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Security of quantum communications in oceanic turbulence
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The channel fading induced in the ocean quantum links is a major obstacle restricting the performance of
ocean quantum key distribution. To determine the ultimate limits at which secret bits (and entanglement) can
be distributed via a seawater medium, we propose an analytical model for ocean quantum links to derive the
probability distribution of the transmittance, which characterizes the evolution of the quantum state over the
fading channel. The proposed model includes the effects of absorption, scattering, turbulence, and ocean thermal
noise due to background light. Our comprehensive numerical analysis of several practical scenarios encompasses
both pure-loss bounds and thermal-loss bounds, with a submarine at various depths and in various oceans on
earth. Besides identifying ultimate limits, we present a security analysis of coherent-state and squeezed-state
protocols, showing the secret key rate of both the asymptotic case and finite-size regimes.

DOI: 10.1103/PhysRevA.104.052613

I. INTRODUCTION

Quantum key distribution (QKD) exploits the fundamental
laws of quantum mechanics to provide a theoretically secure
way of sharing secret keys between distant parties, whose
basic idea relies on the fact that any attempt to distinguish en-
coded quantum states causes a disturbance in the signal [1]. To
date, QKD has been studied extensively [2] and has become a
well-developed technology in real-world applications.

In recent years, the attention towards QKD has increased
for a free-space scenario as its ability to provide a global-scale
network without the limitation of fiber infrastructure as well
as the requirement of a quantum relay. Many works have been
carried out for terrestrial [3–5] and satellite-to-ground links
[6–8]; however, ocean free-space links are less explored due
to the special components and optical properties of seawater.
Specifically, the major obstacles in seawater are as follows:
(i) The propagation beam is attenuated by the absorption
and scattering nature of the medium, including the water’s
molecular, suspending particles, and even bubbles near the
surface [9], and (ii) the beam quality suffers from serious
ocean optical turbulence, which is related to the refractive-
index fluctuation caused by the random variations of density,
salinity, and temperature [10]. Although the fading is harsh
compared to fiber and air, the ocean QKD, which acts as
the last piece of the puzzle in building a global-scale QKD
network, is vital for the secure communication of ocean sen-
sor networks, submarines, and all types of ocean vehicles
[11–13]. Unlike traditional ways of applying the acoustic
technique, ocean QKD provides unconditional security com-
munication over the seawater medium with high-capacity
links and low latency.

Currently, ocean QKDs are underdeveloped from the point
of view of both theoretical analysis and experimental verifi-
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cation. So far, most underwater experiments are limited to the
laboratory using a restricted flume tank [14] or an indoor wa-
ter pool [13], with no consideration for submarine depth and
oceanic turbulence. Ling et al., for example, poured seawater
collected from the surface of the coastal sea into a 3.3-m-long
glass tube for channel simulation [15]. This channel well
maintained the attenuation characteristics of the ocean but had
a limited reflection on the impact of depth and temperature
variations. For more realistic conditions, Hufnagel et al. ex-
tended the QKD to an outdoor environment, at the Ottawa
River in Canada [16]. The river’s varying temperature and
currents contributed to natural turbulence conditions; how-
ever, this river had a different attenuation and salinity feature
than seawater, making the experiment a nondetailed reference
for the ocean case. Moreover, Liu et al. introduced an al-
ternative scheme [17], based on the spatial light modulator,
to simulate the turbulence effects without using the seawater
medium. Nevertheless, this method ignored the absorption
and scattering factors at the same time. To date, there is still no
complete experimental report on ocean QKDs under realistic
conditions.

Before the goal of realistic experiments, a reasonable
model for ocean quantum links is needed. In fact, the evo-
lution of the quantum state through free space, in terms of
the Glauber-Sudarshan P function [18], can be well charac-
terized by the probability distribution of the transmittance
(PDT) due to the negligible depolarization of the free space
[19]. In classical-case theory, a well-known technique for
PDT description is the log-normal model [20]. Unfortunately,
this model is defined in the transmittance range of [0,∞),
where the commutation rules for quantum operators would
be violated [21]. Peřina et al. showed this unphysical artifact
on quantum number states caused by the log-normal model
in which the attenuating atmosphere creates photons [22].
Recently, Huang et al. proposed an underwater entanglement
transmission model based on the assumptions of small-angle
approximation while the beam deflection distance is treated
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TABLE I. Seawater parameters in various oceans [29].

Ocean type cb (mg/m3) (×10−3) s (mg/m2) h (mg) dmax (m) cchl (mg/m3)

S1 0.0429 −0.103 11.87 115.4 0.708
S2 0.0805 −0.260 13.89 92.01 1.055
S3 0.0792 −0.280 19.08 82.36 1.485
S4 0.143 −0.539 15.95 65.28 1.326
S5 0.207 −1.03 15.35 46.61 1.557
S6 0.160 −0.705 24.72 33.03 3.323

as the Rice distribution [23]. This model, however, focuses
on beam wandering effects and has a simple treatment of
the attenuation coefficient and deformation phenomenon. An-
other promising solution is the so-called phase screen method
[24], which can directly simulate the probability distribution
using an appropriate turbulence spectrum but requires more
calculation steps than the analytical method.

The goal of the present work is to give an analytical
method for calculating the PDT of ocean quantum links
in a relatively convenient and comprehensive manner. In
what follows, we perform a systematic analysis of distur-
bance effects in horizontal ocean links, including regular
losses, optical turbulence, and ocean thermal noises. With
the aid of link modeling, we determine the ultimate limits of
ocean quantum communications, i.e., the Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound [25], thermal upper bound,
and thermal lower bound, which represent the ultimate con-
verse rates for secret key and entanglement distribution in
various ocean and submarine depths. Besides these bounds,
we present a security analysis of the squeezed-state protocol
[26] that belongs to one of the continuous-variable (CV) QKD
protocols.

This paper is organized as follows. In Sec. II we obtain
the regular losses between two legal users. We focus on the
regular extinction of the optical signal caused by the ab-
sorption and scattering of seawater. In Sec. III the statistics
of ocean turbulent fields are studied. The power spectrum
function allows us to derive the scintillation index, the beam-
wandering variance, and the energy redistribution across the
beam section based on the elliptical model. In Sec. IV we
show the probability parameters of the transmittance that char-
acterizes the evolution of the quantum state in ocean quantum
links. Section V provides the ultimate limits and capacities
for ocean quantum communications over the horizontal path.
An application of the proposed theory on the security anal-
ysis of squeezed-state protocols is demonstrated in Sec. VI.
Section VII summarizes the paper.

II. REGULAR LOSSES OF OCEAN LINKS

In this section we focus on the regular losses caused by
ocean extinction. By the word “regular” we refer to losses that
follow a deterministic manner rather than a random process.

