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Optimal circular dichroism sensing with quantum light: Multiparameter estimation approach
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The measurement of circular dichroism (CD) has widely been exploited to distinguish the different enan-
tiomers of chiral structures. It has been applied to natural materials (e.g., molecules) as well as to artificial
materials (e.g., nanophotonic structures). However, especially for chiral molecules the signal level is very low
and increasing the signal-to-noise ratio is of paramount importance to either shorten the necessary measurement
time or to lower the minimum detectable molecule concentration. As one solution to this problem, we propose
here to use quantum states of light in CD sensing to reduce the noise below the shot noise level encountered when
using coherent states of light. Through a multiparameter estimation approach, we identify the ultimate quantum
limit of the precision in CD sensing, allowing for general schemes including additional ancillary modes. We
show that the ultimate quantum limit can be achieved by various optimal schemes. These include using a pair
of Fock-state probes in a direct sensing configuration and pairs of twin beams in an ancilla-assisted sensing
configuration, for both of which photon number-resolved detection is shown to be the optimal measurement.
These optimal schemes offer a significant quantum enhancement even in the presence of some additional system
loss. The near optimality of a scheme using a single twin beam in a direct sensing configuration is also shown
for cases where the actual CD signal is very small. Alternative optimal schemes involving single-photon sources
and detectors are also proposed. This work paves the way for further investigations of quantum metrological
techniques in chirality sensing.
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I. INTRODUCTION

Measuring the optical response of media that consist of
either chiral molecules [1,2] or chiral nanophotonic structures
[3–5] is of great importance in various scientific fields, from
fundamentals to applications [6,7]. The chiral properties of a
medium or a structure cause an asymmetric optical response
upon illumination with left- (LCP, or L) and right-handed
circularly polarized (RCP, or R) light beams. An electric-
magnetic coupling can explain the induced optical effects such
as circular dichroism (CD) and optical rotation [8,9]. While
the former expresses the difference in absorption between
LCP and RCP, the latter expresses a different phase accumu-
lation upon propagation, leading to the rotation of the plane of
linear polarization of the light beam.

The measurement of the CD signal has in particular been
widely used in various fields over the last few decades due to
the simplicity of the measurement scheme combined with the
rich information contained in the CD signal [1,2]. CD sensing
refers to the estimation of interesting sample parameters as
a function of the outcomes of CD measurement. Despite the
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great importance of CD sensing, the CD signal is usually very
weak (the relative differential absorbance is ∼10−3 to 10−5

for chiral molecules) in realistic scenarios [10]. CD is a non-
local optical effect of the lowest order and only happens for
molecules with broken inversion symmetry. Since the spatial
extent of most molecules with respect to the incident beam is
negligibly small, the overall effect is rather tiny. When mea-
suring it, one often struggles against the noise level, similar
to the case of gravitational wave detectors [11,12]. This limits
the usefulness of CD spectroscopy to cases where molecules
are present either in high concentrations or in large volumes
[13,14], so that it is possible to accumulate enough signal.

An obvious solution to the problem would be to increase
the intensity of light that is incident on the analyte. However,
this is not always an option due to optical damage that may
occur in some situations [15–18]. Hence, one needs to look for
alternative means to improve the sensing performance while
keeping the incident power in the low-intensity regime. One
way to enhance the CD signal for a fixed light source is to
use supporting photonic nanostructures [6,19–23] or optical
cavities [24].

A fundamentally different approach would be to use quan-
tum states of light for sensing chiral properties of molecules.
Quantum sensing schemes, in general, can reduce the noise
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below the shot-noise limit and consequently improve the
signal-to-noise-ratio. For example, optical activity and optical
rotatory dispersion of sucrose solution have been measured
using single photons [25] and polarization-entangled states
[26], respectively. Both experimental studies clearly demon-
strated the quantum enhancement in the estimation precision;
i.e., sub-shot-noise sensing performance has been observed.
Although schemes using quantum light emerge as a tool
for ultimate sensing technology from diverse perspectives
[27–29], sub-shot-noise quantum schemes for CD sensing
have not yet been studied.

In this work, we identify and investigate optimal CD sens-
ing schemes that exploit quantum states of light consistent
with any given energy constraint. For generality, we allow
for arbitrary ancilla-assisted sensing schemes where entangle-
ment between the signal modes (i.e., LCP and RCP modes)
and between the signal and ancillary modes can play a role.
To assess the relative CD sensing performance of various
schemes, we use quantum multiparameter estimation theory
that gives a fundamental lower bound—namely, the quantum
Cramér-Rao (QCR) bound—on the estimation uncertainty.
The CD parameter is a function of two parameters that can
vary independently. The estimation of such a global parameter
can be classified into distributed sensing in a broad sense that
a global parameter of interest is defined by multiple param-
eters given at different local modes, i.e., polarization modes
in our work [30–32]. As explained in detail in Sec. II, this
necessitates a multiparameter treatment of the problem even
though only a single parameter is of eventual interest, as in
a relative phase estimation in a Mach-Zehnder interferometer
[33–35]. The QCR bound for CD sensing using any chosen
probe is obtained using the quantum Fisher information ma-
trix (QFIM) for a two-parameter problem, and limits the best
precision achievable when the optimal quantum measurement
is assumed to be used.

Using this approach, we first set the classical benchmark
(CB) in CD sensing using a coherent state of light provided the
optimal measurement is chosen. We then derive the ultimate
quantum limit (UQL) by optimizing the QCR bound over
all possible input probes, allowing for the probe-dependent
optimal measurement in each case. It is shown that even
in realistic situations with additional system loss, the UQL
exhibits quantum enhancement in comparison with the CB.
We then study measurements that can achieve the UQL for
optimal probes. In particular, we show that the UQL can be
achieved in an ancilla-free manner using Fock state probes
with photon number resolving detection (PNRD). We show
that using twin beams as an input can also achieve the UQL
in an ancilla-assisted scheme, for which PNRD needs to be
performed in both the signal and ancilla modes. Interestingly,
the twin-beam input is shown to be advantageous even in
a direct sensing scheme in which the twin beams interro-
gate the two polarization channels, and in which no ancilla
modes are used. The latter scheme provides a practical setting
that nearly achieves the UQL when losses are balanced at
a moderate level and the difference in absorption between
LCP and RCP modes is very small. Note that such a case
applies to most CD sensing scenarios that study biochemi-
cal analytes [36], including DNA [37], hybrid nanostructures
between nanocrystals and molecules [38], and biological

thiols [39]. In addition to the losses in the analyte which are
being sensed, we explicitly take into account the effect of
further system losses, e.g., those incurred in propagation and
detection, making our results relevant to realistic laboratory
implementations.

