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We characterize a class of environmental noises that decrease the coherent properties of quantum channels by
introducing and analyzing the properties of dephasing superchannels. These are defined as superchannels that
affect only nonclassical properties of a quantum channel E , i.e., they leave invariant the transition probabilities
induced by E in the distinguished basis. We prove that such superchannels �C form a particular subclass of
Schur-product supermaps that act on the Jamiołkowski state J (E ) of a channel E via a Schur product, J ′ = J ◦ C.
We also find physical realizations of general �C through pre- and postprocessing employing dephasing channels
with memory, and we show that memory plays a nontrivial role for quantum systems of dimension d > 2.
Moreover, we prove that the coherence-generating power of a general quantum channel is a monotone under
dephasing superchannels. Finally, we analyze the effect that dephasing noise can have on a quantum channel
E by investigating the number of distinguishable channels that E can be mapped to by a family of dephasing
superchannels. More precisely, we upper-bound this number in terms of hypothesis-testing channel divergence
between E and its fully dephased version, and we also relate it to the robustness of coherence of E .
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I. INTRODUCTION

Quantum technologies bring the promise of revolutionis-
ing the way we process information by employing quantum
effects, such as superposition and entanglement, to overcome
the current limitations of information processors [1,2]. How-
ever, these quantum effects are extremely fragile to noise, and
any potential quantum advantage disappears in the presence of
uncontrolled interactions with the environment [3]. Thus, the
biggest obstacle on the way to constructing practical quantum
devices is to harness noise and decoherence effects. Although
a lot depends on the development of experimental techniques
to control quantum systems, theoretical investigations can
also bring progress in that field. One of the main approaches
to achieve this is to develop novel quantum error-correcting
codes that allow one to protect quantum information against
the deteriorating effects of noise [3–6]. A complementary
path, which we will follow in this paper, is to study the
mathematical structure of significant noise models in order
to better understand their properties and the way they affect
quantum information.

An essential class of noises is given by dephasing pro-
cesses [7,8], i.e., processes that deteriorate the coherence of
a quantum system in a distinguished basis, but do not affect
occupations. They can be interpreted as a purely quantum
noise because classical information processing is unaffected
by dephasings. A rigorous investigation of the capacity of
such noise channels, under the name of generalized dephasing
channels, was performed by Devetak and Shor [9]. Further
studies along these lines have been performed [10,11], since

due to the structural simplicity of dephasing channels, single-
letter formulas for their classical and quantum capacities
could be found. Additionally, the practical relevance of a
special class of dephasing channels was demonstrated in the
context of quantum privacy [12].

In all these previous works, the focus was on the effect
the dephasing noise has on the state of the system. Here, we
investigate the effect it has on quantum gates, i.e., we do not
ask how the state of the system gets affected, but how the
whole dynamics changes in the presence of a dephasing noise.
This forms an extension of previous works, since the effect
noise has on a quantum gate E cannot be simply captured by
pre- and postprocessing by some noise channels N1 and N2:

(1)

This is due to potential correlations between the input and
output states of the investigated gate E mediated by the en-
vironment, and so the general noisy version Ẽ of the gate E
has the following form:

(2)

A mathematical concept that can capture such a general
effect of noise on quantum gates is a quantum superchannel
[13], also called a supermap and used to describe dynam-
ics in generalized quantum theories [14]. In this article, we
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FIG. 1. Dephasing channels and superchannels. The set of quantum states �q (density matrices) is projected onto the set of classical
states �c (probability distributions) via the completely dephasing channel that removes all coherences in the distinguished basis, but keeps
the occupations unchanged. General dephasing channels are those maps between quantum states that affect coherences but do not change
occupations, i.e., they keep the classical (completely dephased) version of the state invariant. Analogously, the set of quantum channels Tq

(completely positive trace-preserving maps) is projected onto the set of classical channels Tc (stochastic matrices) via a completely dephasing
superchannel that removes all coherent properties of the channel but keeps the transition probabilities in the distinguished basis unchanged.
General dephasing superchannels form the subset of quantum superchannels Sq that affect the coherent properties of the channel but do not
change transition probabilities, i.e., they keep the classical (completely superdephased) version of the channel invariant.

introduce the notion of dephasing superchannels as an analog
of dephasing channels: such superchannels should not affect
the classical properties of the channel E they act upon, i.e., the
transition probabilities induced by E in the distinguished basis
should be invariant. We illustrate these concepts in Fig. 1.

We first describe the mathematical structure of dephas-
ing superchannels by relating them to a particular subset of
Schur-product maps on Jamiołkowski states. We also pro-
vide a physical realization of such superchannels in the form
of pre- and postprocessing employing dephasing channels
with memory, i.e., in the form of Eq. (2) with N1 and N2

being directly related to dephasing channels. Moreover, we
explicitly demonstrate that for a system’s dimension d � 3
this memory effect extends the set of possible dephasing
noises. After describing these basic properties of dephasing
superchannels, we focus on the effect they have on coherent
properties of quantum channels. We start by proving that the
cohering power of a quantum channel always decreases under
dephasing superchannels. We then proceed to analyze how
strongly a quantum channel can be perturbed by dephasing
superchannels. More precisely, we provide an upper bound
for the number of distinguishable (orthogonal) channels that a
given channel E can be steered to by dephasing noises, where
the bound is given by a particular coherence measure of a
channel E . Finally, we give a complementary perspective on
that problem, where coherence of a channel E can be seen
as a resource for distinguishing between various dephasing
superchannels.