A. Regular extinction

Ocean extinction, which causes the signal-to-noise ratio to
degrade, is associated with molecular absorption and scatter-
ing of seawater. In a horizontal link, the overall extinction

losses can be modeled by Beer’s law [27]

ηext = e−T z, (1)

where ηext is the extinction-induced transmittance, z is the
transmission distance, and T denotes the seawater extinction
coefficient in relation to the wavelength λ, which is given by

T = Tabs + Tsca, (2)

where Tabs is the absorption factor of the ocean and Tsca is
the scattering factor. In general, the absorption factor is due
to the intrinsic absorption of pure water as well as absorption
from organic substances, particularly phytoplankton chloro-
phyll a. Mathematically, the concentration of chlorophyll a,
cc(d ), varying with the depth d , follows a Gaussian curve that
includes specific seawater parameters and is given by [28]

cc(d ) = cb + sd +
√

2πhJ −1e−(d−dmax )2/2J 2
, (3)

where cb is the background chlorophyll concentration on the
surface, s is the vertical gradient of concentration, h is the total
chlorophyll above the background levels, dmax is the depth of
the deep chlorophyll maximum, and the standard deviation
has the form

J = h[2π (cchl − cb − sdmax)]−0.5, (4)

where cchl is the maximum chlorophyll concentration at the
chlorophyll maximum layer. The seawater parameters of
Eqs. (3) and (4) depend on the location of the ocean on earth
or, equivalently, the ocean types, as shown in Table I. The
scattering factor Tsca is related to the scattering by particulate
substances and the scattering from pure water, which also
depends on cc(d ). With the aid of modeling cc(d ), the details
of Tabs and Tsca are given in Appendix A.

Figure 1 shows the regular extinction of seawater. In what
follows, we focus on two types of oceans: the S1 ocean
and the S6 ocean. For fewer losses, the wavelength is set
to 532 nm, which is located at the transmission window of
seawater (450–550 nm [30]). Figure 1(a) plots the distribution
of the extinction coefficient T as a function of the depth d .
We find that the extinction coefficient reaches its maximum
value at depths of 115 m and 33 m for the S1 and S6 oceans,
respectively. Figure 1(b) shows the corresponding extinction-
induced transmittance ηext varying with transmission distance
z. Note that the dashed lines, representing the maximum trans-
mittance at a given distance, are also plotted for comparison.
These maximum values are found at a depth of 200 m in both
oceans.
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FIG. 1. Regular extinction of seawater for two types of oceans:
S1 ocean (blue line) and S6 ocean (black line). (a) Extinction coef-
ficient as a function of submarine depth. The wavelength is set to
532 nm. The other parameters are given in Table I. (b) Extinction-
induced transmittance based on Beer’s law varying with transmission
distance. The inset shows the 33-m-deep transmittance in the S1
ocean.

B. Other sources

Besides extinction, both diffraction and device efficiency
cause regular losses. The diffraction losses occur due to the
receiver telescope, whose circular radius is a, which may only
detect a fraction of the arriving beam since the beam radius
will increase from the initial value w0 to a broadening one wz

under beam diffraction [31]. Mathematically, the broadening
radius is related to the transmission distance and whether
the beam is convergent, collimated, or divergent. In what
follows, we assume that ocean quantum communication is
based on a quasimonochromatic optical mode represented by
a collimated Gaussian beam (curvature R0 = ∞). When the
collimated beam arrives at the receiver telescope, its radius
expands to w = w0[1 + (z/zRay)2]1/2 with the Rayleigh range
zRay = πw2

0/λ. Finally, the diffraction loss is given by ηbro =
1 − e−2a2/w2

z due to the truncation on the finite telescope.
However, such broadening seems negligible in the ocean sce-
nario due to its limited transmission distance (usually z <

100 m [20]). Therefore, the diffraction loss is ignored in the
following.

Regular losses from device efficiency are dependent on
fiber couplings and the detector’s restricted quantum effi-

ciency [32]. To focus on the influence of seawater, we assume
an ideal device efficiency, i.e., the device transmittance ηd =
1. Note that the losses caused by regular refraction along the
horizontal path are also ignored or, equivalently, the light is
assumed to travel in a straight line in nonturbulent seawater.

III. OCEANIC TURBULENCE

The preceding section ignored the impact of regular refrac-
tion, however, other types of refractive phenomena arise in the
presence of oceanic turbulence, causing an irregular variation
in space and time of the refractive index along the path. In
general, this variation is related to the density, salinity, and
temperature fluctuations and follows the statistics of turbulent
scalar fields [33]. In what follows, we discuss the statistics of
turbulent fields and then demonstrate the dependence of beam
wandering, beam broadening, and deformation and aperture-
averaged scintillations on oceanic turbulence.

A. Statistical description of oceanic turbulence

The statistical description of oceanic turbulence is based on
the so-called energy cascade theory [34]. In general, turbulent
seawater motion consists of a family of vortices or eddies
of different diameters, bounded above by the outer scale L0

(macroscale) and below by the inner scale l0 (microscale).
Under the effects of inertial forces, the larger eddies split into
smaller eddies to form a continuum of eddy size for the trans-
fer of energy. In the last regime, the seawater eddies die and
the remaining energy in the fluid motion is dissipated as heat.
Overall, the evolution of seawater eddies causes refractive-
index fluctuations along the propagation path, resulting in
random variations in light transmittance. In the statistical the-
ory of optical turbulence, the refractive-index fluctuations δn

can be described by the power spectrum

�n(k) = 1

(2π )3

∫
R3

d3ρ Bn(ρ)e−ik·ρ, (5)

where ρ = (x, y, z)T and Bn denotes the correlation function
given by

Bn(ρ1 − ρ2) = 〈δn(ρ1)δn(ρ2)〉. (6)

With the assumption of a locally isotropic and homogeneous
random field, the correlation function can be further simplified
with Markovian approximation [35] to

〈δn(r; z)δn(r′; z′)〉 = 2πδ(z − z′)
∫
R2

d2κ �n(κ; z)

× exp[iκ · (r − r′)], (7)

where r = (x, y)T is the vector of transverse coordinates, κ =
(kx, ky)T is the transverse wave vector, and �n(κ; z) is the
simplified turbulence power spectrum. In our work, we apply
the classical Kolmogorov power spectrum [36] on oceanic
turbulence, which has the form [37]

�n(κ; z) = Aω(z)ξ−1/3(z)κ−11/3, (8)

where A can be assumed to be of order unity [38], ω(z) is re-
lated to the dissipation rate of temperature or salinity variance,
and ξ (z) denotes the kinetic energy dissipation rate. With the
aid of this ocean power spectrum, the theoretical approach of
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free-space quantum light can be used for analyzing the beam
evolution of ocean turbulent channels.

B. Evolution of the quantum state

The evolution theory of the quantum state through the
regular lossy and noisy channel is well developed. However,
the ocean turbulent channel belongs to the fading channel;
therefore the regular tools are not enough. Fortunately, the loss
fluctuation or, equivalently, the transmittance fluctuation can
be characterized by the PDT function P (η) due to the seawater
transmittance that can be considered as a real random variable
[23]. With the aid of P (η), the resulting input-output relations
of a fading channel, in terms of the Glauber-Sudarshan P
function, can be given by (see the Supplemental Material of
Ref. [39])

Pout (α) =
∫ 1

0
dηP (η)

1

η
Pin

(
α√
η

)
, (9)

where Pin(α) and Pout (α) are the input and output P functions,
respectively. Hence, the evolution of the quantum state over
the oceanic turbulence merely reduces to the identification
of P (η).

