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Non-Gaussian operations in measurement-device-independent quantum key distribution
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Non-Gaussian operations in continuous variable (CV) quantum key distribution (QKD) have been limited
to photon subtraction on squeezed vacuum states only. This is mainly due to the ease of calculating the
covariance matrix representation of such states. In this paper we study the effects of general non-Gaussian
operations corresponding to photon addition, catalysis, and subtraction on squeezed coherent states on CV
measurement-device-independent (MDI) QKD. We find that non-Gaussianity coupled with coherence can yield
significantly longer transmission distances than without. Particularly we observe that zero photon catalysis on
the two-mode squeezed coherent state (TMSC) is an optimal choice for CV MDI QKD, while single photon
subtraction is also a good candidate; both of them offer nearly 70 km of transmission distances. We also derive a
single generalized covariance matrix for the aforementioned states which will be useful in several other aspects
of CV quantum information processing.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is one of the most
widely known and commercially available applications of
quantum information theory. It provides a measure of security
that is not possible to achieve using classical key distribution
schemes. While the latter protocols are traditionally deemed
secure by virtue of some computationally hard to solve math-
ematical problem, the security of the former is based on a
principle of nature like the Heisenberg uncertainity princi-
ple [3,4], the no-cloning theorem [5–8], and Bell’s theorem
[9–11]. Ideally, QKD protocols are unconditionally secure
[12–15], but noise in the measurement and preparation de-
vices may cause the security to be entirely compromised. For
this purpose certain assumptions and pre-conditions have to be
imposed on all the devices available to the parties, Alice and
Bob. However, in order for the protocol to be practical, it is
desirable for the assumptions to be minimal. For example, the
standard BB84 protocol assumes that the parties share a single
qubit state and have access to dichotomic measurements only.

Among all, measurement device independent (MDI) is a
prominent class of QKD protocols [16–22], based on entan-
glement swapping, which work under the assumption that
the state preparation devices with Alice and Bob are well
characterized such that an eavesdropper, Eve, has no access to
any side channels, while the measurement devices are unchar-
acterized and untrusted. With this, continuous variable (CV)
MDI QKD protocols [23–28] further boast of longer transmis-
sion distances that can encompass a small metropolitan city,
in comparison to the discrete variable counterparts [29,30].
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While CV MDI QKD has been well studied using Gaus-
sian states like the two-mode squeezed vacuum (TMSV), few
recent studies have shown that non-Gaussianity [31–39] and
coherence [40] can have a major impact on maximizing the
transmission distances. It might be noted that the desired non-
Gaussianity could be induced in many ways such as photon
subtraction, photon addition, catalysis, etc. While the case of
photon subtraction has been studied in full depth, the process
of photon catalysis has been explored to some extent. Further-
more, the impact of coherence on CV MDI QKD protocols
has only been made possible in the case of photon subtraction,
where it was shown to be quite advantageous [40]. However,
a general treatment of these non-Gaussian processes along
with fiducial coherence has not been attempted due to the
difficulty in obtaining a closed form solution for the covari-
ance matrix—a primary ingredient in Gaussian-modulated
CV QKD.

In this paper we derive a generalized covariance matrix
for processes corresponding to photon addition, photon sub-
traction, and catalysis on two-mode squeezed coherent states
(PATMSC, PSTMSC, and CTMSC, respectively), which to
the best of our knowledge has not been attempted before. The
covariance matrix takes into account the number of photons
added, subtracted, or catalyzed as parameters which can be
chosen arbitrarily. Furthermore, we introduce displacement
(coherence) as a parameter, too, which can also be chosen
arbitrarily. Coupled with all the parameters, our covariance
matrix is the most general one attempted to date and apart
from its immediate application in QKD, it is expected to
be of immense interest in other non-Gaussian information
processing tasks such as quantum teleportation, entanglement
swapping [41,42], quantum internet [43], etc.

We provide a detailed discourse on the impact of non-
Gaussianity coupled with small displacements on CV MDI
QKD protocols. Such a discourse would be of immense in-
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FIG. 1. Scheme to implement CV MDI QKD using non-Gaussian states. Two trusted parties Alice and Bob produce TMSC states
while a third untrusted party Fred performs photon addition, subtraction, or catalysis. A fourth untrusted party Charlie performs homodyne
measurements on the two modes obtained from Fred and Bob after mixing them via a BS. The results of Charlie’s measurements are declared
publicly.

terest to experimentalists in selecting the most optimal state
for QKD based on transmission distances, noise robustness,
and/or coherence. While it has already been shown that a
small amount of coherence is an actually helpful process in
the case of photon subtraction [40], we find that it is true
for photon addition and catalysis, too. This reinforces the
idea that non-Gaussianity coupled with coherence leads to
better performance in CV MDI QKD. Particularly, we find
that the CTMSC state outperforms the other states in both
the aforemetioned criterion allowing transmission distances of
almost 70 Km, while photon subtraction is equivalently a good
candidate, too. We also find that addition of photons is not
an adequate process to introduce non-Gaussianity in CV MDI
QKD protocols as it does not lead to any significant increase
in transmission distances.

The paper is organized as follows: In Sec. II we provide a
brief idea of CV MDI QKD with Gaussian states followed
by corresponding cases with non-Gaussian operations such
as photon subtraction, addition, and catalysis. In this section
we also discuss the process to calculate secure key rates.
Section III presents our simulation results on experimentally
obtainable key rates. In Sec. IV we summarize our results.