The paper is organized as follows. In Sec. II, we recall
the basic properties of quantum states, channels, and super-
channels. We also revisit the concept of a dephasing channel
and relate it to the notion of a Schur-product superopera-
tor. Then, in Sec. III, we introduce dephasing superchannels,
present their mathematical structure, and discuss physical
realizations. The following Sec. IV contains the analysis
of the interplay between the action of dephasing super-
channels and the coherent properties of quantum channels.
Finally, Sec. V contains conclusions and an outlook for future
work.

II. SETTING THE SCENE

A. Quantum states, channels, and superchannels

A state of a d-dimensional quantum system is represented
by a density operator ρ acting on a d-dimensional Hilbert
space Hd . The set of density operators �q forms a subset
of bounded operators B(Hd ) that are positive-semidefinite,
ρ � 0, and have unit trace, Tr(ρ) = 1. General linear trans-
formations B(Hd ) → B(Hd ) are called superoperators, while
their subset Tq corresponding to physical evolutions of quan-
tum states is known as quantum channels. These model all
quantum gates and form a subset of superoperators that are
completely positive (CP) and trace-preserving (TP). The evo-
lution of a closed quantum system is described by a unitary
channel, U (·) = U (·)U †, with a unitary matrix U of size d .
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A natural representation of a quantum channel E is given
by a d2 × d2 matrix �(E ):

�(E )i j,kl := Tr(|i〉〈 j|E (|k〉〈l|)), (3)

with {|i〉}d
i=1 being some fixed basis of Hd . However, in this

paper we will mostly use the following three alternative rep-
resentations [15], each useful for a different reason. First,
through Stinespring dilation, every quantum channel can be
realized by a unitary dynamics of an extended system fol-
lowed by discarding the ancillary system:

E (·) = Tr2(U ((·) ⊗ |0〉〈0|)U †). (4)

This gives a clear physical interpretation of the action of E .
Second, one can employ the operator-sum representation of E ,
which is particularly useful for performing calculations, and
write

E (·) =
d∑

i=1

Ki(·)K†
i ,

d∑
i=1

K†
i Ki = 1, (5)

with {Ki}d
i=1 known as the Kraus operators and 1 denoting the

identity matrix of size d . Finally, through Choi-Jamiołkowski
isomorphism [16,17] one can represent a channel E via its
Jamiołkowski matrix J (E ):

J (E ) := E ⊗ I (|�〉〈�|), |�〉 := 1√
d

d∑
i=1

|ii〉, (6)

with I denoting the identity channel on the ancillary system of
dimension d . Crucially, the complete positivity of E is equiv-
alent to J (E ) � 0, while the trace-preserving condition gets
mapped to Tr1(J (E )) = 1/d . Moreover, the Jamiołkowski
state J (E ) (also called the dynamical matrix or the Choi matrix
when unnormalized) can be related to the matrix represen-
tation �(E ) via a reshuffling operation, which reorders the
entries of the matrix,

�(E )i j,kl = dJ (E )ik, jl . (7)

To investigate the effect of dephasing noise on quantum
gates, we will need appropriate maps describing transforma-
tions of quantum channels into quantum channels. General
linear maps between superoperators,

� : [B(Hd ) → B(Hd )] → [B(Hd ) → B(Hd )], (8)

will be called supermaps, while their subset Sq corresponding
to maps between quantum channels is known as superchan-
nels [13]. A general superchannel has a standard physical
realization in terms of pre- and postprocessing with a mem-
ory system as in Eq. (2). As with quantum channels, there
are several useful representations of quantum superchannels
[18], but in our work we will only employ the analog of the
Choi-Jamiołkowski representation. Denoting the superopera-
tor basis elements on which channels can be spanned by

E(i j),(kl )(·) = 〈k|(·)|l〉 |i〉〈 j|, (9)

the Jamiołkowski matrix of a general superchannel � is given
by

J� =
∑
i jkl

J (E(i j),(kl ) ) ⊗ J (�[E(i j),(kl )]). (10)

Moreover, the action of a superchannel � can be expressed
through its Jamiołkowski matrix as

J (�[E]) = d2Tr2(J�(1 ⊗ J (E )	)). (11)

B. Dephasing channels

To investigate dephasing superchannels, we first need to
recall the notion of dephasing channels and describe their
known properties.

Definition 1 (Dephasing channel). A quantum channel D
is called a dephasing channel if the occupations in the distin-
guished basis are invariant under D:

∀ ρ, |i〉 : 〈i|D(ρ)|i〉 = 〈i|ρ|i〉. (12)

The above definition has a clear physical interpretation.
However, in order to study dephasing channels and superchan-
nels, it is convenient to introduce the central mathematical
concept of a Schur product (also called a Hadamard product
or an entry-wise product) between operators for a fixed distin-
guished basis.

Definition 2 (Schur-product superoperator). A superoper-
ator DC is called a Schur product if for all X ∈ Bd we have

DC (X ) =
d∑

i, j=1

Xi jCi j |i〉〈 j| =: X ◦ C, (13)

where {|i〉}d
i=1 is the distinguished basis, C is a matrix of size

d , and ◦ denotes the Schur product in the distinguished basis.
We now have the following known result [19,20], which

specifies the properties of C for DC to be a quantum chan-
nel, and relates Schur-product superoperators with dephasing
channels.

Lemma 1 (Schur-product channels). A Schur-product su-
peroperator DC is a quantum channel if and only if C is
a correlation matrix (positive matrix with Cii = 1 for all i).
Moreover, D is a dephasing channel if and only if it is a
Schur-product channel.

Proof. Direct calculation shows that

J (DC ) = 1

d

∑
i j

Ci j |ii〉〈 j j|. (14)

Thus, the positivity of J (DC ) is equivalent to the positivity
of C, and the trace-preserving condition, Tr1(J (DC )) = 1/d ,
is equivalent to Cii = 1. Therefore, C is a correlation matrix,
and DC clearly preserves the diagonal. Now, assume that some
channel D preserves the diagonal. We then have

J (D)i j,i j = 1

d
〈i|D(| j〉〈 j|)|i〉 = δi j

d
. (15)

From the above and the positivity of J (D) we conclude that
J (D) has the form from Eq. (14), and thus is a Schur-product
channel. �

It is also known how to physically realize a general Schur-
product channel.