To date, there are fewer specific transmittance models for
ocean quantum links than there are for the atmosphere [40]
due to the more diverse nature of the ocean environment.
While atmospheric turbulence is primarily caused by fluctu-
ating temperature, oceanic turbulence is mainly induced by
temperature and salinity fluctuations. Therefore, the power
spectrum of air is unsuitable for ocean cases and, as con-
sequence, the classical theory cannot be used directly for
seawater transmittance. Fortunately, Ref. [33] proposed the
mathematical expression for the power spectrum of oceanic
turbulence, where the salinity variances can act as refractive
blobs distorting the transmitted beam. Following the deter-
mination of the power spectrum, numerous papers have been
published that upgrade the classical theory by using the ocean
power spectrum for the approximate studies on light problems
in seawater [37,41]. In this section, the findings developed
in previous air research are applied with an upgrade based
on the ocean power spectrum in Eq. (8) to reflect the optical
conditions of the ocean.

Elliptical model

In the present work, we describe P (η) by the elliptical
model [21,42], where the beam profile is assumed to be an
elliptic deformation, as depicted in Fig. 2. We assume that a
collimated Gaussian beam with an initial radius w0 is trans-
mitted horizontally onto a telescope, whose aperture radius
is a. In this model, the nonregular losses are caused by the
deflection of the beam centroid (beam wandering) and the
energy redistribution across the beam section (beam broad-
ening and deformation). These factors can be reflected by the
random vector

v = (x0, y0,�1,�2), (10)

where (x0, y0) is the beam-centroid coordinate of the arriving
beam and �i = ln(w2

i /w
2
0 ), with ellipse semiaxes wi, repre-

sent the impacts of beam broadening and deformation. With
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FIG. 2. Elliptical model: O, beam-centroid position of the re-
ceiver telescope; w1 and w2, half axes of the elliptical beam; and
r, beam-centroid vector.

the aid of v, the total P (η), inducing the extinction losses ηext,
can be given by

P (η) = 2

π

∫
R4

d4v

∫ π/2

0
dϕ ρG(v)δ(η − η(v, φ)), (11)

where η(v, φ) is defined as a function of v and beam-ellipse
orientation angle φ. The function ρG(v) is a Gaussian proba-
bility density of v with mean value vector

M = (〈x0〉, 〈y0〉, 〈�1〉, 〈�2〉) (12)

and covariance matrix

C =

⎛
⎜⎜⎜⎝

〈
�x2

0

〉
0 0 0

0
〈
�y2

0

〉
0 0

0 0
〈
��2

1

〉 〈��1��2〉
0 0 〈��1��2〉

〈
��2

1

〉

⎞
⎟⎟⎟⎠.

(13)
The derivations of M and C, based on the ocean power spec-
trum of Eq. (8) as well as the phase approximation of the
Huygens-Kirchhoff method [43], are shown in Appendix B.
For horizontal links, ω(z) and ξ (z) are considered as constant
at a given depth [41]. In natural seawater, ω relates to the
dissipation rate of temperature or salinity variances and ranges
from 10−2 to 10−9 C2 s−1 and 10−2 to 10−9 psu2 s−1 (where
psu denotes practical salinity unit), respectively; ξ typically
ranges from 10−3 to 10−11 m2 s−3. Since we set a physically
allowed interval η = [0, 1] before derivations, the proposed
model avoids the deficiency of physical inconsistencies in-
herent in the log-normal model (defined in the range [0,∞)).
With the knowledge of M and C, we then estimate P (η) via
the Monte Carlo method, as shown in Appendix C. Note that
the ocean elliptical model is only suitable for the scenario in
which a Gaussian beam is transferred and the random field is
locally isotropic and homogeneous.

IV. PROBABILITY DISTRIBUTION OF TRANSMITTANCE

In this section we investigate the transmittance properties
of ocean turbulent channels, including mean transmittance,
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TABLE II. Simulation parameters of this work. Here SNU denotes shot-noise units.

Variable Value Description Reference

z 10–40 m Transmission distance (horizontal)
d 0–200 m Submarine depth [24]
λ 532 nm Wavelength [30]
w0 80 mm Initial beam radius [45]
a 0.25 m Receiver telescope radius [46]
�fov 522 mrad Field of view [46]
E 1440 W/m2 Downwelling solar irradiance (λ = 532 nm) [47]
R 1.25% Underwater reflectance (λ = 532 nm) [47]
μs 0.1–1 Squeezed variance [48]
μa 2 SNU Modulation variance [7]
β 95% Reconciliation efficiency [49]

variance, and aperture-averaged scintillations. In what fol-
lows, we focus on a challenging regime with strong turbu-
lence, i.e., ω = 10−11 and ξ = 10−3 (for strong turbulence
ω ∈ [10−11, 10−10] and ξ ∈ [10−5, 10−3] [37]). The case of
weak turbulence can be obtained by updating the values of
ω and ξ . Typically, the value of ωξ−1/3 in weak turbulence
is around 10−14 [41]. For the sake of simplicity, we ignore
the depth-induced fluctuation of ω and ξ while considering
the optimal working condition of 〈x0〉 = 〈y0〉 = 0. In practice
however, one may hold a nonzero average deflection [44],
i.e., 〈x0〉 �= 〈y0〉 �= 0. The simulation parameters are listed in
Table II. Note that we set an upper limit of 200 m on the depth
since the deeper water is cold and very dense [24].

A. Mean transmittance and variance

Figure 3 shows the mean transmittance 〈η〉 and variance
Var(

√
η) vs the transmission distance z and the depth d for

two types of oceans: the S1 ocean and the S6 ocean. The
time of the Monte Carlo method is set to 10 000 for reliable
results. In Fig. 3(a) we plot the mean transmittance 〈η〉 of
the S1 ocean. The gray surface, representing the nonturbu-
lence transmittance based on Beer’s law [cf. Eq. (1)], is
also plotted for comparison. We find that oceanic turbulence
increases attenuation and that the mean transmittance is low-
est at a depth of 115 m. Figure 3(b) shows the variance
Var(

√
η) = 〈η〉 − 〈√η〉2 of the S1 ocean, which is related

to the strength of transmittance fluctuations [50]. The gray
surface represents the mean value of Var(

√
η) throughout

the simulation region. We find that the S1 ocean belongs
to weakly fluctuating quantum channels as the values of
Var(

√
η) are all less than 10−3 [51]. For example, the transmit-

tance jitters in the range η = [0.1216, 0.1710] with a standard
deviation of 0.0057 when the depth is 200 m and the trans-
mission distance is 15 m. In Figs. 3(c) and 3(b) we plot 〈η〉
and Var(

√
η) of the S6 ocean, respectively. We find that the

statistics of the S6 ocean differ from those of the S1 ocean.
When the ocean is changed from S1 to S6, the depth of the
lowest mean transmittance decreases from 115 to 33 m. This
result shows the importance of changing the depth in terms of
ocean type for a better transmission in use. Moreover, the S6
ocean also belongs to weakly fluctuating quantum channels
according to the values of Var(

√
η).