II. CV MDI QKD USING CTMSC, PATMSC, AND PSTMSC

In this section we first provide a brief overview of CV MDI
QKD using Gaussian states. We then describe the scenario
where non-Gaussian states can be utilized. We then elucidate
how secure key rates are to be computed.

A. Gaussian CV MDI QKD

Consider two parties Alice and Bob who wish to share a
secure key. Each party prepares a TMSV state with quadrature
variances VA = VB, respectively. The two modes with each
party are labeled as A1, A2 and B1, B2, respectively. Alice and
Bob transmit the modes A2 and B2 to a third untrusted party,
Charlie, while retaining the modes A1 and B1 with themselves.
These modes are transmitted via quantum channels of length
LAC and LBC respectively. The total transmission distance be-
tween Alice and Bob is then L = LAC + LBC .

Charlie interferes the two modes with the help of a 50:50
beam splitter (BS) which has two output modes C and D.
He then performs a homodyne measurement of x quadrature
on C and p quadrature on D to obtain outcomes XC and

PD, respectively. The obtained outcomes {XC, PD} are then
publicly announced by Charlie. Subsequently, Bob performs
a displacement operation D(α) on his retained mode B1 to get
B′

1, where α = g(XC + iPD) and g is the gain factor.
After these operations, the modes A1 and B′

1 are found to
be entangled. Alice and Bob then perform heterodyne mea-
surements on their entangled modes to obtain the outcomes
{XA, PA} and {XB, PB} which are correlated. The scheme is
given in Fig. 1 with the exception of Fred.

Finally, both the parties perform information reconciliation
and privacy amplification to obtain a secure key.

B. CV MDI QKD using non-Gaussian states

The scenario of CV MDI QKD which utilizes non-
Gaussian states is quite similar to the Gaussian CV MDI
QKD, with the exception of an additional untrusted party Fred
who acts on the mode A2 as shown in Fig. 1. We also assume
that Bob performs reverse reconciliation (RR), which implies
that his outcomes are taken to be as a reference for Alice to
reconcile with.

We describe the basic scheme of our protocol with relevant
calculations done in the Appendix. We make use of phase
space methods (particularly Wigner functions) to perform the
calculations. The protocol proceeds as follows:

Step 1. Alice prepares a TMSC state |ψ〉A1A2 with quadra-
ture variance VA = cosh(2r). Such a state can be achieved by
using a nonlinear optical downconverter and the process is
described as

|ψ〉A1A2 = S12(r)D1(d )D2(d )|00〉, (1)

where S12(r) = exp[r(â†
A1

â†
A2

− âA1 âA2 )] is the squeezing op-

erator with parameter r while Di(d ) = exp[d (â†
Ai

− âAi )] is
the displacement operator displacing mode Ai only along the
x quadrature with magnitude d .

Step 2. Alice then transmits the mode A2 to the untrusted
party Fred, who mixes it with the mode F0 through a BS with
transmittivity τ . The mode F0 is initialized in the state |m〉〈m|.
The corresponding transformation UBS

A2F0
is described as

UBS
A2F0

: |ψ〉A1A2 |m〉F0 → |�〉A1A′
2F1 . (2)

Using a photon number resolving detector (PNRD), Fred
then performs a projective measurement {|n〉〈n|,1 − |n〉〈n|}
on the mode F1, where |n〉〈n| corresponds to n photons be-
ing detected. As a consequence, for the modes A1 and A′

2,
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FIG. 2. Probability of photon catalysis as a function of BS
transmittance τ . The parameters are fixed as VA = 50 and dis-
placement d = 2. Various plots correspond to (0, 0)-CTMSC (black
solid), (1, 1)-CTMSC (red dashed), and (2, 2)-CTMSC (yellow tiny
dashed). Plotted parameters are dimensionless.

we call the resultant two-mode state (m, n)-TMSC and it is
given by the unnormalized state |�〉(m,n)

A1A′
2

= F1〈n|�〉A1A′
2F1 . The

normalization is the probability of n photon detections and is
given as

P(m,n) =
∑

r

∑
s

∣∣
A1〈r|A′

2
〈s|�〉(m,n)

A1A′
2

∣∣2
. (3)

At this stage one may consider various cases by choosing
different combinations of m and n. Here we broadly classify
all these cases into three categories.

m = n: In this case, the number of input photons is equal
to the number of detected photons in the mode F1. This case
is popularly known as photon catalysis [44] and leads to non-
Gaussian states even for m = n = 0.m < n: In this case the
number of photons detected in the mode F1 is more than the in-
put number of photons in the mode F0. This leads to an overall
deduction in the number of photons in the original TMSC state
leading to a photon subtracted state. Hence the name photon
subtraction. The resultant state is a non-Gaussian state.m > n:
In this case, the number of photons detected in the mode F1 is
less than the number of photons input in the mode F0. This
way we can add to the total number of photons in the original
TMSC state, with the resultant state being non-Gaussian.

We denote these cases as photon catalyzed TMSC
(CTMSC), photon subtracted TMSC (PSTMSC), and photon
added TMSC (PATMSC), respectively. The latter has been
studied in depth in Ref. [40]. The probability of n photon
detections as a function of τ is plotted in Figs. 2, 3 and 4
corresponding to CTMSC, PATMSC, and PSTMSC. It should
be noted that the value of τ used throughout the paper is opti-
mized to maximize the transmission distance and not photon
detection.