Lemma 2 (Physical realization of DC). Every Schur-
product channel can be written as a unitary processing with an
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ancillary system of dimension d as follows:

(16)

where

U (·) = U (·)U †, U =
d∑

i=1

|i〉〈i| ⊗ Ui, (17)

with {Ui} being arbitrary unitaries of size d . The relation
between C and these unitaries is given by

Ci j = 〈0|U †
j Ui|0〉. (18)

Proof. First, we assume the DC has the form from Eq. (16),
and we calculate

DC (ρ) =
∑

i j

Tr2(|i〉〈i|ρ| j〉〈 j| ⊗ Ui|0〉〈0|U †
j )

=
∑

i j

ρi jCi j |i〉〈 j| = ρ ◦ C. (19)

Next, assume DC is a Schur-product channel. Since C is a
correlation matrix it can be written as a Gram matrix:

Ci j = 〈ψ j |ψi〉 =: 〈0|U †
j Ui|0〉 (20)

for some choice of unitary matrices {Ui}. �
As a direct corollary of the above lemma, we can also

obtain the following Kraus representation of a general Schur-
product channel:

DC (·) =
d∑

k=1

Kk (·)K†
k , Kk =

d∑
i=1

〈k|ψi〉|i〉〈i|, (21)

where |ψi〉 := Ui|0〉.
Now, to see even more clearly the physical relevance of

Schur-product channels and to understand why they are called
dephasing channels, let us relate their action to the von Neu-
mann measurement scheme. Let {|i〉} denote the eigenstates
of the measured observable, and |φ〉 the state of the system
before the measurement. The von Neumann measurement
scheme then involves a measuring apparatus in the initial state
|0〉, its unitary interaction U with the system,

|φ〉 ⊗ |0〉 =
∑

i

〈i|φ〉|i〉 ⊗ |0〉 U−→
∑

i

〈i|φ〉 |i〉 ⊗ |ψi〉, (22)

and the final projective measurement of the apparatus. From
the above, it is clear that U has exactly the same form as the
unitary in Eq. (17), and so the action of the von Neumann
measurement on the measured system (after discarding the re-
sult) is given by a Schur-product channel DC . The correlation
matrix C describes, on the one hand, how much information
about the system is encoded in the apparatus, and on the other
how much it disturbs (dephases) the system.

Finally, let us note two important properties of Schur-
product channels in relation to resources of coherence and
entanglement. First, by noting that each Kraus operator of DC

maps an incoherent state into an (unnormalized) incoherent
state, we conclude that Schur-product channels belong to the

set of incoherent operations [21]. Actually, they also belong
to smaller subsets of incoherent operations, e.g., strictly in-
coherent operations and phase-covariant operations [22]. As
a result, all meaningful coherence measures cannot increase
under the action of Schur-product channels, which is yet an-
other way to justify denoting them as dephasing channels.
Second, by direct calculation, one can show that the chan-
nel complementary to DC is a measure and prepare (thus an
entanglement-breaking) channel:

Dc
C (ρ) := Tr1(U (ρ ⊗ |0〉〈0|)U †) =

d∑
i=1

ρii|ψi〉〈ψi|. (23)

III. STRUCTURE AND PROPERTIES OF DEPHASING
SUPERCHANNELS

The central object investigated in this paper is defined as
follows:

Definition 3 (Dephasing superchannel). A quantum super-
channel � is called a dephasing superchannel if the transition
probabilities in the distinguished basis are invariant under �:

∀ E, |i〉, | j〉 : 〈i|�[E](| j〉〈 j|)|i〉 = 〈i|E (| j〉〈 j|)|i〉. (24)

In what follows, we first identify the above class of super-
channels with a particular family of Schur-product supermaps
and present a physical realization of every such superchannel.
We also explain how noises generated by dephasing super-
channels are more general than the ones generated by pre-
and postprocessing with dephasing channels. We finish this
section by describing the particularly simple effect that de-
phasing superchannels have on dephasing channels.

A. Equivalence with Schur-product superchannels

In analogy to Schur-product superoperators, one can intro-
duce the concept of Schur-product supermaps.

Definition 4 (Schur-product supermaps). A supermap �C

is called a Schur product if for all X ∈ [B(Hd ) → B(Hd )] we
have

J (�C[X ]) =
∑
i jkl

J (X )i j,klCi j,kl |i j〉〈kl| = J (X ) ◦ C, (25)

where J (X ) is the Jamiołkowski operator of X , {|i j〉} is the
distinguished basis, C is a matrix of size d2, and ◦ denotes a
Schur product in the distinguished basis.

The above definition does not guarantee that the output of
�C will be completely positive and trace-preserving. Thus, a
constraint on C is given in the following proposition, which
also establishes an equivalence between dephasing superchan-
nels and Schur-product superchannels.

Proposition 1 (Schur-product superchannels). A Schur-
product supermap �C is a quantum superchannel if and only
if C is a correlation matrix (positive matrix with all diagonal
entries equal to 1) of the following form:

C =

⎡
⎢⎢⎣

C11 C12 · · · C1d

C21 C11 · · · C2d
...

...
. . .

...

Cd1 Cd2 · · · C11

⎤
⎥⎥⎦, (26)
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where Ci j are d × d matrices and C11 is a correlation matrix.
Moreover, � is a dephasing superchannel if and only if it is a
Schur-product superchannel.

