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Fidelity of time-bin-entangled multiphoton states from a quantum emitter
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We analyze a scheme for generating multiphoton entangled states by a single solid-state quantum emitter
and devise a mathematical framework for assessing the fidelity of the generated state. Within this formalism,
we theoretically study the role of imperfections present in real systems on the generation of time-bin encoded
Greenberger–Horne–Zeilinger and one-dimensional cluster states. We consider both fundamental limitations,
such as the effect of phonon-induced dephasing, interaction with the nuclear spin bath, and second-order
emissions, as well as technological imperfections, such as branching effects, nonperfect filtering, and photon
losses. The devised framework is applicable to a range of quantum emitters, including semiconductor quantum
dots, defect centers in solids, and atoms in cavities.
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I. INTRODUCTION

A reliable source of entangled photons play a crucial role in
future quantum technologies, ranging from photonic quantum
computing [1–4] and communication [5–9] to fundamental
tests of quantum mechanics [10–12]. Several approaches for
the generation of such multiphoton entangled states exist. One
particular method relies on the well-established technique for
Bell state production via spontaneous parametric downcon-
version (SPDC) [13–15]. The Bell pairs can subsequently be
joined into larger photonic states using quantum states fusion
[16–18]. This approach is, however, inherently probabilistic
and thus limited to entangling only a modest number of pho-
tons [19–22].

A highly promising direction for deterministic generation
of large entangled states is to exploit a single quantum emitter
efficiently coupled to light to directly produce entangled pho-
tons in a sequential manner [23–27]. In the proof-of-principle
experiment by Schwartz et al. [28], it was inferred that
entanglement between five subsequent polarization-encoded
photons could be emitted by a single quantum dot. This found-
ing experiment was conducted in a nonoptimized setting using
metastable dark excitons as qubits and without implementing
photonic nanostructures. Thus, the entangled states produced
so far do not have sufficient quality to allow for all of the many
envisioned applications. It is thus essential to understand the
mechanisms affecting the quality of the produced states in
order to determine how well this system can be scaled up for
generating multiple high-fidelity qubits.

In this paper, we perform a detailed theoretical analysis
of a protocol for the generation of the time-bin-entangled
multiphoton states from a single quantum emitter. The specific
scheme we consider was first implemented with quantum
dots (QDs) in Ref. [27] albeit without being producing any
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entanglement. It is particularly attractive for QDs because
in contrast with previous proposals it can be implemented
even with a strong magnetic field in the Voigt geometry.
This improves the spin coherence properties of the spin states
while simultaneously allowing optical rotations of the spin
states. The same scheme has later been implemented with
nitrogen vacancy centers in diamond [29]. The ideal protocol
is described in Fig. 1. Such an ideal scenario is, however,
always corrupted by imperfections that inevitably occur in
real physical systems. In order to understand and minimize
the imperfections present in actual implementations, we shall
here investigate how these imperfections influence the gen-
erated states. We consider multiple sources of errors, which
are shown in Fig. 2 and include (1) ground-state dephasing,
(2) phonon-induced pure dephasing, (3) excitation errors, and
(4) photon emission errors. We derive simple analytical ex-
pressions for evaluating the fidelity of the produced entangled
states for a given physical system. This theoretical under-
standing of the imperfections can then be used to optimize
experimental realizations both in terms of efficiency and qual-
ity of the produced states.

For concreteness we consider two types of multiphoton
entangled states, Greenberger–Horne–Zeilinger (GHZ) and
one-dimensional cluster states. The states will consist of N
photons entangled with a single spin. For convenience we
will label the state by the number of photons such that the
N photon GHZ state will have the form

|GHZ(N )〉 = 1√
2

(|0〉⊗N+1 + |1〉⊗N+1), (1)

which is a generalized version of Bell states to arbitrary
number of particles. Here |0〉 and |1〉 denote logical states of
the qubits. Being distributed over a network, this state allows
for several interesting multiuser quantum protocols and thus
serves a crucial resource for quantum network applications
[30].
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FIG. 1. Ideal protocol. (a) Idealized level structure and (b) driv-
ing pulse sequence for the generation of the GHZ states (R̂ = X̂ )
or cluster states (R̂ = Ĥ ). Laser pulses �O (green) and �R (blue)
are used for driving the optical transition |1〉 ↔ |2〉 and for the
ground-state rotations |0〉 ↔ |1〉, respectively. Following each opti-
cal π -pulse, we wait for the excited state |2〉 to decay back to the
ground state |1〉 (red wiggly lines). Using N repetitions of the pulse
sequence, an entangled state of N photons and the quantum emitter
is generated.