II. THEORETICAL MODELING

A. Circular dichroism sensing

Illuminating a chiral medium with either LCP or RCP
light results in transmission (T ), reflection (R), and absorp-
tion (A) into the individual polarization modes. The intensity
ratios are denoted by Tjk , Rjk , and Ak for j, k ∈ {L, R},
with the constraint

∑
j (Tjk + Rjk ) + Ak = 1, where the sub-

script k( j) denotes the input (output) polarization. Apart from
absorbance CD that can be quantified by the differential ab-
sorption, i.e., AL − AR, various alternative quantities can be
measured to quantify the CD. A typical example would be
transmission CD (TCD) defined as TLL − TRR [40] or reflec-
tion CD defined as RLL − RRR [41]. A polarization conversion
in transmission or reflection may also occur, i.e., Tjk �= 0 and
Rjk �= 0 for j �= k, when the threefold rotational symmetry
does not hold with respect to the direction of incidence [42].
The latter case causes circular conversion dichroism, i.e.,
TLR �= TRL [43].

In this work, not just for practical relevance with respect to
realistic molecular samples or metamaterials that are typically
considered, but also to eliminate the linear birefringence lead-
ing to unwanted polarization conversion, we focus on chiral
media with a sufficiently large degree of rotational symmetry,
for which Tjk = 0 for j �= k and Rj j = 0 for all j [44–47].
Indeed, for systems that are symmetric upon a discrete ro-
tation of 2π/l with l � 3 along the optical axis, the lack
of handedness-preserving reflection can be rigorously shown
[48,49]. Furthermore, reciprocity imposes RLR = RRL [8,50]
for systems that are identical when seen from both sides;
see, e.g., Refs. [8,50,51]. Under these conditions, the intensity
difference of the transmitted LCP (IL) and RCP (IR) becomes
the key quantity of interest to be measured in the usual CD
measurement as illustrated in Fig. 1(a). Note that this is not
an unduly restrictive assumption, and holds in the usual case
in which chiral molecules in solution are randomly oriented
relative to the incident field, and also for the vast majority
of photonic materials designed for enhancing the CD signal.
For the measurement outcomes to be obtained, we apply an
appropriate estimator to estimate the quantity of TCD, defined
as �− ≡ TL − TR, where Tj ≡ Tj j .

For the quantum mechanical description of CD or TCD
sensing, we consider an ancilla-assisted scheme as shown in
Fig. 1(b). The annihilation operators âL and âR correspond
to the LCP and RCP modes, respectively (the signal modes),
whose state may be entangled with an arbitrary number of
ancillary modes. Such a general setup allows us to consider
entangled input states among the signal modes and ancilla
modes or between the signal modes themselves. The trans-
mission of each signal mode is described by a fictitious beam
splitter with transmittance TL (R) while considering arbitrarily
fixed phases that play no role in phase-insensitive detection
which is normally employed in CD sensing [52]. An extra
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FIG. 1. (a) Traditional CD sensing: TCD is experimentally ob-
tained by measuring the intensity difference of the transmitted LCP
(IL) and RCP (IR) upon propagation through a chiral medium.
(b) Quantum CD sensing: The ancilla-assisted CD sensing scheme
is modeled quantum mechanically by the two signal modes corre-
sponding to LCP and RCP and arbitrary ancillary modes that may be
entangled with the signal modes. Beam splitters with transmittances
TL (R) and ηL (R) express two distinct processes in each mode: Tj

expresses the transmittance of each polarization mode through the
chiral medium, whereas η j addresses extra loss of each mode such as
nonunity channel transmission and detection efficiency of a detector.

loss that occurs outside the analyte (e.g., nonunity channel
transmission or detection efficiency) is described by another
fictitious beam splitter with transmittance ηL (R) [53,54]. For
calculation of the output state, the two consecutive beam
splitters in the jth signal mode can be treated as a single beam
splitter of transmittance Tjη j . We assume, however, that the
system has been well characterized in advance so that ηL and
ηR are known. We also assume that the losses in the ancilla
modes, which can be held in a controlled manner in many
scenarios, are negligible. The associated input-output relation
for the signal mode j ∈ {L, R} is written as

â j → √
Tjη j â j + √

η j (1 − Tj )b̂ j + √
(1 − η j )ĉ j, (1)

where b̂ j and ĉ j are virtual input modes (their input states
are assumed to be in the vacuum state) associated with the
chiral medium and the system loss, respectively. It can be
easily shown that the output operators satisfy the bosonic
commutation relations [â j, â†

k] = δ jk , implying that the effect
of a vacuum noise is properly included through the lossy beam
splitter model [55]. The input-output relation of Eq. (1) can
thus be used to treat lossy problems. Also note that the above
input-output relation describes the optical response of a single
spectral mode under our assumption. Nevertheless, multiple
spectral modes can also be treated by individual input-output
relations with T (ω) and η(ω) that are generally frequency-
dependent, when multimode quantum states of light need to
be considered.

Equation (1) is applied to the two signal modes of the total
input state |�in〉 containing ancillary modes. After tracing out
the unobserved environment modes whose virtual initial states
are assumed to be in a vacuum, the resultant output state ρ̂out is
measured using a chosen quantum measurement, yielding the
outcomes m. From these, the TCD parameter �− is estimated.
This is the general CD sensing scheme we aim to investigate
in this work.

B. Quantum multiparameter estimation theory

The mean squared error or precision of CD sensing, a
figure of merit which we consider in this work, can be

lower-bounded via quantum multiparameter estimation the-
ory [56,57]. Consider an arbitrary pure state |�in〉 [58] as
an input and suppose that the two transmittance parameters,
T = (TL, TR)T, are estimated by means of an unbiased es-
timator Ť from the measurement results m that are drawn
from a conditional probability distribution p(m|T ). In this
case, one can find that the 2 × 2 covariance matrix Cov(Ť ) =
〈(Ť − T )(Ť − T )T〉 obeys

Cov(Ť ) � F−1

ν
, (2)

where ν is the number of measurements being repeated and F
is the Fisher information matrix (FIM) defined as [59,60]

F =
(

FLL FLR

FRL FRR

)
, (3)

where the matrix elements are given by

Fjk =
∑

m

1

p(m|T )

∂ p(m|T )

∂Tj

∂ p(m|T )

∂Tk
, (4)

where j, k ∈ {R, L}. The lower bound in Eq. (2) is called the
Cramér-Rao (CR) bound and can always be saturated by a
maximum-likelihood method in the limit of large ν [61,62].