Proof. We start by noting that for any correlation matrix
C (positive-semidefinite with ones on diagonal) of the form
from Eq. (26), and any Jamiołkowski operator J (E ) of a CPTP
map E , J (E ) ◦ C is also a Jamiołkowski operator of a CPTP
map. The above statement can be verified by direct inspection,
since the Schur product of positive-semidefinite matrices is
also positive-semidefinite, and the partial trace over the first
subsystem yields

Tr1(J (E ) ◦ C) = Tr1(J (E )) ◦ C11 = 1/d. (27)

Now, we will assume that a Schur-product supermap �C

is a quantum superchannel, and we will show that the matrix
C defining it has the form from Eq. (26). First, we employ
Eq. (10) to write the Jamiołkowski operator of �C as

J�C = 1

d

∑
i jkl

|ik〉〈 jl| ⊗ J (E(i j),(kl ) ) ◦ C

= 1

d2

∑
i jkl

Cik, jl |ik〉〈 jl| ⊗ |ik〉〈 jl|. (28)

Note that from our assumption and the results of Refs. [13,18],
the matrix J�C is positive-semidefinite and therefore C must
be positive-semidefinite as well.

Next, we will use the TP-preserving property of superchan-
nels to show that C is not only positive-semidefinite, but it also
has the desired form from Eq. (26). The TP condition for the
output channel is equivalent to

δkl

d
=

∑
i

〈ik|J (E ) ◦ C|il〉 =
∑

i

Cik,il J (E )ik,il . (29)

As the above equality must hold for all channels E , we must
have that Cik,il does not depend on index i, and that the diag-
onal elements Cik,ik must be equal to 1. This can be proven
more explicitly by contradiction. Assume that for some j, k
we have Cjk, jk �= 1, and consider a quantum channel E (0) with
a Jamiołkowski operator

dJ (E (0) ) = | j〉〈 j| ⊗ 1. (30)

We then see that∑
i

〈ik|J (E (0) ) ◦ C|ik〉 = Cjk, jkJ (E (0) ) jk, jk �= 1

d
, (31)

which contradicts our assumption of the TP-preserving prop-
erty. Similarly, the equality of the off-diagonal elements Cik,il

for all i can also be proved by contradiction. Assume that for
some i0, i1 and k �= l , we have Ci0k,i0l �= Ci1k,i1l . Now, consider
a channel E (1) with the Jamiołkowski matrix given by

dJ (E (1) ) =1 + (|i0〉〈i0| − |i1〉〈i1|) ⊗ (|k〉〈l| + |l〉〈k|). (32)

To verify that the above matrix is a Jamiołkowski matrix of a
CPTP map is straightforward. We then have∑

i

〈ik|J (E (1) ) ◦ C|il〉 = Ci0k,i0l − Ci1k,i1l

d
�= 0, (33)

and so �C does not preserve the trace-preserving property,
meaning that the assumption was wrong. We conclude that

�C is a superchannel if and only if the matrix C has the form
displayed in Eq. (26).

Finally, we turn to proving that preserving the diagonal of
the Jamiołkowski state is equivalent to being a Schur-product
superchannel. To keep the diagonal elements of a matrix J (E )
unchanged by �, the diagonal blocks of J� should be in the
following form:

J�
(ik) := (〈ik| ⊗ 1) J� (|ik〉 ⊗ 1) = 1

d2
|ik〉〈ik|. (34)

To see this, we will use Eq. (11) and note

〈ik|J (�[E])|ik〉 = d2〈ik|Tr2( J� (1 ⊗ J (E )	))|ik〉
= d2Tr(J�

(ik)J (E )	). (35)

Our assumption was that diagonal elements of the
Jamiołkowski matrix must remain unchanged under the
action of a superchannel �, which is equivalent to the fact
that for all channels E we have

d2Tr(J�
(ik)J (E )	) = 〈ik|J (E )|ik〉. (36)

This gives us that the blocks J�
(ik) must be in the form pre-

sented in Eq. (34).
So far we have proven that the condition for invariant

diagonal elements of the Jamiołkowski matrix of a channel
under the action of superchannel � gives us the full diagonal
of the Jamiołkowski matrix of the superchannel, i.e.,

〈iki′k′|J�|iki′k′〉 = δii′δkk′

d2
. (37)

Now, we will use the fact that the Jamiołkowski matrix of a
superchannel must be positive-semidefinite [18]. For a non-
negative matrix A, one has

|Ai j |2 � AiiA j j . (38)

Since in our case we have a lot of zeros on the diagonal,
the elements of the Jamiołkowski matrix of a superchannel
� must satisfy the following inequalities:

|〈iki′k′|J�| jl j′l ′〉|2 � δii′δkk′δ j j′δll ′

d2
. (39)

The above implies that the Jamiołkowski matrix of a super-
channel � can be written as a sum defined in Eq. (28). �

B. Physical realization

The following proposition specifies the physical realization
of every Schur-product superchannel.