Cluster states have attracted a lot of attention as a universal
resource for one-way quantum computation [1–4], and lately
also as a promising resource for quantum repeaters [5,6,8]. In
general cluster states can be obtained from arrays of qubits
prepared in |�0〉 = (|0〉 + |1〉)/

√
2, by performing controlled

phase gates between neighboring qubits along each of the
dimensions of the cluster state. Unlike the GHZ state, cluster
states do not allow for a compact-form expression since the
number of terms grows rapidly with the number of qubits, but
a two-qubit linear cluster state reads

|Cluster(1)〉 = 1
2 (|00〉 + |01〉 + |10〉 − |11〉). (2)

This state can be transformed into |GHZ(1)〉 using local uni-
tary operation, but for N > 1 the state is in general much more
complex. Most applications require two-dimensional cluster
state, which in theory can be achieved by, e.g., making use
of coupled emitters [31,32] or fusing multiple linear cluster
states [33]. As a starting point, we focus in this work on the
generation of linear cluster states, which can be achieved with
a single emitter using the scheme in Fig. 1.

The reminder of this paper is organized as follows. In
Sec. II we describe an idealized experimental protocol and
introduce effective single-mode photon creation operators. In
Sec. III we devise a theoretical formalism for calculation of
the fidelities of the generated states. In Sec. IV we identify
the main sources of imperfections expected to appear in real
solid-state systems and derive expressions for corresponding

FIG. 2. Sources of imperfection. Errors considered include
(a) level shifting induced by interaction with the nuclear spin bath,
(b) phonon-induced pure dephasing, (c) second-order emissions from
the resonant and far-detuned levels, and (d) branching errors due
to alternative decay paths. See text for explanations of each of the
effects.

infidelities. We assess the state fidelities for realistic experi-
mental parameters and conclude with future perspectives in
Sec. V.

II. IDEAL PROTOCOL

We begin with an idealized scheme proposed by Lee et al.
[27] that uses a periodically driven quantum emitter for the
sequential generation of photons entangled in their relative
arrival times. The use of the time-bin degrees of freedom to
encode and transfer quantum information is highly attractive
since it is ideally suited for distribution through optical fibers.
Furthermore, the scheme offers a number of advantages for
quantum dots, but we expect that it will also be very suitable
for other quantum emitters such as atoms in cavities [34–36]
or color centers in diamond [29,37,38]. The scheme for the
sequential generation of time-bin-entangled photons is illus-
trated in Fig. 1 and goes as follows:

(1) The ground-state spin is initialized in the state |�0〉 =
(|0〉 + |1〉)/

√
2 using a π/2-pulse on the |0〉 ↔ |1〉 transition

using the field �R.
(2) The |1〉 ↔ |2〉 transition is resonantly driven by a π -

pulse with the field �O, which generates a photon in an early
time bin |e〉 upon emission.

(3) The ground states |0〉 and |1〉 are flipped.
(4) Step 2 is repeated to generate a photon in a late time

bin |l〉.
(5) GHZ state: step 3 is repeated.

Cluster state: the Hadamard gate (or, equivalently, a
π/2 rotation around the x or y axis) between the ground states
|0〉 and |1〉 is applied.

(6) Steps 2–5 are repeated N times to create an N-photon
entangled state.