B. Aperture-averaged scintillations

Fluctuations in received irradiance caused by optical tur-
bulence are commonly referred to as scintillation. Physically,
the scintillation index is defined as the normalized variance
of the irradiance fluctuations [52]. Knowledge of the scintilla-
tion index is crucial for determining system performance in a
communication system or radar link (see Chaps. 11 and 13 in
[34]). Mathematically, the scintillation index is given by

σ 2
I = 〈I2(r, z)〉

〈I (r, z)〉2 − 1, (14)

where I (r, z) is the irradiance of light. However, the scintil-
lation index above denotes the physical quantity obtained by
a point aperture. In practice, increasing the collecting area of
the receiver telescope reduces scintillation, which is known
as aperture averaging [52]. In detail, the aperture-averaged
scintillation is derived from the ratio of power fluctuations
by the telescope collecting area to that obtained by a point
aperture, which has the form [53]

σ 2
η = 〈η2〉−〈η〉2

〈η〉2 , (15)

where the transmittance

η =
∫
A

d2r I (r, z), (16)

with the aperture area A. Mathematically, the elements in
Eq. (15) can be deduced from the field correlation function
given by

〈η2〉 =
∫

|r1|�a
d2r1

∫
|r2|�a

d2r2�4, (17)

〈η〉 =
∫

|r|�a
d2r �2, (18)

with the second-order field correlation function �2 =
〈I (r, z)〉 and the fourth-order field correlation function �4 =
〈I (r1, z)I (r2, z)〉. For the derivations of �2 and �4 refer to
Appendix B. In fact, the parameters, which characterize sta-
tistical properties of the elliptic model, are expressed in terms
of �2 and �4 [see Eqs. (B5)–(B7)].

Figure 4 shows the aperture-averaged scintillation index σ 2
η

vs the transmission distance z with different receiver telescope
radii. Without loss of generality, we present the results of the
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FIG. 3. Statistics of transmittance varying with the transmission distance and the depth for (a) and (b) the S1 ocean and (c) and (d) the S6
ocean. Here the dissipation rate ω = 10−11 and the kinetic energy dissipation rate ξ = 10−3. Refer to Table II for the system parameters. The
mean values of Var(

√
η) are (b) 9.73 × 10−6 and (d) 8.09 × 10−6.

S6 ocean at a depth d = 200 m. This is possible since we
ignore the depth-induced fluctuation on ω and ξ . We find that
the aperture-averaged scintillation index does not continue to
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FIG. 4. Aperture-averaged scintillation index vs transmission
distance with receiver telescope radii a = 0.25 m (blue line) and
a = 0.11 m (black line). The inset shows a close-up from 28.5 to
30 m.

rise as transmission distance increases. Taking the case of
a = 0.25 m as an example, the scintillation index reaches
the peak at z = 16 m and then decreases. In addition, the
increasing telescope radius (from 0.11 m to 0.25 m) reduces
the scintillation index, especially if the transmission distance
is less than 20 m. When the transmission distance exceeds
30 m, the line of a = 0.25 m collapses to that of a = 0.11 m,
as shown in the inset.

V. BOUNDS FOR OCEAN QUANTUM COMMUNICATIONS

Once we have identified P (η), we can derive the bound of
maximum secret bits that are achievable by ocean quantum
communications. In general, we determine the secret key ca-
pacity and the two-way entanglement distribution capacity of
the pure-loss channel by the point-to-point repeaterless PLOB
bound [25]. Using the convexity properties of the relative
entropy of entanglement [54], the PLOB bound of the fading
channel is given by the average [4]

Kmax � −
∫ 1

0
dηP (η)log2(1 − η), (19)
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FIG. 5. Background photons vs depth for two types of oceans.
The inset shows the background noise from 60 to 120 m.

where Kmax is the maximum rate of secret key bits that can be
distributed per transmitted mode. However, the ocean quan-
tum link is not a pure-loss one but adds thermal noise, such
as the background thermal photons coupling into the output
mode. Even though such noise is trusted, Eq. (19) is no longer
guaranteed to be achievable. In this section, we first show the
thermal noise caused by background light and then derive the
tighter bounds for thermal-loss ocean quantum links.

A. Thermal noise

In the ocean scenario, the background photons from the
sun or other stellar objects are dependent upon the depth d .
In general, the deeper ocean is less noisy than the shallow
one due to the background photons that will be absorbed by
the seawater [55]. Mathematically, the number of background
photons landing on the receiver telescope at depth d can be
expressed as [47]

Nback = τ�f
Lsol�fovπa2ηrηf

h0vw
, (20)

where h0 is Planck’s constant, υw is the frequency of light in
water with a water light speed 2.25 × 108 m/s, τ is the effec-
tive sampling period, �f is the optical filter bandwidth, �fov is
the field of view, πa2 denotes the receiver area, ηr = 1 is the
band filter transmission, ηf = 0.1881 is the optical filter trans-
missivity, and the solar radiance Lsol in W m−2 sr−1 μm−1 is
given by

Lsol = π−1ERLf e
−ηad , (21)

where E is downwelling irradiance, R is the underwater
reflectance of downwelling irradiance, Lf is the factor describ-
ing the directional dependence underwater, which equals 2.9
at a viewing angle of π/2 (looking horizontally) [56], and ηa

is the average attenuation of the water column from the sur-
face to the communication depth. Finally, the total number of
thermal photons, which is related to the device transmittance
ηd, is given by

N = ηdNback + Nex, (22)

where Nex is the excess photons beside the natural back-
ground.

Figure 5 shows the background photons collected by the
receiver telescope as a function of the depth d for two types

of oceans. The simulation parameters are shown in Table II.
Here we set the optical filter bandwidth �f and the effective
sampling period τ to 1 nm and 1 ns, respectively [30]. We
find that background photons in the S6 water fall faster than
in the S1 ocean. Moreover, the background photons of both
oceans are reduced to less than 10−2 for depths above 75 m.
Note that �f = 1 nm is the value of the narrow-band filter
typically considered in works with discrete variables. In the
CV scenario, narrower filters are available by using suitable
interferometric procedures at Bob’s side [4].

B. Analysis of the ultimate bounds

In this section we derive the thermal-loss bounds of ocean
quantum communication based on the thermal noise discussed
above. The total input-output relation of thermal photons from
the transmitter to the receiver is equivalent to a beam splitter
mixing the signal mode with the input photons of

Ne = N /(1 − η). (23)

For the sake of simplicity, we keep N constant, regardless
of the instantaneous transmittance η. Once we have clarified
the input-output relation of thermal noise, we determine the
thermal bounds for distributing keys (and entanglement) with
ocean quantum links. According to [25], the relative entropy
of entanglement suitably computed over the asymptotic Choi
matrix of the thermal-loss channel provides an upper bound
for its secret key capacity. Then any key rate under a fading
channel cannot exceed the thermal upper bound [4]

Kmax � −
∫ 1

N
dηP (η)[log2(1 − η) + Nelog2η + H(Ne)],

(24)

where H(x) := (x + 1)log2(x + 1) + (x)log2(x). Besides the
thermal upper bound, we can derive the thermal lower bound
for distributing keys (and entanglement) in terms of the re-
verse coherent information [57], which has the form

Kmax � −
∫ 1

0
dηP (η)[log2(1 − η) + H(Ne)]. (25)

These formulas allow us to calculate the ultimate rates for key
(and entanglement) distributions that are available via a fading
channel containing thermal photons. When the thermal pho-
tons are negligible, the bounds in Eqs. (24) and (25) collapse
to the bound in Eq. (19).