Proposition 2 (Physical realization of �C). Every Schur-
product superchannel can be written as a unitary pre- and
postprocessing with an ancillary system of dimension d2 as
follows:

(40)
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where

U (·) = U (·)U †, U =
d∑

i=1

|i〉〈i| ⊗ Ui, (41a)

V (·) = V (·)V †, V =
d∑

i=1

|i〉〈i| ⊗ Vi, (41b)

with {Ui}, {Vi} being arbitrary unitaries of size d2. The relation
between C and these unitaries is given by

Cik, jl = 〈0|U †
l V †

j ViUk|0〉. (42)

Proof. First, we assume the �C[E] has the form from
Eq. (40), and we calculate

�C[E](|k〉〈l|) = Tr2(V ◦ (E ⊗ I ) ◦ U [|k〉〈l| ⊗ |0〉〈0|])
=

∑
i jmn

|i〉〈i|E (|m〉〈m|k〉〈l|n〉〈n|)| j〉〈 j|

× Tr(ViUm|0〉〈0|U †
n V †

j )

=
∑

i j

〈i|E (|k〉〈l|)| j〉〈0|U †
l V †

j ViUk|0〉|i〉〈 j|

= d
∑

i j

J (E )ik, jlCik, jl |i〉〈 j|. (43)

Since

J (�C[E]) = 1

d

∑
kl

�C[E](|k〉〈l|) ⊗ |k〉〈l|, (44)

we get

J (�C[E]) =
∑
i jkl

Jik, jl (E )Cik, jl |ik〉〈 jl| = J (E ) ◦ C. (45)

Moreover, by direct inspection one can see that C defined by
Eq. (42) is a correlation matrix with a block structure as in
Eq. (26). Thus, by Proposition 1, the supermap �C is a Schur-
product superchannel.

Next, we assume that �C is a Schur-product superchannel.
From Proposition 1, we know that the matrix C has equal
diagonal submatrices, i.e.,

Cik,il = C1k,1l . (46)

On the other hand, since C is a correlation matrix, it can be
written as a Gram matrix:

Cik, jl = 〈ξ jl |ξik〉. (47)

We thus have

〈ξil |ξik〉 = 〈ξ1l |ξ1k〉. (48)

Now, it is well known [23] that if two collections of vectors
have the same Gram matrix, then the sets are related by a
unitary transformation. Therefore,

|ξik〉 = Vi|ξ1k〉 (49)

for some unitary matrices {Vi}. If we denote

|ξ1k〉 = Uk|0〉 (50)

with some unitary matrices {Uk}, then we obtain

Cik, jl = 〈ξ1l |V †
j Vi|ξ1k〉 = 〈0|U †

l V †
j ViUk|0〉. (51)

Therefore, �C can be written in the form from Eq. (40). �

C. Comparison with dephasing pre- and postprocessing

By comparing Eq. (40) with Eq. (16), we see that a de-
phasing superchannel acts as a generalization of pre- and
postprocessing with dephasing channels that employs mem-
ory. More precisely, a dephasing channel simply correlates the
system with an environment according to Eq. (16), and then
the environment is discarded. But if instead it is kept intact,
reused again after the action of a channel E and only then
discarded, the system would undergo evolution described by
�C[E]. The crucial question then is as follows: how many
more general transformations can we obtain due to these
memory effects? In other words, we want to ask how much
larger is the space of dephasing superchannels as compared
to superchannels formed from pre- and postprocessing by
dephasing channels.

It is a straightforward calculation to show that pre- and
postprocessing by dephasing channels DC(1) and DC(2) has
the following effect on the Jamiołkowski state of a general
channel E :

J (DC(2) ◦ E ◦ DC(1) ) = J (E ) ◦ (C(2) ⊗ C(1) ). (52)

Note that the symbol ◦ on the left-hand side of the above
equality denotes concatenation of channels, while on the right-
hand side it denotes the Schur product. We see that while a
general dephasing superchannel is described by a correlation
matrix C from Eq. (26), the correlation matrices that we can
obtain by pre- and postprocessing without employing a mem-
ory are of the product form. To address our question, we thus
need to understand correlations carried by the bipartite quan-
tum state associated with the matrix C defined in Eq. (26).

Let us first note that if this state is classically correlated, so
the correlation matrix C can be written in the form

C =
∑

i

piC
(2,i) ⊗ C(1,i), (53)

for some probability distribution p, then dephasing superchan-
nels do not generate many more general transformations than
dephasing pre- and postprocessing without memory. This is
because in this case they only correspond to probabilistic
mixtures of various dephasing pre- and postprocessing, i.e.,
they can be simulated by a classical coin toss followed by
a dephasing pre- and postprocessing dependent on the result
of the coin toss. Thus, dephasing superchannels can induce
truly more general transformations only when the correlation
matrix C corresponds to an entangled state.

Interestingly, in the simplest case of a qubit system, this
is not the case and the correlation matrix C can only be clas-
sically correlated. To see this, note that a general correlation
matrix C of the form from Eq. (26) is given by

C =
(

C0 C1

C†
1 C0

)
, (54)
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where C0 and C1 are 2 × 2 matrices. Now, a unitary � given
in the same block form by

� =
(

0 1
1 0

)
(55)

transforms C into

C′ := �C�† =
(

C0 C†
1

C1 C0

)
. (56)

At the same time, the partial transpose of C is given by

C	2 = C′∗, (57)

and so its spectrum is the complex conjugate of the spectrum
of C′, which in turn is the same as the spectrum of C. Thus,
C has a positive partial transpose, and by the Peres-Horodecki
criterion [24,25] we know that C is not entangled. We can thus
conclude that every dephasing superchannel for qubit systems
can be realized by a probabilistic mixture of dephasing pre-
and postprocessing.

However, already in dimension d = 3, dephasing super-
channels provide more general transformations. A simple
example is given by a superchannel with the corresponding
correlation matrix given by

C =
⎛
⎝ 1 A B

A† 1 0
B† 0 1

⎞
⎠, (58)

where 1 and 0 denote identity and zero matrices of size 3, and

A =
⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠, B =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠. (59)

The above matrix C is of the form (26), and it can be easily
verified that its partial transpose has a negative eigenvalue 1 −√

2. Thus, by the Peres-Horodecki criterion, C corresponds to
an entangled state and so �C cannot be obtained as a classical
mixture of dephasing pre- and postprocessing.