052604-2



FIDELITY OF TIME-BIN-ENTANGLED MULTIPHOTON · · · PHYSICAL REVIEW A 104, 052604 (2021)

Following steps 2–5 for the GHZ state, the initial state
transforms as

1√
2

(|0,∅〉 + |1,∅〉)
2−→ 1√

2
(|0,∅〉 + |1, e〉)

3−→ 1√
2

(|1,∅〉 + |0, e〉)
4−→ 1√

2
(|1, l〉 + |0, e〉)

5−→ 1√
2

(|1, e〉 + |0, l〉) = 1√
2

(Â†
e |1,∅〉 + Â†

l |0,∅〉),

(3)

where |∅〉 denotes the photon vacuum and the operator Â†
e (Â†

l )
creates a single photon in an early (late) time bin. Repeated
N times, the protocol produces an N + 1 particle GHZ state
of the form (1) containing N photons and the spin. Here the
spin state |0〉 (|1〉) and the photon state |l〉 (|e〉) are used as
logical states |0〉 (|1〉). Replacing the π -pulse in the Step 5
with the Hadamard gate produces the state (|0, l〉 + |0, e〉 +
|1, e〉 − |1, l〉)/2, which is identical to Eq. (2). For higher N ,
the state is more complicated to write down, but we prove in
Appendix A that the sequence produces a 1D-cluster state.

In the idealized protocol (3) described above, we do not go
into details about the shape of the emitted photons. Taking a
finite lifetime 1/γ of the excited state into account, the evolu-
tion during photon emission in the (u, j)th time interval can in
a suitable rotating frame and under the Markov approximation
be described by

|1,∅〉 → √
γ

∫ ∞

0
dtee− γ

2 te â†
u, j (te) |1,∅〉 , (4)

while the state |0,∅〉 stays intact. Each time bin is labeled by
indices (u, j), which correspond to the jth photon emitted in
an early (u = e) or a late (u = l) part of the protocol. The
operator â†

u, j (te) creates a photon at time te during the (u, j)th
time interval. In principle the integral in Eq. (4) should not
go to infinity since we will have a finite duration T/2 of the
early and late time bin. We assume, however, that γ T 	 1 so
that we can ignore exponentially small terms exp(−γ t/2) for
t > T and extend the limit of the integration to infinity. Thus,
the states after a single round of the protocol transform as in
Eq. (3), with photon creation operators Â†

u, j taking the form

Â†
u, j,id = √

γ

∫ ∞

0
dtee− γ

2 te â†
u, j (te), (5)

which obey the correct bosonic operators commutation rela-
tions, [Âu, j, Â†

u′, j′ ] = δu,u′δ j, j′ .
For convenience, we define an ideal single-round operator

Ô†
j,id = R̂(|1〉 〈0| Â†

l, j,id + |0〉 〈1| Â†
e, j,id ), (6)

which corresponds to a single round of the protocol and, being
applied to the spin state |�0〉, generates the jth photon in
either the GHZ (R̂ = X̂ ) or the cluster (R̂ = Ĥ ) state. The
conventional notations X̂ and Ĥ are used to denote the Pauli-X
and Hadamard gates. The ideal N-photon states therefore read∣∣� (N )

id

〉 = Ô†
N,id · · · Ô†

1,id |�0〉 |∅〉 , (7)

where |�0〉 is the initial spin state and |∅〉 = |∅1 · · · ∅N 〉 is the
N-photon vacuum.

In a realistic situation the generation process will introduce
errors and imperfections. We will take this into account by
modifying the single-round operator (6), which in the most

general case reads

Ô†
j = |1〉 〈0| Â†

10,e, j + |0〉 〈1| Â†
01,e, j

+ |0〉 〈0| Â†
00,e, j + |1〉 〈1| Â†

11,e, j + (e ↔ l ), (8)

where the term in parentheses contains the same four terms
with early replaced by late. Here Â†

kl, j are general operators
expressing the emission of photons for an emitter starting
the jth period in state |l〉 and ending in state |k〉. The op-
erators Â†

kl, j contain all possible changes in the environment
and the resulting leakage of information, e.g., due to phonon
scattering or loss of photons during the pulse sequence. The
environmental degrees of freedom are subsequently traced out
when calculating the fidelity. This approach is slightly differ-
ent than the typical master equation formalism, in which one
traces over the environment from the beginning to achieve a
reduced density matrix for the system. The difference between
the two approaches is, however, only at which stage one traces
over the environmental degrees of freedom and their results
are equivalent.

In Sec. IV we take into account one imperfection at a time
by constructing the corresponding operators (8) and calculate
its effect on the quality of the produced state.