Figure 6 shows the ultimate bounds vs the transmission
distance z for two types of oceans. Here we consider the
optimal case with an ideal lossless and noiseless receiver,
i.e., ηd = 1, and Nex = 0. This can be applied to bound the
protocols where both local noise and the limited efficiency of
the detector are regarded as trustworthy. Figure 6(a) shows the
ultimate bounds of the S1 ocean at different depths. At a depth
of 100 m, we find that the thermal upper bound is close to the
thermal lower bound in the short-distance case, but there is
a clear gap between the two thermal bounds if the transmis-
sion distance exceeds 18 m. This is because the background
photons Nback, as shown in the inset table, are limited at the
100 m depth, causing a negligible gap between two thermal
bounds in the short-distance case. When the transmission dis-
tance increases or, equivalently, the transmittance decreases,
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FIG. 6. Ultimate bounds vs the transmission distance for (a) the S1 ocean and (b) the S6 ocean. The depth is set to 50 m (dashed line)
and 100 m (solid line) as examples. The inset table shows the channel parameters of each depth. Here UB denotes upper bound and LB lower
bound.

the equivalent thermal noise Ne goes up [cf. Eq. (23)] and
thus the gap between two thermal bounds appears. In contrast,
the gap between two thermal bounds always exists at a 50 m
depth because the background photons at 50 m depth are one
order of magnitude larger than at 100 m depth. An interesting
observation is that the PLOB bound at the 50 m depth is higher
than the one at the 100 m depth; however, the two thermal
bounds at the 100 m depth are wider than those at the 50 m
depth. This is because the PLOB bound is a pure-loss bound
that does not rely on thermal noise. The light at the 50 m depth
has a more favorable transmittance than light at the 100 m
depth (see the extinction coefficient T in the inset table); thus
the PLOB bound is higher at the 50 m depth. Figure 6(b)
shows the ultimate bounds of the S6 ocean at different depths
d . We find that the three bounds are higher at the 100 m depth
than at the 50 m depth. Similarly, at the 100 m depth, the gap
between the thermal upper bound and the thermal lower bound
appears only when the transmission distance exceeds 20 m.
However, this gap always exists if Alice and Bob raise the
depth from 100 m to 50 m.

VI. APPLICATION: SQUEEZED-STATE PROTOCOL

In this section we use the proposed theory of ocean quan-
tum links to calculate the secret key rate when using the
squeezed-state protocol. We first discuss the notion of the
squeezed-state protocol and then account for the secret key
rate in both the asymptotic case and the finite-size regimes. To
be consistent with the preceding analysis, we consider the case
of an ideal lossless and noiseless receiver (i.e., ηd = 1 and
Nex = 0). For the system parameters refer to Table II. Note
that the minimum squeezed variance is limited to μs = 0.1,
which has been obtained experimentally [48].

A. Description of the protocol

The prepare-and-measure schematic of the squeezed-state
protocol over the ocean turbulent channel is shown in Fig. 7.
It can be described as follows.

Step 1: State preparation. The sender Alice randomly gen-
erates X or P quadrature-squeezed vacuum states by using
the optical parametric oscillator (OPO). Without a loss of

FIG. 7. Schematic diagram of the squeezed-state protocol over the ocean turbulent channel: OPO, optical parametric oscillator; MOD, mod-
ulator; BS, beam splitter; LO, local oscillator; PBS, polarization beam splitter; Tele., telescope; PM, phase modulator; and PD, photodetector.
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FIG. 8. Asymptotic key rates of the squeezed-state protocol in (a) the S1 ocean and (b) the S6 ocean. The gray surface represents the secret
key rates of the coherent-state protocol (i.e., μs = 1). The red lines are the projections of the values of the secret key rate at z = 10 m. Note
that the squeezed variance is optimal for each transmission distance and depth.

generality, we define X quadrature as observables. Thus, the
generated squeezed quadratures xs and ps can be described by
the diagonal covariance matrix γ = diag(μs, 1/μs) with the
squeezed variance μs. Note that we consider ideal squeezed
states in the following, regardless of the so-called antisqueez-
ing quadrature noise from the OPO sources. The analysis of
antisqueezing noise was well studied in [58].

Step 2: Displacement. Alice applies Gaussian quadrature
displacement xa (zero mean and variance μa) on the squeezed
states in phase space. Thus, the observable quadratures evolve
to X quadratures xs + xa with variance μs + μa, while the
variance of P quadratures ps remains 1/μs. Correspondingly,
the covariance matrix becomes γ ′ = diag(μs + μa, 1/μs).

Step 3: Transmission and measurement. The prepared quan-
tum states are transferred to trusted Bob via the fading channel
and then measured by coherent detection (homodyne or het-
erodyne). For a convenient evaluation, we divide the fading
channel into n stable subchannels with constant transmit-
tance {ηi}i=1,...,n (0 � ηi � 1) and corresponding probability
{pi}i=1,...,n (so that

∑n
i=1 pi = 1) [51]. For the ith subchannel,

the evolution of X quadratures can be described in the Heisen-
berg picture, which is given by

xb = √
ηi(xs + xa + xε ) +

√
1 − ηix0, (26)

where x0 is referred to as a shot-noise unit and xε is the excess
noise of the channel with variance ε. Thus, the variance of the
X -quadrature measurement data becomes μi

b = 1 + ηi(μs +
μa − 1 + ε). The overall quantum state of arriving is the
mixture of the results in each subchannel weighted by the
corresponding probability.

Step 4: Data processing. With the aid of classical process-
ing (error correction and privacy amplification [59]), Alice
shares a sequence of secure bits with Bob. In this work, we
consider the reverse reconciliation scheme since it is more
robust against channel attenuation than direct reconciliation
[60].

B. Asymptotic analysis

Next we perform the security analysis of the protocol. We
first verify the security of the protocol against the optimal

Gaussian collective attack [61] by calculating the lower bound
on the asymptotic key rate K∞. The eavesdropper Eve is
assumed to be capable of purifying all the noise added in the
untrusted quantum channel. In terms of the extension of the
classical Csiszár-Körner theorem [62], the secure key can be
distilled if Alice and Bob have an information advantage over
Eve. Therefore, the asymptotic key rate is given by

K∞(μs, μa, 〈η〉, 〈√η〉, ε) = βIAB − χBE, (27)

where β denotes the reconciliation efficiency, IAB is the Shan-
non mutual information between Alice and Bob, and χBE is
the Holevo bound, representing the maximum information
Eve has stolen. The variance ε (i.e., excess noise) is related
to the background photons Nback given by ε = 2Nback/η [4].
The details of IAB and χBE are given in Appendix D, where
the analysis is established using an equivalent entanglement-
based scheme with independent control of squeezing and
modulation.