Fred has to publicly announce when the required (m, n)-
TMSC state has been prepared. Thus, it is natural to assume
that any and all modes of Fred can be accessed by an eaves-
dropper Eve. This also allows us to have the device with
Fred to be fully uncharacterized such that there may exist
information side channels to Eve. Thus, for the remainder
of this paper we assume that Fred is an untrusted party and
separate from Alice.

FIG. 3. Probability of photon addition as a function of BS
transmittance τ . The parameters are fixed as VA = 50 and displace-
ment d = 2. Various plots correspond to (1, 0)-PATMSC (black
solid), (2, 0)-PATMSC (red dashed), and (2, 1)-PATMSC (yellow
tiny dashed). Plotted parameters are dimensionless.

The position of Fred plays also plays an important role in
non-Gaussian CV MDI QKD. Fred can either be placed only
on Alice’s side (before Charlie), on Bob’s side (after Charlie),
or on both sides. However, placing Fred between Bob and
Charlie will not offer any advantage as the parties will apply
classical reverse reconciliation techniques to extract a secure
correlated key rate. In this case, Bob will try to align his bits to
that of Alice’s. It is therefore the case that Alice’s source pre-
pares the information that is sent to Bob, while Bob’s state is
only used to guess the bit of Alice. Therefore, placing Fred be-
tween Bob and Charlie will not provide any benefit. Moreover,
placing Fred at both the locations (between Alice-Charlie and
Bob-Charlie) will eventually be extremely detrimental as the
probability of detecting n photons simultaneously on modes
A2, B2 is very low. Consequently, we have considered the case
where Fred lies between Alice and Charlie.

The location of Fred can be further chosen to be either
close to Alice, in between Alice and Charlie, or close to Char-
lie. The main purpose of Fred is to increase the entanglement
between the modes A1 and A′

2 by performing non-Gaussian
operations through photon detection on the Gaussian TMSC
state. Therefore, if Fred is close to Charlie, he will be per-

FIG. 4. Probability of photon subtraction as a function of BS
transmittance τ . The parameters are fixed as VA = 50 and displace-
ment d = 2. Various plots correspond to (0, 1)-PSTMSC (black
solid), (0, 2)-PSTMSC (red dashed), and (1, 2)-PSTMSC (yellow
tiny dashed). Plotted parameters are dimensionless.
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forming photon detections on a state which has already passed
through a lossy channel and undergone noise. The state that he
receives is a mixed state with less entanglement than the initial
TMSC state. Therefore, photon detections on this state will
result in a final state with lower entanglement content than the
final state generated if he were located close to Alice. This, in
turn, can lead to lesser key rate or transmission distance. Thus
in the rest of this paper we assume that Fred is located close
to Alice.

We calculate the covariance matrix of (m, n)-TMSC in
terms of moment generating functions and is given as

�A1A′
2
=

⎛
⎜⎝

V x
A 0 V x

C 0
0 V p

A 0 V p
C

V x
C 0 V x

B 0
0 V p

C 0 V p
B

⎞
⎟⎠, (4)

where V ξ
i , i ∈ {A, B,C} and ξ ∈ {x, p} is interpreted as vari-

ance of ξ quadrature for the ith party (see Appendix C). Fred
announces when the (m, n)-TMSC state has been successfully
prepared and consequently the mode A′

2 is transmitted to Char-
lie via a quantum channel.

Step 3. Bob also prepares a TMSC state with variance VB =
VA and transmits the mode B2 to Charlie.

Step 4. Charlie mixes the two modes A′
2 and B2 via a BS

with output modes C and D. He then performs a homodyne
measurement of x and p quadrature on C and D, respec-
tively. The outcomes to these measurements are then declared
publicly.

Step 5. Based on the publicly declared results, Bob dis-
places his mode B1 to B′

1 by applying D(α). As a consequence
the modes A1 and B′

1 are entangled.
Step 6. Alice and Bob perform heterodyne measurements

on the entangled modes A1 and B′
1 to get correlated outcomes.

Step 7. Alice and Bob perform information reconciliation
and privacy amplification to obtain a secure key. Here we
follow reverse reconciliation [45] (from Bob to Alice) as it
is more secure and is known to perform better [46].

C. Eavesdropping, channel parameters, and secure key rate

In this subsection we describe several parameters which
will be useful in simulating the secure key rates obtained by
Alice and Bob in the presence of an eavesdropper Eve. While
most of the terminology has been set up in Ref. [40], we recap
it here for brevity of the reader.

The CV MDI QKD protocol detailed above comprises two
quantum channels between Alice, Bob, and Charlie and a
single classical channel between Alice and Bob. We assume
that Eve can perform independent one-mode collective attacks
[19,25,47] on each channel and the maximum information that
can be obtained is then quantified by the Holevo bound χBE

between Bob and Eve.
We assume that the two channels have transmittance TA and

TB, given as

TA = 10−l LAC
10 and TB = 10−l LBC

10 , (5)

where l = 0.2 dB/Km is the channel loss. Furthermore, we
only consider the asymmetric case in which LBC = 0, im-
plying Bob and Charlie are at the same place. The total
transmission length is then L = LAC = LAB with TB = 1. The

symmetric case in which Charlie is midway between Alice
and Bob has been found to be more subpar than the asymmet-
ric one in several previous results [34,40].