III. ENTANGLEMENT CHARACTERIZATION

A. Operational fidelity

Before moving to the sources of imperfections, we briefly
describe the experimental measurement process and introduce
the corresponding measure of how ideal the state is. The
measure of closeness between two states is conventionally
given by the fidelity, which is defined as

F (N )
exact = Trenv

{〈�id| ρ̂ (N ) |�id〉
}

= Trenv{〈�id|Ô†
N · · · Ô†

1 |�0,∅〉 〈�0,∅|Ô1 · · · ÔN |�id〉},
(9)

FIG. 3. Measurement setup for detecting time-bin-entangled
photons. Measurements in the Z basis are made by passing both
early and late photons through the short arm. For measurement in
the X basis, the early and late photons are passed through the long
and short arms of the interferometer, respectively. The measurement
setup delays the early photon by a time equal to the time difference
between the two excitation pulses, hence early and late photons
arrive at the second beamsplitter at the same time when measured
in the X (or Y) basis. The required photon routing can be done
either passively by beamsplitters, or actively, e.g., using electro-optic
modulators (EOMs). The former is experimentally simple but does
not allow for a deterministic selection of the measurement basis as
the wave packets are randomly reflected and transmitted at the first
beamsplitter. The latter enables low loss measurement at repetition
rates compatible with the typically achievable generation rates in our
scheme.
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where |�id〉 is the ideal state (7) produced by the operators in
Eq. (6) and ρ̂ (N ) is the output N-photon state produced by the
operators (8). The trace over environment here corresponds to
any unobserved degree of freedom, e.g., emitted phonons or
lost photons.

Equation (9) compares the produced state with an outgoing
photon in a well-defined temporal mode. In most experimental
situations, however, one does not have complete information
about the temporal mode. We will therefore slightly modify
the strict definition of the fidelity (9) and introduce an opera-
tional fidelity. The typical experimental method of measuring
time-bin-encoded qubits is to interfere a photon pulse with a
time delayed pulse as shown in Fig. 3. In this interferometer,
measurement in the Z-basis can be performed by letting both

the early and late photon wave packets pass through the short
arm and recording the time of arrival. Alternatively the early
time bin |e〉 can be routed to the long arm of the interfer-
ometer, while the late time bin |l〉 pass through the short
arm. For a balanced interferometer the two wave packets thus
arrive simultaneously at the last beamsplitter, enabling a mea-
surement in the X or Y basis. Importantly, one distinguishes
only between early and a late time bins, while the exact time
of photon emission within each time bin is not resolved or
discarded in the analysis. Thus, one effectively has two sets
of indices labeling time: the number of the time bin j and
the emission time within the time bin, t j . Since the emission
time is not used, we trace it out and obtain the operational
fidelity,

F (N ) = Trenv

{∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| 〈�0| ô1(t1) · · · ôN (tN )ρ̂ (N )ô†

N (tN ) · · · ô†
1(t1) |�0〉 |∅〉

}

= Trenv

{∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| 〈�0| ô1(t1) · · · ôN (tN )Ô†

N · · · Ô†
1 |�0〉 |∅〉 〈∅| 〈�0| Ô1 · · · ÔN ô†

N (tN ) · · · ô†
1(t1) |�0〉 |∅〉

}
, (10)

where ρ̂ (N ) = |� (N )〉 〈� (N )| is the real state defined in (9) and
the operators

ô†
j (t j ) = R̂( |1〉 〈0| â†

l, j (t j ) + |0〉 〈1| â†
e, j (t j )) (11)

are the projectors on the ideal GHZ (R̂ = X̂ ) or cluster (R̂ =
Ĥ ) states.

These two fidelity expressions (9) and (10) will in general
give different results. Which of them provides a better descrip-
tion of concrete quantum information protocol will depend
on the measurement performed in the specific protocol. If all
photons are measured with a setup as in Fig. 3, then the fidelity
in Eq. (10) provides a better description, whereas Eq. (9)
may be a better choice if a different measurement sequence
is used. As a specific example, the quantum repeater protocol
of Ref. [8] considers photon numbers N in the range 200–300.
Out of these only a single photon is interfered with a different
quantum emitter, whereas the remaining N − 1 photons are
measured in a setup as in Fig. 3. For this reason and since this
is the experimentally most accessible quantity, we shall in the
remainder of this article consider only the fidelity in Eq. (10).