In Fig. 8 we show the asymptotic key rate K∞ of the
squeezed-state protocol as a function of transmission distance
z and the depth d for two types of oceans. The squeezed
variance μs is optimal for each transmission distance and
depth. The gray surface, denoting the secret key rates achiev-
able in the coherent-state protocol (i.e., μs = 1), is plotted for
comparison. We find that the proposed protocol outperforms
the coherent-state protocol in terms of both secret key rate
and transmission distance. Looking at the S1 ocean as an
example [see Fig. 8(a)], the maximal transmission distance of
the squeezed-state protocol, appearing at a depth of 200 m,
can reach up to 40 m, whereas the coherent-state protocol
loses security once the transmission distance exceeds 34 m
(at all depths). Moreover, the secret key rates show a trough
when the depth is between 100 and 130 m. This result can
be attributed to the specific distribution of the extinction coef-
ficient, as depicted in Fig. 1. Hence, the system should avoid
depths of 100–130 m in the S1 ocean. In addition, the commu-
nication is insecure at the first 20 m under the ocean surface
for both protocols due to the influence of the background
photons (see Fig. 5). Note that the coherent-state protocol is
unable to provide secret keys even when the depth is increased
to 50 m. Similarly, both the coherent-state protocol and the
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FIG. 9. Finite-size secret key rates of the squeezed-state protocol over two types of ocean: (a) the S1 ocean and (b) the S6 ocean. From top
to bottom, the block length N is equal to ∞, 10−10, and 10−6.

squeezed-state protocol fail to maintain security in the S6
ocean when the depth is less than 40 m, as shown in Fig. 8(b).

Furthermore, higher levels of squeezing are more advanta-
geous for the ocean-based protocol in terms of optimization
results, i.e., μs = 0.1 is the optimal squeezed variance. In
general, the optimal squeezed variance of a fading channel is
related to the strength of transmittance fluctuations or, equiv-
alently, the value of Var(

√
η) [63]. The larger the squeezed

variance is, the more sensitive the protocol is to transmittance
fluctuation. The relationship between Var(

√
η) and optimal

squeezed variance is shown in Appendix E. We find that
stronger squeezing benefits the proposed protocol since the
Var(

√
η) of both the S1 ocean and the S6 ocean are all less

than 10−3 (see Fig. 3). Moreover, one can further improve
the secret key rate by the optimal modulation variance μa, as
shown in Appendix F.

C. Finite-size regime

In the asymptotic case, the secure analysis is carried out
under the assumption that the data length is infinite, which is
impossible in practice. Therefore, considering the finite-size
effect in security analysis is necessary [4,64]. In the finite-size
regime, we need to estimate the unknown parameters, includ-
ing the channel transmittance and noise. In practice, these
parameters are estimated using finite-size data samples so that
the secret key rate will be reduced. Although the finite-size
effect in fiber links has broadened, the analysis in free space
is still a subject to be explored because the channel fluctuation
has a negative impact on the parameter estimation [65]. To
compensate for imprecise estimation, a suppression method,
clustering overall data into small and low-fluctuation blocks,
has been proposed [4,66]. However, this method increases the
difficulty of the software and hardware at the receiver.

In what follows, we consider the situation in which all data
are included within a single signal block. In this situation,
the fading channel can be equivalent to a nonfading one with
effective transmittance

ηeff = 〈√η〉2 (28)

and an extra noise

εfad = Var(
√

η)(μs + μa − 1). (29)

Then Alice and Bob’s data follow the linear relation

y = tx + ς, (30)

where t = √
ηeff and ς is the total noise term following a

Gaussian distribution with variance σ 2. The secret key rate
with finite-size effect can be equivalently parametrized as
originating from the fixed effective transmittance, which is
given by

K = �
[
K∞(tmin, σ

2
max

)− �
]
, (31)

where � is the proportion of data used for secret key rate
generation and � is related to the security of the privacy
amplification given by

� = 7

√
log2(2/ε̄)

�N
+ 2

�N
log2(1/εPA), (32)

where N is the block length, ε̄ is the smoothing parameter,
and εPA is the failure probability of the privacy amplification
procedure. The values of tmin and σ 2

max are calculated by the
maximum-likelihood estimators

t̂ =
∑N (1−�)

i=1 xiyi∑N (1−�)
i=1 x2

i

(33)

and

σ̂ 2 = 1

N (1 − �)

N (1−�)∑
i=1

(yi − t̂ xi ). (34)

Then tmin and σ 2
max have the results [64]

tmin ≈ t̂ − ZεPE/2

√
σ̂ 2

N (1 − �)(μs + μa − 1)
, (35)

σ 2
max ≈ σ̂ 2 + ZεPE/2

σ̂ 2
√

2√
N (1 − �)

, (36)
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where ZεPE/2 = √
2erf−1(1 − εPE) with the failing probability

of parameter estimation εPE and inverse error function erf−1.
Figure 9 depicts the finite-size secret key rates K vs trans-

mission distance z and the depth d for two types of oceans.
The parameters ε, εPE, and εPA are all set to 10−10 [64] and half
of the signals are used for parameter estimation, i.e., � = 0.5.
We find that the finite-size effect is more pronounced if fewer
signals are exchanged. When the block length is set to 106, the
protocol performs significantly worse than when N = 1010. In
general, at least 107 samples are required under the consider-
ation of Gaussian collective attacks [2]. As the block length
grows, more signals can be used for parameter estimation
and key extraction, and the secret key rate approaches the
asymptotic case. Note that we can optimize the proportion �

to further improve the secret key rate with N total samples
[67].

VII. CONCLUSION

We have established the ultimate limits for ocean quantum
communications. To describe the evolution of the quantum
state, we proposed an analytical method of ocean quantum
links, based on the elliptic deformation assumption, for de-
riving the PDT function for various depths and ocean types.
The proposed model shows the effect of seawater on quantum
light transmission, with a focus on absorption, scattering, tur-
bulence, and the ocean thermal noise caused by background
light. With the aid of PDT, we first derived the pure-loss
bound, i.e., PLOB bound, and then extended the results to the
case under thermal noise, including a thermal upper bound
and a thermal lower bound. In addition, the security of quan-
tum squeezed-state communication protocols was analyzed
with squeezed variance optimization. We showed the perfor-
mance of the system in terms of the secret key rate under a
Gaussian collective attack in both the asymptotic case and
finite-size regimes.

ACKNOWLEDGMENTS

We would like to thank Dr. D. Vasylyev and Qingquan
Peng for helpful discussions. This work was supported by
the National Natural Science Foundation of China (Grant
No. 61871407) and Natural Science Foundation of Hunan
Province, China (Grant No. 2021JJ30878).

