeezing and amplitude parameters for Alice’s and Bob’s
sources or the ancillary sources will change. In Figs. 6–9
this change is shown explicitly for the crosstalk type of noise
and for the different type of high-dimensional configurations
investigated in the main text.
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