B. Photon loss, filtering, and detection

The definition of the operational fidelity (10) is yet to be
modified in order to correspond to an experimentally realistic
measurements.

1. Photon losses

Successful detection of the emitted photons is limited by
the collection of the photons from the waveguide, the sub-
sequent propagation loss, and the detector efficiency. Due to
these imperfections, experiments involving optical photons
will have a nonzero probability to lose photons and only
a fraction η < 1 of the produced photons will result in the
detection event. We model loss of a photon by modifying the

single-mode creation operator (5) as

Â† → √
ηÂ† +

√
1 − η ˆ̃A†, (12)

where ˆ̃A† corresponds to the photons that do not reach the
detector. In an experimental realization optical loss would
lead to cases of unsuccessful entanglement generation and
detection.

Photon loss is a major obstacle in most optical quan-
tum information protocols. Therefore realistic schemes for
quantum information processing involving single photons are
designed to have built-in correction procedures against photon
loss; see, e.g., Refs. [8,39]. By postselecting events where the
correct number of photons are detected, unsuccessful photon
detections are discarded in the quantum protocols and do not
influence the fidelity of the successfully generated photons.
We are therefore interested in computing the fidelity con-
ditioned on the detection of a photon in each cycle. This
corresponds to projecting the output state on the detected pho-
ton subspace, i.e., Ô†

j → P̂n j>0Ô†
j with P̂n j>0 = 1̂ − |∅〉 〈∅|.

The probability of having a photon in each cycle of the proto-
col then reads

P(n1 > 0, . . . , nN > 0) = Tr
{
P̂n1>0 · · · P̂nN >0ρ̂

(N )
}
. (13)

Since we take into account only experimental realizations
with nonzero measurements in each cycle of the protocol,
the probability to accept an experimental realization will
decrease, hence decreasing the probability of a successful
outcome. The conditional fidelity is then given by normalising
F (N ) to the total success probability (13),

F̃ (N ) = F (N )

Tr
{
P̂n1>0 · · · P̂nN >0ρ̂ (N )

} . (14)

The conditional fidelity above captures the quality of the
state once the photons are successfully detected. The overall
success probability does, however, influence the performance
of any quantum protocol. For instance Ref. [8] describe a
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quantum repeater protocol, which can in principle work for
any single photon efficiency above 50% but assumes 95% for
good performance, whereas the scheme for universal optical
quantum computation in Ref. [39] tolerates a loss rate of 1.6%.
These numbers are challenging to achieve, but solid-state im-
plementations are beginning to reach this level with a recent
experiment reaching 85% efficiency [40,41]. The efficiency
is a separate issue from the quality and we here focus on
the quality and evaluate the conditional fidelity. Alternatively
the unconditional fidelity can be obtained from our results
by simply multiplying the results with the associated success
probability, which is essentially given by ηN .

2. Temporal filtering

In the ideal protocol (3) described above, the excitation
|1〉 → |2〉 was considered to be instantaneous. Realistically,
transferring population to the excited state takes the time of
the Rabi π -cycle, which depends on the temporal shape and
duration of the driving pulse. During this period photons from
the driving laser can also leak into the detection arm of the
setup. Thus, it is desirable to ignore the photons which were
possibly emitted during the driving pulse or directly came
from the laser. The undesired photons can be filtered out with
near unit efficiency by keeping the detectors off during the
driving laser pulse or by having shutters which admits photons
only after the end of the excitation pulse.