We define a normalized parameter T associated with chan-
nel transmittance in terms of TA as

T = TAg2

2
, (6)

where g is the gain of Bob’s displacement operation. Total
added noise in the channel can then be defined as

χline = 1 − T

T
+ εth, (7)

where εth is the thermal excess noise in the equivalent one-
way protocol [34] which can be written as

εth = TB

TA
(εB − 2) + εA + 2

TA
, (8)

where εA and εB correspond to thermal excess noise in the
respective quantum channels. The gain is then taken as

g =
√

2(VA − 1)

TB(VA + 1)
, (9)

in order to minimize εth.
We also assume that Charlie’s homodyne detectors are

noisy, with excess noise given as

χhomo = vel + 1 − η

η
, (10)

where, vel is the electric noise of the detectors and η is the
efficiency. Therefore, the total noise added because of the
channel and detectors is

χtot = χline + 2χhomo

TA
. (11)

The secure key rate obtained by Alice and Bob is given as

K = P(m,n)(βIAB − χBE), (12)

where P(m,n) is the probability to obtain the (m, n)-TMSC
state given in Eq. (3), IAB is the mutual information between
Alice and Bob and χBE is the Holevo bound between Bob and
Eve. The factor P(m,n) appears in Eq. (12) because the final
(m, n)-TMSC state is obtained probabilistically depending on
the detection of n photons. Thus the final resource is a fraction
of the initial TMSC state.

The covariance matrix corresponding to the state ρA1B′
1

which is obtained after Step 5 of the protocol is

�A1B′
1
=

⎛
⎜⎜⎝

V x
A 0

√
TV x

C 0
0 V p

A 0
√

TV p
C√

TV x
C 0 TV ′x

B 0
0

√
TV p

C 0 TV ′p
B

⎞
⎟⎟⎠, (13)

where V ′ξ
B = V ξ

B + χtotI2 and V ξ
B is the variance of ξ ∈ {x, p}

quadrature for Bob’s state.. The mutual information between
Alice and Bob, IAB can then be calculated as

IAB = 1

2
log2

(
V x

AM

V x
AM |BM

)
+ 1

2
log2

(
V p

AM

V p
AM |BM

)
, (14)
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such that

V ξ
AM

= V ξ
A + 1

2
, (15)

where V ξ

AM |BM
is the conditional variance of Alice’s outcome

conditioned on Bob’s outcome of his heterodyne measure-
ment given by

V ξ

AM |BM
= V ξ

A|B + 1

2
, (16)

where

V ξ

A|B = V ξ
A − V ξ

C

(
V ξ

B + I2
)−1(

V ξ
C

)T
. (17)

In order to calculate the Holevo bound χBE, we assume that
Eve also has access to Fred’s mode F and her state is then
given by ρEF. We also assume that she can purify ρA1B′

1EF.
The Holevo bound χBE between Bob and Eve can then be
calculated as

χBE = S(ρEF) −
∫

dmB p(mB)S
(
ρ

mB
EF

)
= S

(
ρA1B′

1

) − S
(
ρ

mB′
1

A1

)
,

(18)

where S(ρ) is the von-Neumann entropy of the state ρ, mB

represents measurement outcomes of Bob with probability
density p(mB), and ρ

mB
EF is the state of Eve conditioned on

Bob’s outcome. The covariance matrices corresponding to

the states ρA1B′
1

and ρ
mB′

1
A1

are represented by �A1B′
1

and �
mB′

1
A1

,

respectively. The von-Neumann entropy S(ρA1B′
1
) and S(ρ

mB′
1

A1
)

are functions of symplectic eigenvalues λ1, λ2 of �A1B′
1
, and

λ3 of �
mB′

1
A1

which are given as

S(ρA1B′
1
) = G

[
λ1 − 1

2

]
+ G

[
λ2 − 1

2

]
, (19)

and

S
(
ρ

mB′
1

A1

) = G

[
λ3 − 1

2

]
, (20)

with

G(x) = (x + 1) log2(x + 1) − x log2 x (21)

the von-Neumann entropy of the thermal state.

III. SIMULATION RESULTS

In this section we provide numerical results corresponding
to the aforementioned non-Gaussian operations on a TMSC
state. For each case we analyze the effects of coherence and
non-Gaussianity on key rate and transmission distances.

A. Effect of displacement for a fixed key rate

In this subsection we analyze the effect of displacement on
transmission distances for a fixed key rate corresponding to
CTMSC, PATMSC, and PSTMSC.

As is evident from Fig. 5, in the case of CTMSC, trans-
mission distance decreases monotonically with increased
displacement, with a maximum distance of 70 km achieved
for K = 10−4 bits/pulses. Therefore, catalysis on TMSC or

FIG. 5. Contour plot of displacement d (dimensionless) and
transmission distance LAC (km) in the extreme asymmetric case as
a function of key rate (bits/pulses) for the case of (0, 0)-CTMSC.
The parameters are fixed as VA = 50, τ = 0.9, εth

A = 0.002 = εth
B ,

β = 96%. Various curves correspond to different values of fixed
key rate K = 10−1 (red solid), K = 10−2 (tiny dashed), K = 10−3

(dashed), and K = 10−4 (large dashed).