The CR bound can potentially be further reduced via opti-
mization of a measurement setting, leading to [59,60]

Cov(Ť ) � F−1

ν
� H−1

ν
, (5)

where H denotes the quantum Fisher information matrix
(QFIM) defined by

Hjk = Tr

[
ρ̂T
L̂ jL̂k + L̂kL̂ j

2

]
, (6)

with L̂ j being a symmetric logarithmic derivative (SLD) op-
erator associated with mode j [63]. It is a Hermitian solution
of the equation

∂ρ̂T

∂Tj
= 1

2
(ρ̂T L̂ j + L̂ j ρ̂T ) (7)

for the parameter-encoded output state ρ̂T . Here, F−1 and
H−1 are understood as the inverse on their support if the matri-
ces are singular, i.e., not invertible [64]. If the SLD operators
L̂L and L̂R commute, the optimal measurement setting can
be constructed over the common eigenbasis of the commuting
SLD operators [65]; i.e., the lower bound in Eq. (5), called the
QCR bound, can thus be said saturable in CD sensing [66].

Decomposing the state into the diagonalized bases, i.e.,
ρ̂T = ∑

n pn|ψn〉〈ψn| with 〈ψn|ψm〉 = δn,m, one can write the
SLD operator as

L̂ j =
∑

n

∂ j pn

pn
|ψn〉〈ψn|+2

∑
n �=m

pn − pm

pn + pm
〈ψm|∂ jψn〉|ψm〉〈ψn|,

(8)

where summation runs over n, m for which pn + pm �= 0
and ∂ j ≡ ∂/∂Tj for j ∈ {L, R}. Particularly when |∂ jψn〉 =
0, the SLD operator L̂ j of Eq. (8) becomes L̂ j =∑

n(pn)−1(∂ j pn)|ψn〉〈ψn|, for which the bases {|ψn〉〈ψn|}
constitute the set of the optimal measurement bases [60].
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Equation (5) is a matrix inequality: for two positive-
semidefinite matrices A and B, A � B if and only if A − B is
a positive-semidefinite matrix. In other words, Eq. (5) means
that

nTCov(Ť )n � nTF−1n
ν

� nTH−1n
ν

, (9)

for an arbitrary two-dimensional real vector n [67].
For CD sensing, �− = nTT with n = (1,−1). In this

sense, CD sensing can be understood as an instance of dis-
tributed sensing, where one estimates a global parameter
defined as a function of multiple local parameters associated
with distinct quantum systems. Estimation of a global param-
eter � = ∑

j n jTj defined as a linear combination of multiple
local parameters has been much investigated for the case of
unitary phase sensing [30–32,68,69]. Now, if Ť is an unbiased
estimator of T , �̌− = ŤL − ŤR is an unbiased estimator of �−.
Thus, it follows that

Var(�̌−) ≡ nTCov(Ť )n � nTH−1n, (10)

where the inequality follows from Eq. (9). Equation (10) is the
sought QCR bound on the precision of CD sensing and is valid
for any probe and any unbiased quantum measurement. Note
that here, and in the sequel, we have dropped ν as it appears
everywhere.

One may wonder whether multiparameter quantum esti-
mation theory is really required for estimating the single
parameter �−. To appreciate the necessity of a multiparameter
treatment, consider how a potential single-parameter treat-
ment would proceed. One would first need to derive an SLD
operator L̂− for �− by solving the equation ∂ρ̂T

∂�−
= 1

2 (ρ̂T L̂− +
L̂−ρ̂T ). However, the partial derivative on the left-hand side
is ambiguous as it depends upon what variable—in general,
some scalar function of T that uniquely determines it along
with �−—is held fixed while evaluating it. Different choices
lead to different SLDs and different values for the QFIM.
Unless one has additional information on T that indicates a
choice of such a variable (e.g., if one knows that TR is fixed
at a given value), a multiparameter treatment is necessary.
Since we do not assume any restrictions on how TL and TR

vary, we must use a multiparameter treatment. This distinction
between estimation of a scalar global parameter and single-
parameter estimation is examined in detail in [32]. The same
issue has already been intensively discussed in the case of
estimating the relative phase between the arms of a Mach-
Zehnder interferometer. It is well known that multiparameter
estimation analysis is required to investigate the ultimate esti-
mation bound of a single global parameter, which is the phase
difference, when the two phases are unknown and not needed
to be known individually [33–35].

In the next sections, we use the QCR bound to investigate
the lower bounds to the estimation uncertainty or, equiva-
lently, the precision of CD sensing for various input states of
light. Individual cases are compared with the UQL which we
shall derive below. One can see then what kinds of quantum
states can achieve the UQL with and without assistance of
ancillary modes. One of the main questions to be addressed
using the multiparameter estimation approach is whether or
not entangled states are necessary to achieve the UQL. Fur-
thermore, the QCR bound is compared with the CR bound

calculated for a particular measurement and an input state we
choose. The latter constitutes an explicit specification of the
optimal measurement achieving the UQL.

III. QUANTUM CRAMÉR-RAO BOUND

A. Classical benchmark

To derive the optimal QCR bound when using classical
light, let us consider first a product of coherent states as an in-
put state in Fig. 1(b), i.e., |αL〉|αR〉 = D̂L(αL)D̂R(αR)|0〉|0〉 in
a direct sensing configuration. The coherent states are charac-
terized by the average photon number Nj = |α j |2 and the dis-
placement operators are represented by D̂ j (α j ) = exp[αâ†

j −
α∗â j]. Applying the input-output relation of Eq. (1), the output
state can be written as

|�out〉coh = ∣∣α(out)
L

〉∣∣α(out)
R

〉
(11)

with α
(out)
j = √

η jTjα j . For such a pure output state, the QFIM
of Eq. (6) can be calculated via [60,65,69]

Hjk = 1
2 〈�out|

(
L̂ jL̂k + L̂kL̂ j

)|�out〉, (12)

where the SLD operator L̂ j can be written for a pure state
|�out〉 as

L̂ j = 2∂ j (|�out〉〈�out|). (13)

Through some algebraic calculation (see Appendix A for
details), one can find that the QFIM for T with a coherent
state input is diagonal and written as