D. Action on Schur-product channels

The action of a Schur-product superchannel �C on a Schur-
product channel DC′ is particularly simple and intuitive. We
have

�C[DC′](ρ) =
∑
i jkl

ρkl |i〉〈i|�C[DC′](|k〉〈l|)| j〉〈 j|

= d
∑
i jkl

ρkl J (�C[DC′])ik, jl |i〉〈 j|

= d
∑
i jkl

ρkl [J (DC′ ) ◦ C]ik, jl |i〉〈 j|. (60)

Now, since

J (DC′ ) = 1

d

∑
i j

C′
i j |ii〉〈 j j|, (61)

we get

J (DC′ ) ◦ C = 1

d

∑
i j

C′
i jCii, j j |ii〉〈 j j|

= 1

d

∑
i j

(C′ ◦ C̃)i j |ii〉〈 j j|, (62)

where

C̃i j := Cii, j j (63)

is a correlation matrix due to Eq. (42). We thus arrive at

�C[DC′](ρ) =
∑

i j

ρi j (C
′ ◦ C̃)i j |i〉〈 j| = ρ ◦ (C′ ◦ C̃)

= DC′◦C̃ (ρ) = DC̃ (DC′ (ρ)). (64)

Therefore, the action of �C on a Schur-product channel
DC′ is equivalent to postprocessing (or preprocessing, since
the considered channels commute) by another Schur-product
channel DC̃ . In this particular case, no memory is needed
and the dephasing superchannel acts simply as a dephasing
channel. Thus, �C maps a dephasing channel DC′ to a more
dephasing channel, i.e., the damping of coherence between
states i and j originally described by |C′

i j | becomes |C′
i jC̃i j | �

|C′
i j |. Moreover, all quantities that satisfy the data-processing

inequality [15] are monotones, e.g., the capacity of a dephas-
ing channel cannot increase under a dephasing superchannel.

IV. DEPHASING SUPERCHANNELS AND COHERENCE
OF CHANNELS

In this section, we will discuss the interplay between de-
phasing superchannels and coherence resources of quantum
channels that they act upon. We will first present a short proof
that the ability of a channel to create coherence deteriorates
under the action of a dephasing superchannel. Then, we will
explain that the power of dephasing superchannels to affect
a quantum channel E (measured by the size of the orbit of
channels that E can be sent to by dephasing superchannels)
is bounded by the coherence content of E . Finally, we will
explain how coherence of a quantum channel E can be used
as a resource to distinguish between various dephasing super-
channels.

A. Monotonicity of coherence-generating power

In Sec. II B we mentioned that Schur-product channels
cannot increase any meaningful measure of state’s coherence
C [21,26], such as the l1-norm of coherence or the relative
entropy of coherence. Here, we will prove an equivalent result
for Schur-product superchannels. Namely, we will show that
they cannot increase the cohering power Cg [27], which is a
measure quantifying the ability of a quantum channel E to
create coherence:

Cg(E ) := max
k

{C(E (|k〉〈k|))}, (65)

where C is any coherence measure satisfying the basic axioms
[21].

To achieve this, we will look at the action of a processed
channel �C[E] on the distinguished diagonal states |k〉〈k|.
Employing the representation from Proposition 2, we have

�C[E](|k〉〈k|) =
∑

i j

〈i|E (|k〉〈k|)| j〉〈0|U †
k V †

j ViUk|0〉|i〉〈 j|

=
∑

i j

〈i|E (|k〉〈k|)| j〉C̃i j |i〉〈 j|

= E (|k〉〈k|) ◦ C̃ = DC̃ (E (|k〉〈k|)), (66)

where we have introduced a correlation matrix C̃.
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It is now straightforward to show that resource-generating
power is a monotone under �C :

Cg(�C[E]) := max
k

{C(�C[E](|k〉〈k|))}
= max

k
{C(DC̃ (E (|k〉〈k|)))}

�max
k

{C(E (|k〉〈k|))} = Cg(E ), (67)

where the inequality comes from the fact that Schur-product
channels are incoherent operations and thus cannot increase
any meaningful measure of coherence.

B. Power of dephasing superchannels

We now proceed to investigate how strongly a quantum
gate, described by a channel E , can be affected by a dephasing
noise described by a family of dephasing superchannels. Intu-
itively, one expects that dephasings can affect a more coherent
gate more strongly. For example, in the extreme case of a
classical channel,

ET (·) :=
∑

i j

Ti j〈 j|(·)| j〉|i〉〈i|, (68)

with T being a stochastic matrix, one has �C[E] = E inde-
pendently of C. Thus, classical channels are unaffected by
a dephasing noise. On the other hand, arguably the most
coherent qubit channel given by

E (·) = H (·)H†, H = 1√
2

(
1 1
1 −1

)
(69)

can be sent to a perfectly distinguishable channel E ′ by �C

given by

C =
(

I −I
−I I

)
, I :=

(
1 1
1 1

)
. (70)

Here, perfectly distinguishable means that there exists an
input state |0〉〈0| that is mapped by E and E ′ to two or-
thogonal quantum states, |+〉〈+| and |−〉〈−|, which can be
distinguished in an experiment with probability equal to 1.

One way to quantify the effect that a dephasing noise can
have on a channel E is to find “how far” a quantum channel E
can be sent via a dephasing superchannel. In other words, we
wish to evaluate the supremum,

sup
C

D(E, �C[E]), (71)

with D being some distance measure on the set of channels,
e.g., the diamond norm distance. Here, we will investigate
a more coarse-grained notion: we will look for the maxi-
mal number of distinguishable channels that can be obtained
from a given channel E via dephasing superchannels. In other
words, we want to find the size of the error space, i.e., the size
of the image of E under the action of all possible dephasing
superchannels. More formally, our aim is to upper-bound the
number M(E, ε), which is the maximal number of channels

Em := �Cm [E] (72)

that can be obtained from a given channel E via dephasing
superchannels �Cm and that are distinguishable with average

probability 1 − ε. Recall that a general scheme for distin-
guishing between M channels acting on dA-dimensional states
is composed of an input state ρAB on an extended space
HdA ⊗ HdB , together with a decoding measurement described
by POVM elements {EAB

m }M
m=1. The average probability of

distinguishing between the channels is then given by

1 − ε = 1

M

M∑
m=1

Tr
(
EAB

m (EA
m ⊗ IB)(ρAB)

)
. (73)

Optimizing the above over all input states ρAB and measure-
ments {EAB

m }M
m=1 yields the optimal distinguishing probability.