TMSV yields equivalent results with no increase in transmis-
sion distances and it is therefore preferable to use minimal
or no displacement. On the other hand, photon addition on
the TMSC state is more advantageous than TMSV as is evi-
dent from Fig. 6. Photon subtraction on the TMSC state also
offers a significant improvement in transmission distances
over TMSV as shown in Fig. 7. It is seen that transmission

FIG. 6. Contour plot of displacement d (dimensionless) and
transmission distance LAC (km) in the extreme asymmetric case as
a function of key rate (bits/pulses) for the case of (1, 0)-PATMSC.
The parameters are fixed as VA = 50, τ = 0.9, εth

A = 0.002 = εth
B ,

β = 96%. Various curves correspond to different values of fixed
key rate K = 10−1 (red solid), K = 10−2 (tiny dashed), K = 10−3

(dashed), and K = 10−4 (large dashed).
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FIG. 7. Contour plot of displacement d (dimensionless) and
transmission distance LAC (km) in the extreme asymmetric case as
a function of key rate (bits/pulses) for the case of (0, 1)-PSTMSC.
The parameters are fixed as VA = 50, τ = 0.9, εth

A = 0.002 = εth
B ,

β = 96%. Various curves correspond to different values of fixed
key rate K = 10−1 (red solid), K = 10−2 (tiny dashed), K = 10−3

(dashed), and K = 10−4 (large dashed).

distances increase drastically with increasing displacement.
However, we also note that displacement cannot be increased
indefinitely as it begins to have detrimental effects on the
transmission distance. A maximum distance of 50 km can be
achieved with K = 10−4 for d ≈ 2.

The apparent nonmonotonic behavior of the key rate with
displacement could be understood in terms of the interplay
between the success probability (P(m,n)) and the difference
between mutual information and Holevo information (IAB −
χBE). Here, we explain for the case of single photon subtracted
TMSC-(0, 1)−PSTMSC. As can be seen in Fig. 8, for a fixed
BS transmittivity τ , with an increase in the displacement am-
plitude (d), the probability of photon subtraction drops, while
simultaneously, the difference between IAB and χBE increases.
This results in an increase in the key rate (K = P(m,n)(βIAB −
χBE)) up to d ≈ 2. However, for larger displacement (d > 2),
while the difference between IAB and χBE saturates the success
probability falls drastically. As a consequence, the overall key

FIG. 8. Plot of probability P(m,n) and IAB − χBE (bits/pulse) with
displacement d for the case of (0, 1) − PSTMSC with parameters
VA = 50, τ = 0.9, εth

A = 0.002 = εth
B , β = 100%, and LAC = LAB =

50 km. The latter plot shows a gradual increase up to a certain
maximum value with increasing d , while the former reaches zero
just before d = 3.

FIG. 9. Secret key rate as a function of LAC in the extreme
asymmetric case. The parameters are fixed as VA = 50, τ = 0.9,
εth

A = 0.002 = εth
B , β = 96%, and displacement d = 2. Various plots

correspond to TMSV (blue dash dotted), (0, 0)-CTMSC (black
solid), (1, 1)-CTMSC (red dashed), and (2, 2)-CTMSC (yellow tiny
dashed).

rate falls beyond the optimal displacement which in our case
is d = 2.

Photon subtraction on TMSC has been studied extensively
in a previous study [40]. For the sake of completion we repro-
duce the same results, albeit using the generalized covariance
matrix as derived in this paper. From Fig. 7, we conclude
that displacement can effectively increase the transmission
distances of CV-MDI QKD protocols.

B. Effect of length on key rate

In this subsection we analyze the available key rate with
respect to transmission distances in the extreme asymmetric
case.

From Fig. 9 we find that the (0, 0)-CTMSC state offers
a dramatic increase in transmission distances as compared
to the (1, 1)-, (2, 2)-CTMSC and TMSV states. A maximum
distance of more than 70 km can be achieved using the same.
However, (1, 1) and (2, 2)-CTMSC fare more poorly than
even the TMSV state.

FIG. 10. Secret key rate as a function of LAC in the extreme
asymmetric case. The parameters are fixed as VA = 50, τ = 0.9,
εth

A = 0.002 = εth
B , β = 96%, and displacement d = 2. Various plots

correspond to TMSV (blue dash dotted), (1, 0)-PATMSC (black
solid), (2, 0)-PATMSC (red dashed), and (2, 1)-PATMSC (yellow
tiny dashed).
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FIG. 11. Secret key rate as a function of LAC in the extreme
asymmetric case. The parameters are fixed as VA = 50, τ = 0.9,
εth

A = 0.002 = εth
B , β = 96%, and displacement d = 2. Various plots

correspond to TMSV (blue dash dotted), (0, 1)-PSTMSC (black
solid), (0, 2)-PSTMSC (red dashed), and (1, 2)-PSTMSC (yellow
tiny dashed).

As is evident from Fig. 10, the (1, 0)-PATMSC state offers
better transmission distances than the (2, 0)-, (2, 1)-PATMSC,
and TMSV states. However, the distances are still compara-
tively smaller than what was observed for the (0, 0)-CTMSC
state.

From Fig. 11, it is clear that (0, 1) and (0, 2)-PSTMSC
states offer equally good key rates for large transmission
distances than either the (1, 2)-PSTMC or TMSV state. It
should also be noted that photon subtraction is the only
case (considered so far) that offers a substantial improvement
in transmission distances for single as well as two-photon
operations.

From the above analysis it is clear that the (0, 0)-CTMSC
state offers the highest transmission distance. However, (0, 1)-
and (0, 2)-PSTMSC states offer a similar performance. Since
the experimental implementation of both is more or less the
same, these states should be preferred for CV MDI QKD.