3. Frequency filtering

The real systems have more complicated energy level
structure than the scheme shown in Fig. 1(a). Not only the res-
onant transition is possible, but also emission of a photon from
the far-detuned transitions, e.g., as in Fig. 2(c). In general,
different transitions can have different collection efficiencies,
which we take into account by redefining single-mode cre-
ation operators as

Â† → √
η2Â† +

√
1 − η2

ˆ̃A†,

B̂† → √
η3B̂† +

√
1 − η3

ˆ̃B†,
(15)

where η2 = ηξ2 and η3 = ηξ3 and the creation operators Â†

and B̂† correspond to the correct (resonant) and the unde-
sired (off-resonant) photons, respectively. Without additional
filtering, the photons from both transitions are collected with
equal efficiency, i.e., ξ2 = ξ3 = 1. Cavity frequency filters can
be added to the experimental setup in order to filter out the
undesired photons and pass only the photons coming from the
main transition. We will assume nonperfect filtering efficiency
by applying filters such that 0 < ξ3 � ξ2 = 1. Note that such
(imperfect) frequency filtering is still compatible with perfect
temporal filtering, e.g., if temporal shutters are placed before
a frequency filter.

4. Detector dark counts

The fidelity at the detection stage can be affected by ran-
dom detector dark counts. The effect of such dark counts
depends on the efficiency η2ξ2 of collecting the desired pho-
tons. The effect is worst if the efficiency is low since in this
limit the dark counts are competing with the relatively scarce
photons counts. The dark counts effectively substitutes an (un-

detected) entangled photon with an uncorrelated photon with
a probability 2NPd , where Pd is the dark count probability
per pulse. Here the factor of 2N accounts for the early and
late time bins of the N repetitions. This probability should
be compared to probability of detecting a photon in the time
window where the dark count happened. Since the random
click has a probability 1/2 of being in the right state this leads
to a total infidelity 1 − F = NPd/(η2ξ2). Currently available
detectors can have Pd ≈ 10−8 for pulses of duration of ≈2 ns.
Hence even for relatively inefficient setups with η2ξ2 ≈ 1%
errors due to the detector dark counts are negligible compared
to other effects we consider here.

A different type of dark counts appears due to background
laser scattering into the detectors. These can be estimated by
similar arguments to give 1 − F = NPb, where Pb is the ratio
of detected background photons to desired photons for a single
excitation round. How this compares to imperfections from
the intrinsic properties of the QD is heavily dependent on the
experimental setup. We shall therefore not include it in the the
discussion below.

In the reminder of this paper, we take into account different
imperfections present in real systems by modifying the cor-
responding single-protocol operators (8) and calculating the
fidelity according to Eqs. (10), (14), and (15).

IV. FIDELITY ASSESSMENT

A. Spin-state-preserving errors

We start our analysis by considering the errors that do
not affect the spin states, but merely modify the single-mode
creation operators (5) leaving the structure of the operators (6)
unaffected. These include ground- and excited-state dephas-
ing, two-photon emission, and excitation of the off-resonant
transitions.

Inserting the GHZ-state operators (8) and (11) into (10)
and assuming that the excitation at different time bins are
uncorrelated, we obtain the unconditional fidelity of the GHZ
state for non-spin-mixing errors,

F (N )[GHZ]

= 1

4
Trenv

∑
u,v=e,l

(∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅〉 〈∅| Âv â†
v (t ) |∅〉

)N

.

(16)

Analogously, the cluster state fidelity reads

F (N )[Cl]

= Trenv

(
1

4

∑
u,v=e,l

∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅〉 〈∅| Âv â†
v (t ) |∅〉

)N

.

(17)

The diagonal terms (u = v) in Eqs. (16) and (17) correspond
to the z-basis measurement, while the off-diagonal terms (u �=
v) correspond to the x-basis measurement, as explained in
Fig. 3. The expressions above are derived under an assump-
tion that the creation operators Â† at different time intervals
commute. This assumption is valid as long as one considers
coupling to a Markovian environment or a non-Markovian
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classical noise, such as drift of the magnetic field or instability
in the driving laser. The detailed derivations of the expressions
(16) and (17) and a discussion of their applicability are given
in Appendix B.