Note that to achieve optimal probability, it is enough to choose
dB = dA; however, for technical reasons we choose it to be
dB = MdA.

We start by introducing the notation for a completely de-
phasing channel


(·) =
∑

i

〈i|(·)|i〉|i〉〈i| (74)

and for the classical (completely dephased) version of a chan-
nel E :

E
 := 
 ◦ E ◦ 
. (75)

We note that all dephasing superchannels �C satisfy

�C (E
) = E
, (76a)


 ◦ �C (E ) ◦ 
 = E
, (76b)

for all channels E . We also introduce the following two
classical-quantum states:

τRAB := 1

M

M∑
m=1

|m〉〈m|R ⊗ (
EA

m ⊗ IB
)
(ρAB), (77a)

ζ RAB := 1

M

M∑
m=1

|m〉〈m|R ⊗ (
EA


 ⊗ IB
)
(ρAB), (77b)

for some input state ρAB, and we recall the notion of hypothe-
sis testing relative entropy [28–30]:

Dε
H (ρ‖σ ) := − log2 inf{Tr(Qσ ) | 0 � Q � 1,

Tr(Qρ) � 1 − ε}. (78)

Now, let us assume that there exists a choice of superchan-
nels {�Cm}M

m=1 such that M resulting channels Em = �Cm (E )
are distinguishable with average probability larger than 1 − ε.
This means that there exist an input state ρAB and a POVM
measurement {EAB

m }M
m=1 such that

1

M

M∑
m=1

Tr
(
EAB

m

(
EA

m ⊗ IB
)
(ρAB)

)
� 1 − ε. (79)
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We can thus introduce an operator Q,

Q :=
M∑

m=1

|m〉〈m|R ⊗ EAB
m , (80)

which satisfies 0 � Q � 1 and

Tr(QτRAB) � 1 − ε. (81)

As a result, we have the following bound:

Dε
H (τRAB‖ζ RAB) � − log2(Qζ RAB) = log2 M. (82)

To get a state-independent bound, we optimize over all input
states ρAB to arrive at

log2[M(E, ε)] � sup
ρAB

Dε
H (τRAB‖ζ RAB). (83)

The next step is to bring τRAB and ζ RAB to a more useful
form. For that we need to introduce an auxiliary state

σ RAB := 1

M

M∑
m=1

|m〉〈m|R ⊗ ρAB (84)

and a superoperator

Mm(·) = |m〉〈m|(·)|m〉〈m|. (85)

With a slight abuse of notation, we will also use Mm to denote
a supermap that is acting as a postprocessing via Mm, i.e.,

Mm[E] := Mm ◦ E . We now have the following:

τRAB =
M∑

m=1

(
MR

m ⊗ EA
m ⊗ IB

)
(σ RAB)

=
(

M∑
m=1

MR
m ⊗ �A

m ⊗ IB

)
[IR ⊗ EA ⊗ IB](σ RAB),

(86)

where the first parentheses contains a superchannel that acts
on the channel in the second parentheses. Similarly, we also
have

ζ RAB =
M∑

m=1

(
MR

m ⊗ EA

 ⊗ IB

)
(σ RAB)

=
M∑

m=1

(
MR

m ⊗ �m
[
EA




] ⊗ IB
)
(σ RAB)

=
(

M∑
m=1

MR
m ⊗ �A

m ⊗ IB

)[
IR ⊗ EA


 ⊗ IB
]
(σ RAB),

(87)

With the following short-hand notation:

�RA :=
M∑

m=1

MR
m ⊗ �A

m, (88a)

ERA := IR ⊗ EA, (88b)

ERA

 := IR ⊗ EA


, (88c)

we then have

log2[M(E, ε)] � sup
ρAB

Dε
H

(
�RA[ERA] ⊗ IB(σ RAB)‖�RA

[
ERA




] ⊗ IB(σ RAB)
)

� sup
σ RAB

Dε
H

(
�RA[ERA] ⊗ IB(σ RAB)‖�RA

[
ERA




] ⊗ IB(σ RAB)
)

=: CDε
H

(
�RA[ERA]‖�RA

[
ERA




])
, (89)

where CD is the channel divergence introduced in Ref. [18] for
any state divergence measure D:

C(E1‖E2) = sup
ρAB

D
(
(EA

1 ⊗ IB)(ρAB)‖(EA
2 ⊗ IB

)
(ρAB)

)
. (90)

Importantly, channel divergences satisfy data-processing
inequality, and so

log2[M(E, ε)] � CDε
H

(
ERA‖ERA




) = CDε
H

(E‖E
). (91)

We thus conclude that the effect that dephasing noises can
have on a given quantum gate E , as quantified by M(E, ε),
is upper-bounded by a channel coherence measure related to
hypothesis testing relative entropy:

M(E, ε) � 2CDε
H

(E‖E
 )
. (92)

C. Distinguishing dephasing superchannels

To complement the discussion from the previous section,
here we explain how the sensitivity to dephasing noises of
a coherent channel can be considered as a resource for dis-
tinguishing dephasing superchannels. As already observed,
classical channels are invariant under dephasing superchan-
nels, and so they cannot be used to distinguish between any
two dephasing noises. On the other hand, a coherent channel is
transformed nontrivially, so the resulting channel should carry
some information about the parameters of the corresponding
dephasing superchannel, and hence should be more helpful for
noise metrology.