APPENDIX A: Tabs AND Tsca IN EQ. (2)

Mathematically, Tabs has the form

Tabs = a0
f c f (d ) exp(−k f λ) + a0

hch(d ) exp(−khλ)

+ aw + a0
c

[
cc(d )/c0

c

]0.602
, (A1)

where c0
c = 1 mg/m3, aw represents the absorption due to

pure water in relation to wavelength λ (see Ref. [68]), a0
f =

35.959 m2/mg is the absorption coefficient of fulvic acid,
a0

h = 18.828 m2/mg is the absorption coefficient of humic
acid, and k f = 0.0189 nm−1 and kh = 0.011 05 nm−1 are the
exponential coefficient of fulvic acid and humic acid, respec-
tively. The concentration of fulvic acid at depth d is given by

c f (d ) = 1.740 98cc(d ) exp[0.123 27cc(d )] (A2)

and the concentration of humic acid has the form

ch(d ) = 0.193 34cc(d ) exp[0.123 43cc(d )], (A3)

where the concentration of chlorophyll a, cc(d ), is defined
as in Eq. (3). Here a0

c denotes the absorption coefficient of
chlorophyll a in relation to λ (see Ref. [69]).

The scattering factor Tsca has the form

Tsca = bw + b0
s cs(d ) + b0

l cl (d ), (A4)

where bw = 0.005 826(400/λ)4.322 is the pure water scatter-
ing coefficient, b0

s = 1.1513(400/λ)1.7 is the scattering coef-
ficient of small particulate matter, and b0

l = 0.3411(400/λ)0.3

is the scattering coefficient of large particulate matter. The
parameters cs(d ) and cl (d ) are the concentrations of small
particles and large particles, respectively, and have the
forms

cs(d ) = 0.017 39cc(d ) exp[0.116 31cc(d )], (A5)

cl (d ) = 0.762 84cc(d ) exp[0.030 92cc(d )]. (A6)

APPENDIX B: DERIVATION OF M AND C

For a Gaussian beam, the beam amplitude has the
form [35]

u(r, z = 0) =
√

2

πw2
0

exp

[
− 1

w2
0

|r|2 − ik

2 f0
|r|2

]
, (B1)

where w0 is the initial beam radius, r = (x, y)T is the vector
of transverse coordinates, k = 2π/λ is the wave number, z
denotes the distance from the transmitter plane, and f0 is
the wave-front radius. In the propagation path, the beam am-
plitude u(r, z) satisfies the paraxial approximation equation
given by [35]

2ik
∂u(r, z)

∂z
+ �ru(r, z) + 2k2δn(r, z)u(r, z) = 0, (B2)

where δn(r, z) is a small fluctuating part of the index of air
refraction. As for the arriving elliptic beam, its properties can
be expressed in terms of the second-order field correlation
function [34]

�2 = 〈u∗(r, z)u(r, z)〉, (B3)

together with the fourth-order field correlation function

�4 = 〈u∗(r1, z)u(r1, z)u∗(r2, z)u(r2, z)〉. (B4)

With the support of �2 and �4, the variance of beam centroid
position in M [cf. Eq. (13)] can be expressed as〈

�x2
0

〉 = 〈
�y2

0

〉 = ∫
R4

d2r1d2r2x1x2�4 (B5)

and the mean and covariance of the squared ellipse semiaxis
has the forms

〈
�w2

i

〉 = 4

[∫
R2

d2r x2�2 − 〈
x2

0

〉]
, (B6)

〈
�w2

i �w2
i

〉 = 8
∫
R4

d2r1d2r1�2
[
x2

1x2
2 (4δi j − 1)
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− x2
1y2

2(4δi j − 3)
]− 16

(∫
R2

d2r x2�2

)2

− 16[4δi j − 1]
〈
x2

0

〉2
. (B7)

To acquire �2 and �4, we need to solve the paraxial approx-
imation equation as shown in Eq. (B2) to get u(r, z). Based
on the Huygens-Kirchhoff method [43], the solution can be
expressed as

u(r, z) =
∫
R2

d2r′u(r′, z = 0)

×G0(r, r′; L, 0) exp[iS (r, r′; L, 0)], (B8)

where z = L is the transmission distance, u(r′, z = 0) is de-
fined in Eq. (B1), and G0(r, r′; L, 0) is given by

G0(r, r′; L, 0) = − ik

2πL
exp

(
ik|r − r′|2

2L

)
. (B9)

In addition, S (r, r′; L, 0) denotes the phase contribution from
the fluctuation of the index of ocean refraction over the prop-
agation path, which has the form

S (r, r′; L, 0) = k
∫ L

0
dξ δ

(
r
ξ

L
+ r′ L − ξ

L
, ξ

)
. (B10)

We find that the key step for u(r, z) is to derive the phase fluc-
tuation S (r, r′; L, 0). In the following derivation, we use the
specific form of correlation function, called structure function,
for phase fluctuation

Ds(r1 − r2, r′
1 − r′

2) = 〈[S (r1, r′
1; L, 0) − S (r2, r′

2; L, 0)]2〉.
(B11)

The structure function can be acquired by combining
Eq. (B10), Eq. (B11), and the ocean power spectrum in
Eq. (8). For a detailed derivation of Eq. (B11) refer to the
Supplemental Material of Ref. [21]. In the derivation, we use
two types of Gaussian integrals, which have the forms∫ ∞

−∞
dx exp(Ax2 + jBx), (B12)

∫ ∞

−∞
dx x2 exp(Ax2 + jBx), (B13)

where j2 = −1. Finally, the last two parameters of M can be
calculated as〈

�x2
0

〉 = 〈
�y2

0

〉 = 27.12ω4/5ξ−4/15k−1/15z37/15 (B14)

and the elements of C have the forms

〈�i〉 = ln

⎛
⎝ [

a1F3
1 − a2F2

1 + � + �−1
]2√[

1 + �2 + (a1F1 − a2)F2
1 �

]2 + a3F2

⎞
⎠,

(B15)

〈
��2

i

〉 = ln

(
1 + a4F2[

1 + �2 + (a1F1 − a2)F2
1 �

]2

)
, (B16)

〈��1��2〉 = ln

(
1 + a5F2�

−2[
a1F3

1 − a2F2
1 + � + �−1

]2

)
,

(B17)

where a1 = 131.4, a2 = 54.06, a3 = 248.99, a4 =
1009.81, a5 = 49.95, � = kw2

0/2z is the Fresnel
parameter, F1 := ω2/5ξ−2/15k7/15z11/15, and F2 :=
ω6/5ξ−2/5k7/5z11/5(1 + �2)�. Note that �i = ln(w2

i /w
2
0 )

with ellipse semiaxes wi.