Hcoh = diag
(ηLNL

TL
,
ηRNR

TR

)
. (14)

It is clear that Hcoh → 0 as ηL/R → 0. By substituting Hcoh to
Eq. (10), the QCR bound to the estimation uncertainty of �−
can thus be written as

Var(�̌−)coh = TL

ηLNL
+ TR

ηRNR
. (15)

Defining the ratio r = NL/Ntot for the total average intensity
in the signal modes Ntot = NL + NR, which we fix throughout
this work as a constraint, we find that the optimal ratio can be
written as

ropt = 1

1 +
√

ηLTR

ηRTL

, (16)

for which the QCR bound of Eq. (15) is minimized and thus
reads

Var(�̌−)opt
coh = 1

Ntot

(√
TL

ηL
+

√
TR

ηR

)2

. (17)

The optimal ratio ropt of Eq. (16) is presented in Fig. 2(a) as a
function of ηLTR/ηRTL in log scale, while shown in Fig. 2(b)
as a function of TL and TR in log scale for balanced losses,
i.e., ηL = ηR. They clearly show that more energy needs to
be injected into a more lossy signal mode to keep the optimal
intensity balance between the signal modes, written as

NL : NR =
√

TL

ηL
:

√
TR

ηR
. (18)
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FIG. 2. (a) The optimal ratio ropt as a function of logarithmic
x = ηLTR/ηRTL for a coherent state input. The x is replaced by x =
ηLTR(1 − ηRTR)/ηRTL(1 − ηLTL) for the optimal state input achiev-
ing the UQL to the precision of CD sensing. (b) The optimal ratio
ropt is shown as a function of logarithmic xL = TL and xR = TR for a
coherent state input when ηL = ηR. The axis labels are transformed
to xL = TL(1 − ηLTL) and xR = TR(1 − ηRTR) for the optimal state
input.

In most cases, the difference in transmission between LCP
and RCP light is extremely small and in good approximation
it can be assumed that they are close to equal, i.e., Tj = Tk .
Provided losses are balanced η j = ηk , the same amount of
energies, i.e., NL = NR, would be, to a very good approxi-
mation, the optimal choice in a classical sensing scheme, for
which Var(�̌−)opt

coh = 4T/ηNtot with T ≡ TL/R and η ≡ ηL/R. In
cases where the two transmittances cannot be assumed to be
equal, our findings can be combined with an adaptive scheme
[70,71]. There, the input energies between LCP and RCP
modes are adjusted (e.g., using a Bayesian approach) in real
time, based on prior information about the parameter being
updated over repetition of the measurement.

A general classical state of light in an ancilla-assisted con-
figuration can be written as a mixture of product coherent
states as follows:

ρ̂coh =
∫

p(αL, αR, αA)|αL, αR, αA〉〈αL, αR, αA|dαLdαRdαA,

(19)

with Tr[â†
j â j ρ̂coh] = Nj . Applying the convexity of the QFIM

[35], one can prove that the QCR bound to be obtained for
the input of Eq. (19) is always equal to or greater than the CB
of Eq. (17). Therefore, neither ancillary modes nor classical
correlation are useful.

B. Ultimate quantum limit

Let us now derive the UQL on the estimation uncertainty of
the TCD parameter �−. When ηL/R = 1, the maximum QFIM
(in the matrix inequality sense) for two intensity parameters
(TL, TR), optimized over all input states, has been found in
Ref. [72] and can be written as

H lossless
max = diag

(
NL

TL(1 − TL)
,

NR

TR(1 − TR)

)
. (20)

The QCR inequality (9) associated with H lossless
max is then the

lowest possible for the given energy constraints since A � B
implies A−1 � B−1 for any two positive-definite matrices A
and B. It was also shown in [72] that it can be achieved
in general by so-called number-diagonal signal probes in an
ancilla-assisted scheme and in particular by a pair of Fock

state inputs without ancilla modes when NL and NR are in-
tegers [73].

In the presence of excess loss (i.e., ηL/R �= 1), the SLD op-
erators L̂ j , the lossless case leading to Eq. (20), are modified
to Ŝ j , given by (see Appendix B for details)

Ŝ j = η jL̂ j, (21)

for j ∈ {L, R}. This leads to H lossless
max of Eq. (20) being re-

placed by

Hmax = diag

(
ηLNL

TL(1 − ηLTL)
,

ηRNR

TR(1 − ηRTR)

)
. (22)

This is the maximum QFIM for two transmittance parameters
(TL, TR) in the presence of additional loss. It is clear that
Hmax → 0 as ηL/R → 0. Note that if correlated probes are
used, the QFIM is not diagonal in general, but the above result
shows that the maximum QFIM of Eq. (22) is diagonal, mean-
ing that it can be obtained by independent quantum probes. In
particular, no choice of probe state can yield a lower variance
in estimating TL or TR.

The UQL to the uncertainty Var(�̌−) of the CD parameter
can now be readily obtained using Eq. (10):

Var(�̌−)UQL = TL(1 − ηLTL)

ηLNL
+ TR(1 − ηRTR)

ηRNR
. (23)

This is the UQL to the estimation uncertainty of CD sensing
for optimal probes with arbitrarily given NL and NR.

One can easily show that the optimal ratio ropt that mini-
mizes Var(�̌−)UQL of Eq. (23) can be written as

ropt = 1

1 +
√

ηLTR(1−ηRTR )
ηRTL(1−ηLTL )

, (24)

for which

Var(�̌−)opt
UQL = 1

Ntot

(√
TL(1 − ηLTL)

ηL
+

√
TR(1 − ηRTR)

ηR

)2

.

(25)

This is the UQL to the precision of CD sensing and is ob-
tained when optimal probes whose signal modes satisfying the
optimal intensity ratio of Eq. (24) between NL and NR are mea-
sured by the optimal measurement setting. The UQL applies
to both cases with and without ancillary modes. Furthermore,
the optimal schemes for scenarios without excess loss found
in Ref. [72] can be used to reach the UQL of Eq. (25) in lossy
scenarios.