Here we will show how coherence of a channel E quanti-
fied by generalized robustness of coherence upper-bounds the
number of dephasing superchannels that can be distinguished
using E . More precisely, given a channel E and a set of de-
phasing superchannels {�Ci}, a general strategy to distinguish
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between the elements of this set is to apply the processed
channel �Ci [E] to half of a bipartite (possibly entangled) state
ρAB and to perform a measurement on the resulting state.
The optimal success probability of distinguishing between M
uniformly sampled dephasing superchannels is then given by

psucc({�Ci}, E )

:= max
ρAB,{EAB

i }
1

M

M∑
i=1

Tr
(
EAB

i (�Ci [EA] ⊗ IB)(ρAB)
)
, (93)

where ρAB is maximized over all bipartite input states and
{EAB

i } over all joint decoding POVM elements. In what fol-
lows, our aim will be to upper-bound the maximum number
M(E, ε) of dephasing superchannels distinguishable using E
with probability 1 − ε.

To achieve the above goal, we will use the concept of
robustness of coherence, originally introduced as a measure
of coherence for quantum states in Ref. [31], and recently
generalized to quantify the coherence of channels in Ref. [32].
First, let us abuse the notation slightly and denote by Tc the
set of classical channels ET defined in Eq. (68), i.e., with
Jamiołkowski states J (ET ) given by

J (ET ) = 1

d

∑
i, j

Ti j |i〉〈i| ⊗ | j〉〈 j|, (94)

which are incoherent in the distinguished basis. Note that the
set Tc is convex and closed. Now, the generalized robustness
of coherence of a channel E is defined as

R(E ) := min
F∈Tq

{
r � 0 | E + rF

1 + r
∈ Tc

}
, (95)

where the minimum is taken over the set of all quantum
channels Tq. The generalized robustness R(E ) quantifies the
minimum amount of noise a channel E can withstand before
becoming classical.

Next, for a given channel E let us denote by F∗ the channel
achieving the minimum in the definition of robustness, and by
Ẽ the resulting classical channel, i.e.,

Ẽ := E + R(E )F∗
1 + R(E )

∈ Tc. (96)

Inverting the above to get the expression for E , the following
then holds for any bipartite state ρ and any measurement {Ei}
(to simplify the notation, we drop the superscripts denoting
subsystems):

M∑
i=1

Tr(Ei(�Ci [E] ⊗ I )(ρ))

=
M∑

i=1

Tr(Ei(�Ci{[1 + R(E )]Ẽ − R(E )F∗} ⊗ I )(ρ))

� [1 + R(E )]
M∑

i=1

Tr(Ei(�Ci [Ẽ] ⊗ I )(ρ))

= [1 + R(E )]
M∑

i=1

Tr(Ei(Ẽ ⊗ I )(ρ))

= [1 + R(E )], (97)

where we used the fact that a classical channel Ẽ is invariant
under dephasing superchannels �Ci . Using the above together
with Eq. (93) and denoting the success probability by (1 − ε),
we arrive at the upper bound for the number M(E, ε):

M(E, ε) � 1 + R(E )

1 − ε
. (98)

Note that the right-hand side of Eq. (98) is a function of
the generalized robustness, and so it determines an efficiently
computable upper bound for M(E, ε) [32]. Moreover, the ob-
tained bound quantitatively demonstrates the intuitive claim
that a coherence content of E is a necessary resource for
distinguishing dephasing noises.

V. CONCLUSIONS AND OUTLOOK

In this work, we introduced the most natural class of
superchannels that model dephasing noises acting on quan-
tum gates. We provided their mathematical representation and
physical realization analogous to those of dephasing channels,
but we also proved that they describe a wider class of noises.
Furthermore, we applied our characterization to determine
several effects of dephasing noises on quantum channels, such
as the decrease in coherence-generating power or the max-
imum possible disturbance. Additionally, we demonstrated
that our formalism allows one to exploit the sensitivity of
coherent gates to dephasing noises as a resource in the field
of noise metrology.

The results presented here should form a timely contribu-
tion to the development of quantum technologies, where the
control of noise remains a significant challenge. Moreover,
our formalism could be of interest for current research lines on
superchannels with memory in time, or parallel correlations
[33]. The simplicity of the model studied here could be help-
ful to develop a tractable case study in the above-mentioned
research, with concrete implementations in diamond nitrogen-
vacancy centers [34] and efficient quantum error-correction
codes [35]. Among the quantum technologies that we expect
to take advantage of in the current contribution, one could
mention quantum heat engines [36] and the quantum inter-
net [37]. As with any quantum communication network, the
quantum internet requires calibration of the noise between
nodes, but in the early stages of development it might lack
local memories and access to quantum error correction. More
precisely, in the above-mentioned early stages of the network,
our formalism would provide a tool to estimate and model the
errors in coherent operations between nodes.

Another research area that could benefit from the results
presented in this work is the theory of channel resources
[38–43]. Our results imply that dephasing superchannels are
good candidates for free operations in resource theories of
coherence-generating power [39,40]. As a consequence, they
could be employed to compute lower bounds on channel
distillation rates in these theories [39]. Finally, we would
like to emphasize that our work lays the foundation for sim-
ilar investigations to characterize different classes of gate
noises. Some natural analyses of noise along parallel lines
should include amplitude-damping and leakage or random
unitary errors (especially the uniform depolarization). The
extensions of the latter to the context of quantum gates could
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bring significant progress in the theory of quantum control
of noise.
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