One of the major factors limiting transmission distances
(and equivalently the secure key rate) is the noise added to
the channel and how it affects each state correspondingly.
More noise will imply smaller transmission distances and vice
versa. The channel parameters that we have chosen in our
plots are achievable in the laboratory while detection ineffi-
ciency with Charlie is assumed to zero. In the next subsection
we look at the effect of noisy homodyne detections with
Charlie, which results in added noise in the channel between
Alice and Bob.

C. Noisy homodyne detection

In this subsection we analyze the key rate under noisy ho-
modyne detectors with Charlie. We observe that under noise
the transmission distances are affected greatly.

From Fig. 12, we see that (0, 0)-CTMSC state is the most
robust under detector noise, while photon addition has the
worst response. Photon subtraction is also seen to perform
adequately as compared to others. It should also be noted that
the key rate for all cases except TMSV is quite low around
approximately K ≈ 10−3 bits/pulses.

FIG. 12. Secret key rate as a function of detection inefficiency η

(dimensionless) in the extreme asymmetric case. The parameters are
fixed as LAC = 20 km, τ = 0.9, εth

A = 0.002 = εth
B , β = 96%, and

displacement d = 2. Various plots correspond to TMSV (blue dash
dotted), (0, 0)-CTMSC (black solid), (1, 0)-PATMSC (red dashed),
and (0, 1)-PSTMSC (yellow tiny dashed).

The total transmission distance is also seen to suffer under
detector noise in Fig. 13. A maximum distance of approxi-
mately 29 km can be achieved by using (0, 0)-CTMSC, while
(0, 1)-PSTMSC is not far behind. It is again observed that the
photon added state performs even worse than the TMSV state.

IV. CONCLUSION

In this paper we derived a generalized covariance matrix
for non-Gaussian states comprising CTMSC, PATMSC, and
PSTMSC. The number of photons to be catalyzed, added, or
subtracted as well as squeezing and displacement are taken as
parameters to this covariance matrix. Using the generalized
covariance matrix we analyze performance of the aforemen-
tioned non-Gaussian states in CV MDI QKD. We find that the
(0, 0)-CTMSC state offers the best possible choice of state as
it affords a longer transmission distance and is robust against
white noise. However, (0, 1)-PSTMSC is also equivalently
good. We found that PATMSC states are not an optimal choice
in CV MDI QKD, but are still better than standard Gaussian
states in some cases.

FIG. 13. Secret key rate as a function of LAC in the extreme
asymmetric case. The parameters are fixed as η = 0.995, τ = 0.9,
εth

A = 0.002 = εth
B , β = 96%, and displacement d = 2. Various plots

correspond to TMSV (blue dash dotted), (0, 0)-CTMSC (black
solid), (1, 0)-PATMSC (red dashed), and (0, 1)-PSTMSC (yellow
tiny dashed).
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We also reinforce the fact that coherence is a useful phe-
nomena in increasing the total transmission distances in CV
MDI QKD protocols. While the effect of displacement has
been studied extensively in Ref. [40] for the case of photon
subtraction, we further generalize it to photon addition and
catalysis too. In comparison to the earlier studies on quantum
catalysis on TMSV [33,37,38,48], here we show that addi-
tional coherence boosts the performance further. However,
it must be noted that all these non-Gaussian operations are
probabilistic and subject to the finesse of the experimental
setup.

The efficacy of photon catalysis operation with displace-
ment could further be cherished under realistic conditions
such as imperfect state preparation [49] that is abundant in
any practical setup. Moreover, in recent years, there have
been several new proposals for tweaking the modulation to
further optimize the key-rate-vs-transmission distance, such
as discrete modulation [50,51], simultaneous classical com-
munication [52], phase-modulation [53], etc. These render, to
the current work, immediate relevance and immense interest
in the present context as well as in other areas of continuous
variable quantum information processing [54].
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APPENDIX A: WIGNER DISTRIBUTION OF (m, n)-TMSC

In Fig. 14, we portray the generation of (m, n)-TMSC pic-
torially. Now we present stepwise calculation of the Wigner
function for (m, n)-TMSC and the corresponding probability
in shot noise unit (SNU).

1. Wigner Distribution for TMSC

Let’s consider a two-mode coherent state, ρC
A1A2

=
|d, d〉〈d, d|, represented by the Wigner distribution,

W C
A1A2

(ξ ) = exp[−(1/2)(ξ − ξ )T V −1(ξ − ξ )]

(2π )2
√

detV
, (A1)

where ξ = (x1, p1, x2, p2)T is the column vector with mode
quadratures as its components, ξ = (d, 0, d, 0)T denotes the
corresponding displacement vector, and V = 12

⊕
12 is the

covariance matrix corresponding to the vacuum state. Here,
12 denotes the 2 × 2 identity matrix. Thus Eq. (A1) can be

A1

TMSC{
A2 A2

} (m, n)-TMSC

F0

|m m|
PNRD
|n n|

A1

FIG. 14. Schematic diagram of generation of the (m, n)-TMSC
state.

explicitly written as

W C
A1A2

(ξ ) = 1

4π2
e− 1

2 ((x1−d )2+p2
1+(x2−d )2+p2

2 ). (A2)

Now the two-mode squeezing transformation is given by

S12(r) =
(

cosh r 12 sinh r Z2

sinh r Z2 cosh r 12

)
, (A3)

where Z2 = (1 0
0 −1). Under the transformation S12(r),

Wigner distribution changes as S12(r) : W C
A1A2

(ξ ) →
WA1A2 (ξ ) = W C

A1A2
(S−1

12 (r)ξ ), i.e.,

WA1A2 (ξ ) = 1

4π2
exp

[
− 1

2
((x1 cosh r − x2 sinh r − d )2

+ (p1 cosh r + p2 sinh r)2

+ (x2 cosh r − x1 sinh r − d )2

+ (p1 sinh r + p2 cosh r)2)
]
. (A4)