Comparing the UQL of Eq. (25) with the CB of Eq. (17),
one can see that the quantum enhancement is achieved by the
factors of (1 − ηLTL) and (1 − ηRTR) in the numerator of the
respective terms, but diminishes with loss, i.e., as ηL/R → 0.
Note that both QCR bounds of Eqs. (17) and (25) scale with
Ntot, i.e., following the shot-noise scaling in terms of the total
energy Ntot, as in the single loss parameter estimation case
[73]. The optimal ratio ropt of Eq. (24) exhibits the same
behavior as shown in Figs. 2(a) and 2(b), but with ηLTR(1 −
ηRTR)/ηRTL(1 − ηLTL) and x j = Tj (1 − η jTj ) for j = L, R,
respectively. The optimal ratio ropt can also be understood
as the optimal balance of the average intensities between the
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FIG. 3. (a) Quantum enhancement Var(�̌−)CB/Var(�̌−)UQL in
terms of transmittance T for η = 1, 0.8, 0.5 when TL/R = T
and ηL/R = η can be assumed. (b) Quantum enhancement
Var(�̌−)CB/Var(�̌−)UQL in terms of TL and TR for η = 0.8.

LCP and RCP modes, written as

NL : NR =
√

TL(1 − ηLTL)

ηL
:

√
TR(1 − ηRTR)

ηR
. (26)

Again, in most cases, Tj ≈ Tk and η j ≈ ηk , so the same
amount of energies, i.e., NL = NR, would be the opti-
mal choice in the ultimate CD sensing scheme, for which
Var(�̌−)opt

UQL = 4T (1 − ηT )/ηNtot with T ≡ TL/R and η ≡
ηL/R. In this case, the quantum enhancement of the UQL as
compared to the CB can be quantified by the ratio defined as

Var(�̌−)opt
coh

Var(�̌−)opt
UQL

= 1

1 − ηT
. (27)

Note that this enhancement factor diverges as ηT → 1, so
the infinite-fold enhancement can be in principle achieved
or a huge quantum enhancement can be exploited in well-
controlled situations. The enhancement is degraded as η

decreases in lossy cases; e.g., the maximal enhancement is
only twofold for η = 0.5. The enhancement factor is pre-
sented in Fig. 3(a) as a function of transmittance T for η =
1, 0.8, and 0.5. It clearly shows that the quantum enhancement
is sensitive to the loss parameter η, so reducing the loss in a
sensing setup is crucial to increase the quantum enhancement
for a given TL ≈ TR = T in CD sensing. We, nevertheless,
stress that the quantum enhancement factor is always greater
than unity unless either η or T is zero. Figure 3(b) shows an
overall quantum enhancement in terms of arbitrary TL and TR

for balanced loss η = 0.8 chosen as an example.

C. Fock state input

We now show that the Fock state input |NL〉|NR〉 without
using ancillary modes can achieve the UQL. Through the
beam splitter transformation of Eq. (1), the output state can
be written as

ρ̂Fock =
∑

mL,mR

p(mL, mR|T )|mL, mR〉〈mL, mR|, (28)

where

p(mL, mR|T ) =
∏

j=L,R

(
Nj

mj

)
(η jTj )

mj (1 − η jTj )
Nj−mj . (29)

With this, one can show that the QFIM is equal to Hmax

of Eq. (22), finally achieving the UQL of Eq. (25) when
the photon numbers NL and NR follow the optimal ratio of
Eq. (26). We omit the detailed calculation here, since we ex-
plicitly write down in Sec. IV B an estimator �̌− that achieves
the UQL. Therefore, Fock state input |NL〉|NR〉 is an optimal
probe to reach the UQL to the precision in CD sensing. This
shows that the UQL in CD sensing can be achieved without
entanglement.

The UQL is inversely proportional to the total average
photon number Ntot, so it is recommended to increase the total
intensity of an input state while keeping the optimal ratio of
Eq. (26). However, large Fock states with Nj � 1 cannot be
readily generated with current technology [74–76]. As shown
in Ref. [72], an alternative way is to use Nj single-photon
probes [77–79], which also leads to the UQL on the precision
of CD sensing.

D. Twin-beam input

Another useful quantum source of light is the so-called
twin beam. These have widely been used in many applica-
tions including quantum imaging [80], quantum illumination
[81–84], and quantum sensing [85] due to the strong pho-
ton number correlation [86–89]. The twin-beam state can be
generated from a spontaneous parametric down-conversion
process [90–92] and is formally written as the two-mode
squeezed vacuum (TMSV) state, |TMSV〉 = Ŝ2(ξ )|00〉 with
the two-mode squeezing operator Ŝ2(ξ ) = exp[ξ ∗âb̂ − ξ â†b̂†]
for ξ = reiθ with {r, θ} ∈ R. As shown below, such TMSV
states or twin beams can be used for CD sensing in two ways.

First, let us consider a CD sensing scheme using two
TMSV states |TMSV〉 ⊗ |TMSV〉 in an ancilla-assisted con-
figuration. Let us assume that the respective signal modes
of the TMSV states are sent to LCP and RCP mode, while
their respective ancillary modes are held losslessly. Such a
setting has been shown to achieve the QFIM of Eq. (20) for
(TL, TR) in the absence of additional loss [72]. It is known that
when estimating a single net transmittance parameter τ , the
estimation uncertainty �τ 2 = τ (1 − τ )/N can be achieved
by a TMSV state in an ancilla-assisted configuration [72].
This can be extended to the estimation of two parameters
τL and τR; using TMSV states separately for each parameter
estimation can achieve the estimation uncertainties written as
τL(1 − τL)/NL and τR(1 − τR)/NR, respectively. Here, the τ ’s
denote the net transmittance that includes both the transmit-
tance of a sample under investigation and a system loss, i.e.,
τL = TLηL and τR = TRηR. Rescaling the estimators τ̂L and τ̂R

of τL and τR respectively by their respective losses 1/ηL and
1/ηR and subtracting them gives an estimate of �− = TL − TR

with the estimation uncertainty equal to the UQL of Eq. (25);
the variances originating from independent TMSV states are
simply added. This proves the optimality of the scheme. Fur-
thermore, note that the correlation between the input photon
number in the signal and ancilla mode plays an important
role in that a photon number measurement on the ancilla
mode gives information on the photon number on the signal
mode. It consequently reduces the estimation uncertainty. The
analysis in Sec. III B also implies that the same setting can
be used to achieve the UQL of Eq. (25) when the average
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intensities of the signal states of the two TMSV states satisfy
the optimal ratio of Eq. (26). Therefore, the twin-beam input is
another optimal state that reaches the UQL to the precision in
CD sensing in an ancilla-assisted configuration. One can find
other optimal states in the ancilla-assisted scheme according
to the analysis in Ref. [72].