1. Ground-state dephasing

In solid-state emitters, both electron and hole spin states
suffer from interaction with the nuclear spin bath, an effect
also referred to as the Overhauser noise [42]. It results in
a short spin coherence times T ∗

2 , which becomes a limit-
ing factor for a number of quantum information processing
applications. Effectively, the spin-bath induced noise adds a
random shift 
i to the energy levels, as shown in Fig. 2(a).
The corresponding perturbation of the three-level Hamiltonian
is given by

Ĥ ′ =
2∑

i=0


i |i〉 〈i| . (18)

Writing a wave-function ansatz as [43]

|�(t )〉 = c2(t ) |2,∅〉 + c1(t ) |1,∅〉 + c0(t ) |0,∅〉

+
∫ ∞

0
dteφ(t, te)â†(te) |0,∅〉 (19)

and solving for coefficients φ(t, te), c0(t ) yields

φ(t, te) = √
γ e−i
1(t−te )e−i
2te e− γ

2 teθ (t − te)

c0(t ) = e−i
0t . (20)

Thus, the states after the first half of the protocol transform
according to

|1,∅〉 → √
γ e−i 
1T

2

∫ ∞

0
dtee− γ

2 te e−i
21te â†
u, j (te) |1,∅〉 ,

|0,∅〉 → e−i 
0T
2 |0,∅〉 , (21)

where we denote 
21 = 
2 − 
1. Note that after a single full
round of the protocol, both |0〉 and |1〉 states will accumulate a
global phase e−i(
0+
1 )T/2, which is not important and can be
omitted. The initial state |�0〉 therefore transforms according
to the ideal protocol (3), where the single-mode operators Â†

u, j
are defined as

Â†
u, j = √

γ

∫ ∞

0
dte− γ

2 t e−i
21t â†
u, j (t ). (22)

With these operators, each of the four terms in Eqs. (16) and
(17) yields∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅〉 〈∅| Âv â†
v (t ) |∅〉

= γ

∫ ∞

0
dt

∫ ∞

0
dt ′

∫ ∞

0
dt ′′ 〈∅| âu(t )â†

u(t ′) |∅〉︸ ︷︷ ︸
δ(t−t ′ )

〈∅| âv (t ′′)â†
v (t ) |∅〉︸ ︷︷ ︸

δ(t−t ′′ )

e− γ

2 (t ′+t ′′ )ei
12(t ′−t ′′ ) = 1, (23)

and therefore

F (N )
T ∗

2
[GHZ] = F (N )

T ∗
2

[Cl] = 1. (24)

Strikingly, dephasing induced by the interaction with the
nuclear spin bath or any other slow drift of the energy levels
does not affect the quality of the produced state. This happens
due to two reasons. First, as was pointed out earlier, the
duration of the early and late parts of the protocol are equal,
resulting in common global phase e−i(
0+
1 )T/2, which we
omit. This is reminiscent to a spin echo built into the time-bin
generation protocol [44–46]. Second, the experiment does not
resolve the exact photon emission time, but only the number
of a time bin, i.e., the change from the fidelity definition in
Eq. (9) to the fidelity in Eq. (10). Here we interfere only
photons which are emitted exactly T/2 apart using the inter-
ferometer in Fig. 3. This means that the interfered photons
come from events which have spent exactly the same time
in the excited states, ensuring perfect spin echo conditions.
Alternatively this effect can also be understood from the in-
distinguishability of the photons: The ground-state dephasing
results from drifts in the energy levels. These drifts lead to a
spread in the frequency of the photons. Two photons emitted
shortly after each other will however have the same frequency
since the energy levels are assumed not to drift on this small
time scale. The two photon wave packets interfered by the
interferometer in Fig. 3 are thus perfectly indistinguishable,
resulting in no reduction in the interference. We note, how-
ever, that this effect is linked to this particular experimental
configuration. If we are, e.g., interfering photons emitted from
different emitters, this effect may not be applicable and the
more strict fidelity defined in Eq. (9) may provide a more
appropriate characterization.

The immediate consequence of Eq. (24) in the context of
quantum dot emitters is that while the coherence time of a
hole spin is considerably longer than that of an electron, the
dephasing is effectively removed in the protocol and both the
electron spin and the hole spin can be used as the ground-state
qubit with equally good performance.

Above we used the fact that the drift of the energy levels
due to the Overhauser effect happens on the timescales much
slower than a single round of the protocol and thus can be
neglected. On longer times, however, such drift can potentially
influence the coherence and is often referred to as T2 noise.
However, in our protocol the π -pulses are periodically applied
in the middle of each repetition of the protocol, which has
been shown to increase T2 to few microseconds, thus sup-
pressing the corresponding noise [47,48] even if the number
of produced photons is scaled to hundreds for typical quantum
dot emission timescales. We thus expect slow drifts of energy
levels to have a negligible effect on the quality of the produced
multiphoton states and do not consider this type of dephasing.