2. Wigner Distribution for (m, n)-TMSC

Fred mixes the ancilla mode F0 in number state |m〉 with
mode A2 of TMSC using a beam splitter of transmittivity τ ,
represented by the transformation matrix,

B(τ ) =
( √

τ12
√

1 − τ12

−√
1 − τ12

√
τ12

)
. (A5)

This introduces the transformation,

SBS = 12

⊕
B(τ ), (A6)

on the three-mode quadrature vector ξ̃ = (x1, p1, x2, p2,

x3, p3)T for the input state described by the Wigner distri-
bution WA1A2F0 (ξ̃ ) = WA1A2 (ξ ) ⊗ W |m〉

F0
(ξ3) = WA1A2 (ξ1, ξ2) ⊗

W |m〉
F0

(ξ3), where ξi = (xi, pi )T (i = 1, 2, 3) and W |m〉(ξ3) is the
Wigner distribution for number state |m〉 given as

W |m〉(x3, p3) = (−1)m

2π
e− x2

3+p2
3

2 ∂n
s ∂n

t

× (est+s(x3+ip3 )−t (x3−ip3 ) )
∣∣
s=t=0. (A7)

Consequently, the BS input three-mode Wigner
distribution changes as SBS : WA1A2F0 (ξ̃ ) → WA1A′

2F1 (ξ̃ ) =
WA1A2F0 (S−1

BS ξ̃ ) = WA1A2 (ξ1, ξ
′
2)W |m〉

F0
(ξ ′

3).
After a successful detection of n photons, i.e., when � =

|n〉〈n| clicks, the unnormalized Wigner distribution for (m, n)-
TMSC becomes

W (m,n)
A1A′

2
(ξ1, ξ2) = 4π

∫
dx3d p3 WA1A2 (ξ1, ξ

′
2)W |m〉

F0
(ξ ′

3),

×W |n〉
F0

(ξ3). (A8)

As we shall see, we do not need to explicitly calculate the
Wigner distribution for (m, n)-TMSC in our probability and
covariance matrix calculation.
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APPENDIX B: CALCULATION OF PROBABILITY OF (m, n)-TMSC

The probability of n-photon detection is obtained by integrating W (m,n)
A1A′

2
(ξ1, ξ2) as

P(m,n) =
∫

ξ1ξ2 W (m,n)
A1A′

2
(ξ1, ξ2)

= 4π

∫
d6ξ̃ WA1A2 (ξ1, ξ

′
2)W |m〉

F0
(ξ ′

3)W |n〉
F0

(ξ3).

(B1)

Now, using the generating function of the Laguerre polynomial,

∂k
s ∂k

t (est+s(q+ip)−t (q−ip) )
∣∣
s=t=0 = k!Lk (q2 + p2), (B2)

we get the probability of n-photon detection as

P(m,n) = (−1)m+n

4π3

1

m!n!
e−d2

∂m
u ∂m

v ∂n
s ∂n

t est+uv

× n
∫

d6ξ̃ exp(−ξ̃T M ξ̃ + NT ξ̃ )
∣∣∣
u=v=s=t=0

, (B3)

with

M =
⎛
⎝m112 m4Z2 m5Z2

m4Z2 m212 m612

m5Z2 m612 m312

⎞
⎠ &

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

−dn1

0
(u − v)

√
1 − τ − dn1

√
τ

i(u + v)
√

1 − τ

s − t + (u − v)
√

τ + dn1
√

1 − τ

i(s + t ) + i(u + v)
√

τ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B4)

where m1 = −(1 + 2α2)/2, m2 = −(1 + 2α2τ )/2, m3 = −(1 + α2(1 − τ )), m4 = α
√

(1 + α2)τ , m5 = −α
√

(1 + α2)(1 − τ ),
m6 = α2√τ (1 − τ ) and n1 = α − √

1 + α2, and α = sinh r. This form facilitates the use of the multidimensional Gaussian
integral formula, ∫

Rn

exp(−X T MX + NT X )dX =
√

πn

detM
exp

(
NT M−1N

4

)
. (B5)

Consequently the expression of probability reduces to

P(m,n) = (−1)m+n

m!n!

1

1 + α2(1 − τ )
e−i1∂m

u ∂m
v ∂n

s ∂n
t e−a1st+b1s+c1t−d1uv+e1u+ f1v+g1tu+h1sv

∣∣∣∣
u=v=s=t=0

= (−1)m+n

m!n!

1

1 + α2(1 − τ )
e−i1∂m

u ∂m
v ∂n

s ∂n
t

∞∑
l=0

(g1tu)l

l!

∞∑
k=0

(h1sv)k

k!
e−a1st+b1s+c1t e−d1uv+e1u+ f1v

∣∣∣∣
u=v=s=t=0

= (−1)m+n

m!n!