A second way to use the TMSV state input is to inject the
two modes of a single TMSV state into LCP and RCP modes,
respectively. Note that ancillary modes are not considered in
such direct sensing scheme and NL = NR = sinh2 r ≡ N as an
intrinsic feature of the twin-beam state. The output state ρ̂T

can be obtained by using the input-output relation of Eq. (1)
for the input state |TMSV〉. In this particular case, analytical
calculation of the QFIM using SLD operators is tricky, so we
use the quantum fidelity of Eq. (C3) that can be calculated
more easily using a closed expression [93,94]. Leaving all the
technical details to Appendix C, we finally have the QFIM
written as

Hj j = χ j j̄η jN

Tj (1 − η jTj )
, (30)

Hjk = −η jηkN (N + 1)

1 + η jTj (1 − ηkTk )N + ηkTk (1 − η jTj )N
, (31)

with

χ j j̄ = 1 − η jTj (1 − η j̄Tj̄ ) + η j̄Tj̄ (1 − η jTj )N

1 + η jTj (1 − η j̄Tj̄ )N + η j̄Tj̄ (1 − η jTj )N
, (32)

where j �= k ∈ {L, R}, j̄ = R if j = L, and vice versa.
In comparison with the QFIM of Eq. (22), the diagonal

element Hj j of Eq. (30) contains the additional factor χ jk

coming from the correlation between the signal modes. One
can show that 0 � χ jk � 1 holds, where the upper bound is
reached when η jTj = 0 or ηkTk = 1, while the lower bound
is obtained when η jTj = 1 and ηkTk = 0. The QCR bound
for the estimation uncertainty Var(�̌−) can thus be written in
terms of Eqs. (30) and (31) as

Var(�̌−)TMSV = HLL + HRR + HLR + HRL

HLLHRR − HLRHRL
. (33)

It can be easily shown that the use of a TMSV state input
in a direct sensing scheme cannot achieve the UQL to the
precision of CD sensing. However, one can find that the QCR
bound Var(�̌−)TMSV of Eq. (33) becomes similar to the UQL
at some regimes of parameters, which we elaborate on in more
detail below.

For comparison of Var(�̌−)TMSV with the other cases, let us
set Ntot = 2N = 2 and ηL = ηR = 0.8 as an example without
loss of generality. In Fig. 4(a), we show that the quantum
enhancement Var(�̌−)opt

coh/Var(�̌−)TMSV is limited to only the
presented region. Such a beneficial region depends on the
values of N and ηL (R), but in a particular region of interest for
CD sensing; i.e., when TL ≈ TR, the enhancement is always
present and significant. More interestingly and clearly, it can
be shown that Var(�̌−)TMSV = Var(�̌−)opt

UQL holds up to the
first order in δT for TR = TL + δT when losses are equally
balanced ηL = ηR. Such a feature is evident in Figs. 4(a) and
4(b) around the region where TL ≈ TR. This indicates that in
most cases when TL and TR can be assumed in good approx-
imation as equal, one can use the direct sensing scheme with

FIG. 4. (a) Quantum enhancement Var(�̌)CB/Var(�̌−)TMSV in
terms of TL and TR for balanced losses η = 0.8. (b) The normalized
difference between Var(�̌−)TMSV and Var(�̌−)opt

UQL for η = 0.8. Here,
Ntot = 2 is assumed as an example.

the TMSV state input as a practical scheme. The use of TMSV
state input also promises quantum enhancement for any value
of T ≡ TL = TR, as already shown in Fig. 3. This is an impor-
tant finding as it opens a practical path toward exploiting of
practical quantum resources in realistic CD sensing.

It is worth discussing the role of the average photon num-
ber N in Var(�̌−)TMSV. A noticeable behavior is revealed in
the limit of large N . Both Var(�̌−)opt

UQL and Var(�̌−)opt
coh ap-

proach zero as N → ∞, whereas Var(�̌−)TMSV becomes

Var(�̌−)TMSV|N→∞

= (TL − TR)2(1 − ηLTL)(1 − ηRTR)

1 + ηLTL(1 − ηRTR) + ηRTR(1 − ηLTL)
. (34)

This implies that the use of the TMSV state input outperforms
the CB only when TL ≈ TR or N is small. In other words, as N
is reduced, the beneficial region in Fig. 4(c) becomes wider,
but never covers the entire region. This means that no quantum
enhancement is obtained in direct sensing with a twin beam
when either TL or TR is too small even in the limit N → 0.
Such a region is of course not of much interest for CD sensing,
but could be significant for other applications.

E. Signal-to-noise ratio

For an estimator �̌−, one can define the signal-to-noise
ratio of an estimate of �− as

SNR = 〈�̌−〉2

Var(�̌−)
, (35)

where 〈�̌−〉2 = �2
− for an unbiased estimator. Using Eq. (9),

one can easily show that for a given input state the SNR is
upper bounded as

SNR � �2
−

Var(�̌−)QCR
, (36)

where Var(�̌−)QCR is the QCR bound to Var(�̌−). This shows
that the upper bound of SNR becomes higher by increasing �−
while decreasing Var(�̌−)QCR. In other words, precise sensing
with small Var(�̌−)QCR yields high SNR, but its inverse does
not hold. This implies that assessment of CD sensing in terms
of SNR does not guarantee precise estimation of CD or TCD
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parameter. The inequality in Eq. (36) can be saturated when
the optimal measurement setting and the optimal estimator are
used for a given state. A similar SNR inequality for a single-
parameter estimation has also been discussed in Ref. [60].

IV. MEASUREMENTS ACHIEVING THE ULTIMATE
QUANTUM LIMIT

Let us now consider particular measurement settings to
examine whether the CR bound reaches the QCR bound for
individual cases. In this work we employ direct-detection
measurements at each output port in Fig. 1(b), which measures
the intensities of the transmitted signal modes through a chi-
ral medium and ancillary modes having been kept unaltered.
In particular, a PNRD yields the multidimensional photon
number distribution for the measurement outcomes m drawn
from the underlying conditional probability p(m|T ), using
which the CR bound can be evaluated. In terms of concrete
estimators, it may be expected that the scaled sample mean
for the photon numbers detected in the individual output is an
efficient estimator of �− [62,95]. As we show below, this is
true even for a finite sample size in many cases.