APPENDIX C: MONTE CARLO METHOD OF THE
ELLIPTIC-BEAM MODEL IN THE OCEAN

TURBULENCE CHANNEL

Following the elements above, the transmittance η in the
Monte Carlo method can be estimated by

η = ηextη0 exp

{
−
[

r/a

Q
(

2
weff (φ−ϕ)

)
]Y[2/weff (φ−ϕ)]}

, (C1)

where the extinction-induced transmittance ηext is defined as
in Eq. (1), a is the receiver telescope radius, r = (x0, y0) is
the beam-centroid vector (see Fig. 2), φ is the beam-ellipse
orientation angle, ϕ is the angle between vector r and x axis,
and η0 denotes the transmittance without both extinction and
beam wandering effects, which can be expressed as

η0 = 1 − I0

(
a2

[
1

w2
1

− 1

w2
2

])
exp

[
−a2

(
1

w2
1

+ 1

w2
2

)]

− 2

{
1 − exp

[
−a2

2

(
1

w1
− 1

w2

)2]}

× exp

⎧⎨
⎩−

⎡
⎣ (w1+w2 )2

|w2
1−w2

2 |
Q
(

1
w1

− 1
w2

)
⎤
⎦

Y (1/w1−1/w2 )⎫⎬
⎭, (C2)

where w1 and w2 are ellipse semiaxes and Q(·) and Y (·)
are scale and shape functions, respectively. The two functions
have the forms

Q(x) =
[

ln

(
2

1 − exp
[− 1

2 a2x2
]

1 − exp[−a2x2]I0(a2x2)

)]−1/Y (x)

, (C3)

Y (x) = 2a2x2 exp(−a2x2)I1(a2x2)

1 − exp(−a2x2)I0(a2x2)

×
[

ln

(
2

1 − exp
[− 1

2 a2x2
]

1 − exp[−a2x2]I0(a2x2)

)]−1

, (C4)

where Ii(·) is the modified Bessel function of the ith order. In
Eq. (C1) weff (·) is the effective spot radius with deformation
effects given by

weff (x) = 2a

[
W
(

4a2

w1w2
exp

(
a2[1 + 2cos2(x)]

w2
1

+ a2[1 + 2sin2(x)]

w2
2

))]−1/2

, (C5)

where W (·) denotes the Lambert W function.

APPENDIX D: CALCULATION OF SECRET KEY RATE

The secret key rate in the asymptotic case is shown in
Eq. (27). The classical mutual information IAB can be obtained
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FIG. 10. (a) Secret key rate vs squeezed variance with various Var(
√

η). Here μopt denotes the optimal squeezed variance. The mean
transmittance is set to 0.5. (b) Optimal squeezed variance vs transmittance fluctuations under different mean transmittance. Refer to Table II
for the simulation parameters.

from the variances and the correlations between the modula-
tion data and measurement data and is given by

IAB = 1

2
log

μa

μa|b
, (D1)

where μa is the modulation variance, μa|b = μa − c2
ab/μb is

the conditional variance with the correlation c2
ab, and μb is the

variance of measured data. As mentioned below Eq. (26), the
variance of measured data in the ith subchannel has the form
μi

b = 1 + ηi(μs + μa − 1 + ε). Then the value of IAB in the
ith subchannel is given by

I i
AB = 1

2
log2

[
1 + ηiμa

1 + ηi(μs + ε − 1)

]
(D2)

and the overall mutual information in the fluctuating channel
has the form

IAB = 1

2
log2

[
1 + 〈√η〉2

μa

1 + 〈η〉(μs + μa + ε − 1) − 〈√η〉2
μa

]
.

(D3)

In addition, the Holevo bound χBE for reverse reconcilia-
tion is identified as [70]

χBE = g

(V1 − 1

2

)
+ g

(V2 − 1

2

)
− g

(V3 − 1

2

)
, (D4)

where g(x) := (x + 1) log2(x + 1) − x log2 x and V1,2,3 are
the symplectic eigenvalues derived from the covariance
matrices of the sharing quantum state. Here we use the
equivalent entanglement-based scheme instead of the prepare-
and-measure scheme in Fig. 7 for security analysis and
characterize the quantum state by a two-mode covariance
matrix [71]. The overall covariance matrix over the fluctuating
channel is the weighted average of the matrices in each sub-
channel [51]. The symplectic eigenvalues V1,2 can be derived
from the overall covariance matrix, which has the form

UAB =
[

ÃI C̃R

C̃R B̃I

]
, (D5)
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FIG. 11. (a) Optimal modulation variance versus transmission distance. From top to bottom, the squeezed variance is equal to 0.1, 0.5, 0.8,
and 1. (b) Secret key rate with optimal modulation variance. The gray surface represents a secret key rate of μa = 2 SNU.
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where I = diag(1, 1) and R = diag(1,−1). The submatrices
are given by

Ã =
[
μs + μa 0

0 1
μs

]
, (D6)

B̃ =
[

1 + 〈η〉(μs + μa − 1 + ε) 0
0 1 + 〈η〉(1−μs+μsε)

μs

]
,

(D7)

C̃ =
⎡
⎣〈√η〉√μa(μs + μa) 0

0 〈√η〉μa

μs
√

μa(μs+μa )

⎤
⎦. (D8)

Another symplectic eigenvalue V3 is derived from the covari-
ance matrix U xb

A after Bob’s homodyne measurement in X
quadratures. Specifically, the homodyne measurement gives
[72]

U xb
A = UA − σAB(XUBX )MPσ T

AB, (D9)

where UA, UB, and σAB are the submatrices of UAB, X =
diag(1, 0), and MP denotes the inverse on the range. There-
fore, U xb

A is given by

U xb
A =

⎡
⎣ (μs+μa )[1−〈√η〉2μa+〈η〉(μs+μa−1+ε)]

1+〈η〉(μs+μa−1+ε) 0

0 1
μs

⎤
⎦. (D10)

APPENDIX E: RELATIONSHIP BETWEEN Var(
√

η)
AND OPTIMAL SQUEEZED VARIANCE

The asymptotic key rate K∞ as a function of the squeezed
variance μs for different Var(

√
η) is shown in Fig. 10(a).

Here we consider the case without both background noise
and excess noise. We find that the squeezed variance should
be optimized to achieve the best performance in terms of
Var(

√
η). In Fig. 10(b) we plot the relationship between the

optimal μs and Var(
√

η) for different mean transmittance 〈η〉.
We find that smaller squeezed variance is always more ben-
eficial for a nonfluctuation channel. As fluctuation increases,
the optimal squeezed variance is shifted towards larger values,
corresponding to weaker squeezing.

APPENDIX F: OPTIMIZATION OF
MODULATION VARIANCE

In Fig. 11 the influence of the modulation variance μa on
the squeezed-state protocol is studied. Figure 11(a) shows the
optimal modulation variance μopt as a function of transmis-
sion distance z for various squeezed variance μs. Here we
present the results of the S6 ocean at a depth of d = 200 m as
an example. Weakly, moderately, and strongly squeezed states
correspond to μs = 0.1, 0.5, and 0.8, respectively [73]. We
find that the optimal modulation variance shows a downward
trend with the increasing distance. In addition, as the squeezed
variance goes up, the optimal modulation variance at a specific
transmission distance will be decreased. Figure 11(b) shows
the secret key rate of the proposed protocol with optimal
μa. We find that the modulation variance should be adjusted
for a higher secret key rate after the squeezed variance is
determined.
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