1

1 + α2(1 − τ )
e−i1∂m

u ∂m
v ∂n

s ∂n
t

∞∑
l=0

∞∑
k=0

gl
1

l!

hk
1

k!
∂ l

c1
∂k

b1
∂ l

e1
∂k

f1
e−a1st+b1s+c1t e−d1uv+e1u+ f1v

∣∣∣∣
u=v=s=t=0

, (B6)

where

a1 = α2

1 + α2
d1 = α2(1 − τ )

1 + α2(1 − τ )
,

c1 = −b1 = a1(α + √
1 + α2)

√
1 − τ

2(1 + α2(1 − τ ))
,

e1 = − f1 = a1(α + √
1 + α2)

√
τ (1 − τ )

2(1 + α2(1 − τ ))
,

g1 = h1 = −√
τ

1 + α2(1 − τ )
,

i1 = d2(1 + 2α(α + √
1 + α2))(1 − τ )

4(1 + α2(1 − τ ))
.

(B7)
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Now we recall the following identities for the two-variable Hermite polynomial,

Hm,n(x, y) = ∂m
s ∂n

t exp(−st + sx + ty)
∣∣
s=t=0

min(m,n)∑
j=0

(−1) jm!n!xm− jyn− j

j!(m − j)!(n − j)!
&

∂k
x ∂ l

yHm,n(x, y) = m!n!

(m − k)!(n − l )!
Hm−k,n−l (x, y). (B8)

These identities reduce Eq. (B6):

P(m,n) = (−1)m+n

m!n!

1

1 + α2(1 − τ )
e−i1

∞∑
l=0

∞∑
k=0

gl
1

l!

hk
1

k!
∂ l

c1
∂k

b1
∂ l

e1
∂k

f1
am

1 Hm,m

[
b1√
a1

,
c1√
a1

]
dn

1 Hn,n

[
e1√
d1

,
f1√
d1

]

= (−1)m+n

m!n!

1

1 + α2(1 − τ )
e−i1

min(m,n)∑
l=0

min(m,n)∑
k=0

gl
1

l!

hk
1

k!
am

1 dn
1

1
√

a1
k+l

1
√

d1
k+l

m!m!n!n!

(m − k)!(n − k)!(m − l )!(n − l )!
,

× Hm−k,m−l

[
b1√
a1

,
c1√
a1

]
Hn−l,n−k

[
e1√
d1

,
f1√
d1

]
. (B9)

APPENDIX C: CALCULATION OF COVARIANCE MATRIX

Here we provide a general expression for the moment generating function defined as FM = 1
2 〈{x̂1

r1 p̂1
s1 x̂2

r2 p̂2
s2}sym〉. Any

particular moment, i.e., the elements of the covariance matrix could be easily obtained from this generating function as
special cases, e.g., 1

2 〈{x̂1 p̂1}sym〉 = 1
2 〈{x̂1, p̂1}〉 = limr1 → 1, s1 → 1

r2 → 0, s2 → 0

FM , where ”{, }” denotes the anticommutator. In terms of

this normalized Wigner distribution of (m, n)-TMSC, W̃ (m,n)
A1A′

2
(ξ1, ξ2) = 1

P(m,n) W
(m,n)

A1A′
2

(ξ1, ξ2), the moment generating function FM

could be easily evaluated by using parametric differentiation techniques as

FM =
∫

d4ξxr1
1 ps1

1 xr2
2 ps2

2 W̃ (m,n)
A1A′

2
(ξ1, ξ2)

= 1

P(m,n)

(−1)m+n

m!n!

1

1 + α2(1 − τ )

min(m,n)∑
k,l=0

gl
1

l!

hk
1

k!
a

m− k+l
2

1 d
n− k+l

2
1

m!m!n!n!

(m − k)!(n − k)!(m − l )!(n − l )!

× ∂r1
u1

∂s1
v1

∂r2
u2

∂s2
v2

eg2u1+h2u2+i2(u2
1+v2

1+u2
2+v2

2 )− j2(u1u2−v1v2 )+k2

× Hm−k,m−l

[−a2(u1 − iv1) − b2(u2 + iv2) − c2√
a1

,
a2(u1 + iv1) + b2(u2 − iv2) + c2√

a1

]

× Hn−l,n−k

[−d2(u1 + iv1) − e2(u2 − iv2) − f2√
d1

,
d2(u1 − iv1) + e2(u2 + iv2) + f2√

d1

]∣∣∣∣∣
u1=v1=u2=v2=0

, (C1)

where

a2 = d2√
τ

= α
√

(1 + α2)(1 − τ )

1 + α2(1 − τ )
, b2 = α2√τ (1 − τ )

1 + α2(1 − τ )
, c2 = f2√

τ
= d (α + √

1 + α2)
√

1 − τ

2(1 + α2(1 − τ ))
,

e2 = (1 + α2)
√

1 − τ

1 + α2(1 − τ )
, g2 = −d (

√
1 + α2 + ατ )

1 + α2(1 − τ )
, h2 = −d (α + √

1 + α2)
√

τ

1 + α2(1 − τ )
,

i2 = − 1 + α2(1 + τ )

2(1 + α2(1 − τ ))
, j2 = 2α

√
(1 + α2)τ

1 + α2(1 − τ )
, k2 = d2(1 + 2α(α + √

1 + α2))(1 − τ )

4(1 + α2(1 − τ ))
. (C2)

By suitably choosing values of r1, s1, r2, s2 in Eq. (C1), one can calculate all the elements of the covariance matrix that takes
the following form:

� = (Vi j ) ≡

⎛
⎜⎝

V x
A 0 V x

C 0
0 V p

A 0 V p
C

V x
C 0 V x

B 0
0 V p

C 0 V p
B

⎞
⎟⎠. (C3)
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