A. Coherent state input

For a coherent state input in a direct sensing configuration,
the output state is given as Eq. (11) and the probability distri-
bution of detecting mL and mR photons at the respective output
ports is written as

p(mL, mR|T ) =
∏

j=L,R

e−η j Tj Nj
(η jTjNj )mj

mj!
. (37)

Using Eq. (4), one can show that the FIM with Eq. (37) is
the same as QFIM of Eq. (14), implying that the PNRD is
the optimal measurement setting to reach the optimal classical
bound of Eq. (15) when NL and NR are arbitrarily chosen or
the CB of Eq. (17) when the optimal ratio between NL and NR

is chosen.
Furthermore, the estimator

�̌− := mL

ηLNL
− mR

ηRNR
(38)

of �− is clearly unbiased. Based on the independent Poisson
distributions (37) of mL and mR, we have that Var(�̌−) =

TL
ηLNL

+ TR
ηRNR

, which is identical to the QFIM-based limit of
Eq. (15). This estimator is therefore quantum-optimal even on
a single-shot basis.

B. Fock state input

For a Fock state input without ancillary modes, the output
state of Eq. (28) is diagonalized over the photon number states
{|mL, mL〉}. It is clear that the diagonalized basis is indepen-
dent of the parameter T , so the second term in Eq. (8) vanishes
and consequently the FIM of Eq. (4) is the same as the QFIM
of Eq. (22). This indicates that the PNRD offers an optimal
measurement setting for Fock state probes. The optimality of
the PNRD can also be proved from the fact that the eigenstates
of the corresponding SLD operator are the photon number
states {|mL, mL〉} [60,96].

Consider again the estimator of Eq. (38) based on a linear
combination of the counting measurements. mL and mR have
binomial distributions Bin(NL, ηLTL) and Bin(NR, ηRTR) with
means ηLTLNL and ηRTRNR and variances ηLTLNL(1 − ηLTL)
and ηRTRNR(1 − ηRTR), respectively. It follows that �̌− is an
unbiased estimator of �− and has the variance

Var(�̌−) = TL(1 − ηLTL)

ηLNL
+ TR(1 − ηRTR)

ηRNR
, (39)

which agrees with the UQL of Eq. (23). The estimator �̌− is
thus a quantum-optimal estimator even on a single-shot basis.

Similar considerations show that the scaled sample mean
of the photon counts achieves the UQL even when multiple
Fock states are used in succession to probe the sample. If
multiple single photons are used [77–79] instead of large Fock
states that are yet unavailable with current technology, we can
additionally relax the requirement of using PNRDs and use
single-photon detectors instead, which are a well-established
technology [97].

C. Twin-beam input

When using twin beams in the ancilla-assisted configura-
tion, the QFIM of Eq. (20) has been shown to be achievable
by performing PNRD in all four modes, i.e., two signal and
two ancillary modes [72]. As explained in Sec. III B, such
optimality of the measurement scheme also carries over to
the measurement of CD in the presence of loss, consequently
achieving the UQL. The maximum-likelihood estimator then
provides an efficient estimator of �−, at least in the limit of a
large number of copies [62,95].

As a practical matter, we mention that to reach the same
bound, one can use M = N/n copies of weakly squeezed
TMSVs with the average photon number of n � 1 on each
mode and perform direct detection on each two-mode output
state [72]. Apart from placing fewer demands on high squeez-
ing required in the twin beam, weak fields with n � 1 allow
us to perform, instead of PNRD, single-photon detection [97].

For a direct sensing scheme with a TMSV state input, the
output state is a mixed state and not diagonalized over the
photon number states. The photon number distribution of the
output state is given as

p(mL, mR|T ) =
∞∑

n=0

Nn

(N + 1)n+1

∏
j=L,R

f j (n), (40)

where f j (n) = ( n
mj

)
(η jTj )mj (1 − η jTj )n−mj . In this case, we

numerically calculate the F of Eq. (4), which gives rise to
the CR bound. The latter is compared with the QCR bound
Var(�̌−)TMSV and the UQL Var(�̌−)UQL for balanced losses
η = 0.8 chosen as an example. They are shown in Figs. 5(a)
and 5(b), respectively. The CR bound is not generally the same
as the QCR bound Var(�̌−)TMSV, but they become extremely
similar when TL and TR are close to each other, as shown
in Fig. 5(a). This indicates that the CR bound can also be
similar the UQL Var(�̌−)UQL in the region where TL ≈ TR.
The latter behavior is evident in Fig. 5(b). Especially, one
can show that the CR bound becomes exactly the same as
the other two bounds when TL = TR. This means that one can
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FIG. 5. (a) The normalized difference between the CR bound for
PNRD and the QCR bound Var(�̌−)TMSV for balanced losses η =
0.8. (b)The normalized difference between the CR bound for PNRD
and the UQL Var(�̌−)opt

UQL for η = 0.8. Here, Ntot = 2 is assumed as
an example.

use the direct sensing scheme with the twin-beam state input
and PNRD as a practically optimal scheme for CD sensing
when TL ≈ TR can be assumed and losses are balanced. In
this case, a quantum enhancement comes from the strong
photon number correlation shared between the two modes in
the twin-beam state.

V. CONCLUSION

Through multiparameter estimation theory applied for a
single global parameter �− = TL − TR, we have obtained the
UQL (i.e., ultimate quantum limit) on the precision of CD
(i.e., circular dichroism) sensing and identified the optimal
CD sensing schemes to achieve it. With the optimal schemes
(using either separable or entangled probe states) studied in
this work, a significant quantum enhancement has been shown
to be achievable even in the presence of additional system
loss. For most samples of chiral media being analyzed by
CD measurement, the difference between the transmittance
parameters TL and TR is very small. For such usual cases, we
have proposed a practical CD sensing scheme to reach nearly
the UQL, which requires only to use the twin-beam state as
an input and to perform PNRD (i.e., photon-number-resolving
detection) at the two signal modes. Since the latter scheme
only uses feasible technologies [98–100], which have widely
been used in quantum optics for the last few decades, we
expect our theoretical work to motivate more diverse stud-
ies in various chirality sensing. We further believe that the
results shown here will be useful in a wide variety of scientific
domains such as chemistry, biology, nanophotonics, quantum
information science, and quantum metrology.

The results shown in this work indicate that practical
enhancement of CD sensing with quantum light has no fun-
damental obstacles. We mention, however, that generating
nonclassical states at desired frequencies at which CD occurs
is vital to see a quantum enhancement [101,102]. In complex
systems, although less common, when the analysis of the
CD signal requires measuring of both transmittance and re-
flectance, four-parameter estimation theory is required to find
their UQL [57]. Furthermore, in metamaterials, the phases
and amplitudes of the transmitted light sensitively depend on

the propagation direction of the incident light. In such cases,
the phases need to be considered in the input-output rela-
tion of Eq. (1) if the sample is illuminated through multiple
directions. In addition, the frequency-dependent response of
CD would induce a further uncertainty in the measurement
if a probe consists of multiple modes and cannot be approx-
imated to a single mode. Also, various constraints on photon
detectors, such as the spectral resolution or imperfect photon-
number-resolving capability, need to be taken into account
when predicting the magnitude of quantum enhancement. On
the theoretical side, a broader investigation into global pa-
rameter estimation problems and the role of entanglement is
interesting as future work.

We envision that the formalism developed and used in this
work can be immediately applied to other kinds of dichroism
sensing, e.g., linear dichroism sensing [13,103] or magnetic
CD sensing [104,105]. The role of entanglement would be
more significant when polarization conversion starts to be
involved [40–43], which was not considered in this work. The
CD usually occurs in units of a single photon, which enabled
us to model CD by linear beam splitters. However, it may
occur in units of two photons, called two-photon CD (TPCD)
[106,107]. The latter needs to be modeled by nonlinear beam
splitters, where transmission, reflection, and absorption take
place in units of two photons. It would be interesting to study
optimal TPCD sensing schemes with quantum light. CD sens-
ing with plasmonic chiral structures is often studied [108], for
which the technique studied in this work can cooperate with
the recently developed quantum plasmonic sensing techniques
[109–112].
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APPENDIX A: QFIM FOR A COHERENT STATE INPUT

The QFIM of Eq. (12) can be rewritten as

Hjk = 4Re(〈∂ j�out|∂k�out〉 − 〈∂ j�out|�out〉〈�out|∂k�out〉).
(A1)

For the output state of Eq. (11), the derivative is written by

|∂ j�out〉 =
√

η j

4Tj
(α j â

†
j − α∗

j â j )|�out〉, (A2)

052615-9



CHRISTINA IOANNOU et al. PHYSICAL REVIEW A 104, 052615 (2021)

causing that the second term of Eq. (A1) vanishes for all j, k.
The first term, on the other hand, is shown to be written as

Hjk = η jNj

Tj
δ jk, (A3)

where δ jk denotes the Kronecker delta. Thus, we have H of
Eq. (14) in the main text.

APPENDIX B: SLD OPERATORS

The QFIM of Eq. (20) can be understood as the UQL to
estimation of the total transmittance T j of individual modes,
for which the SLD operators are written as

∂ρ̂

∂T j
= 1

2
(ρ̂L̂ j + L̂ j ρ̂ ). (B1)

Decomposing the total transmittance as T j = η jTj , one can
find the SLD operators Ŝ j for estimation of Tj as follows:

∂ρ̂

∂Tj
= ∂ρ̂

∂T j

∂T j

∂Tj
= ∂ρ̂

∂T j
η j = 1

2
(ρ̂Ŝ j + Ŝ j ρ̂), (B2)

where Ŝ j = η jL̂ j . Therefore, we have the QFIM written as

Hjk = 1

2
Tr[ρ(Ŝ jŜ j + Ŝ jŜ j )] = η jNj

Tj (1 − η jTj )
δ jk, (B3)

where δ jk denotes the Kronecker delta. Thus, we have Hmax

of Eq. (22) in the main text and this is the modified UQL to
estimation of Tj in the presence of loss.

APPENDIX C: QUANTUM FIDELITY AND QFIM

An alternative way to find the QFIM is to use the relation
between Bures distanceD2

B [63,113,114], quantum fidelity F
[115,116], and QFIM. In our case, the QFIM Hjk is related to
the Bures distance D2

B for the infinitesimally close states ρ̂T

and ρ̂T+dT . It can be written as [57]∑
j,k∈{L,R}

HjkdTjdTk = 4D2
B(ρ̂T , ρ̂T+dT ), (C1)

where the Bures distance can be written in terms of quantum
fidelity as

D2
B(ρ̂T , ρ̂T+dT ) = 2[1 −

√
F (ρ̂T , ρ̂T+dT )] (C2)

and the quantum fidelity is defined as

F (ρ̂T , ρ̂T+dT ) =
(

Tr
√√

ρ̂T ρ̂T+dT

√
ρ̂T

)2

. (C3)

Thus, the calculation of quantum fidelity leads to the calcula-
tion of QFIM.

For a TMSV state input, the output state ρ̂T can be charac-
terized by only the second-order moments, i.e., the covariance
matrix V [117,118]. Using the analytical form of quantum
fidelity that has been found for covariance matrices [93,94],
one can readily calculate the quantum fidelity for the TMSV
state input.

The covariance matrix V is defined by Vjk =
Tr[ρ̂T {Q̂ j − d j, Q̂k − dk}/2], where {Â, B̂} ≡ ÂB̂ + B̂Â and
d j = Tr[ρ̂T Q̂ j]. Here, Q̂ denotes a quadrature operator
vector for a two-mode continuous variable quantum
system and written as Q̂ = (x̂1, p̂1, x̂2, p̂2)T satisfying the
canonical commutation relation, [Q̂ j, Q̂k] = i� jk , where

� = (
0 1

−1 0) × I2 and In is the n × n identity matrix.

For the output state ρ̂T for the TMSV state input, it can be
shown that d = (0, 0, 0, 0)T, while

V (T ) =

⎛
⎜⎝

v1 0 −v3 0
0 v1 0 v3

−v3 0 v2 0
0 v3 0 v2

⎞
⎟⎠, (C4)

where

v1 = 1
2 + ηLTL sinh2 r, (C5)

v2 = 1
2 + ηRTR sinh2 r, (C6)

v3 = 1
2

√
ηLηRTLTR sinh 2r, (C7)

where a squeezing parameter has been assumed to be real, i.e.,
ξ = r ∈ R.

For two states described by the covariance matrices V 1 and
V 2 but having zero displacement, the quantum fidelity can be
written as [93,94]

F (V 1,V 2) =
[√

γ +
√

λ −
√

(
√

γ +
√

λ)2 − δ

]−1

, (C8)

where

δ = det(V 1 + V 2), (C9)

γ = 16 det(�V 1�V 2 − I4/4), (C10)

λ = 16 det(V 1 + i�/2)det(V 2 + i�/2). (C11)

With the above formalism and analytical form of the quantum
fidelity, one can thus derive the QFIM of Eqs. (30) and (31) in
the main text.
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