2. Phonon-induced pure dephasing

The next imperfection we study is pure dephasing of the
excited state induced by scattering of phonons, as shown in
Fig. 2(b). While the spin is excited, it can scatter phonons
thereby inducing a random phase change at a rate γd . This
phonon scattering can take place both during the excitation
pulse and in the period after the excitation, where the emitter
is undergoing spontaneous emission. Since the duration of the
excitation pulse needs to be much shorter than the lifetime of
the excited state, the effects of dephasing during excitation
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pulse will be ignored. The wave function corresponding to
a single emitted photon and one scattered phonon can be
described as

|�〉u, j =
∫ ∞

0
dte

(
φ(te) +

∑
k

φk (te)b̂†
u, j,k

)
â†

u, j (te) |1,∅, ∅̃〉 ,

(25)

where |∅̃〉 denotes the vacuum state of phonons, u = {e, l},
and j is the photon number. The operator b̂†

u, j,k creates a

phonon in mode k and 〈∅̃| b̂u, j,k b̂†
u′, j′,k′ |∅̃〉 = δu,u′δ j, j′δk,k′ , i.e.,

we make a Markovian approximation for the phononic reser-
voir such that phonons scattered in different time bins or
different modes are orthogonal. In Eq. (25) we model only
a first-order scattering process and neglect the probabilities to
scatter more than one phonon per cycle. Since the scattering
of even a single phonon will remove all coherence with the
excited states, the scattering of a second phonon will not
further reduce the fidelity and it is sufficient to consider the
scattering of a single. The coefficients in Eq. (25) were derived
in Ref. [49] and read

φ(te) = √
γ e−( γ

2 +γd )te∑
k

|φk (te)|2 = γ e−γ te (1 − e−2γd te ). (26)

As in the case of ground-state dephasing, phonon scattering
does not alter the spin states and merely modifies the single-
mode operators (5) which now read

Â†
u, j =

∫ ∞

0
dte

(
φ(te) +

∑
k

φk (te)e−iωkte b̂†
u, j,k

)
â†

u, j (te).

(27)
Substituting single-mode operators (27) and the coeffi-

cients (26) into the off-diagonal terms of Eqs. (16) and (17)
yields

Trph

{∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅, ∅̃〉 〈∅, ∅̃| Âv â†
v (t ) |∅〉

}

=
∫ ∞

0
dt |φ(t )|2 = γ

γ + 2γd
, (28)

where u �= v. In Eq. (28) only the terms that do not contain the
phonon creation operators b̂† survive since phonons scattered
in an early and a late time bins are orthogonal. The diagonal
terms of Eqs. (16) and (17) with the coefficients (26) become
unity,

Trph

{∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅, ∅̃〉 〈∅, ∅̃| Âuâ†
u(t ) |∅〉

}

=
∫ ∞

0
dt

(
|φ(t )|2 +

∑
k

|φk (t )|2
)

= 1, (29)

where no cross terms of the form φ(t )φ∗
k (t ) are present since

Trph{b̂†
u, j,k |∅̃〉 〈∅̃| } = 0.

Finally, inserting (28) and (29) into Eqs. (16) and (17)
yields the fidelity of the N-photon GHZ and cluster states in
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Number of photons

0.5

0.6

0.7

0.8

0.9

1

F
id

el
ity

I = 0.98
I = 0.89
I = 0.83

FIG. 4. Fidelities of the GHZ (circles) and the cluster (dots)
states in the presence of phonon dephasing. The first-order approxi-
mation (31) for both the GHZ and the cluster state is shown with solid
lines and agrees well with the exact solution (30) for a large fidelity
F � 0.8. Black, red, and blue curves correspond to the dephasing
rates γd/γ = 0.01, γd/γ = 0.03, and γd/γ = 0.05, respectively.

the presence phonon-induced pure dephasing,

F (N )
ph [GHZ] = 1

2
+ 1

2

(
γ

γ + 2γd

)N

= 1 + IN

2
,

F (N )
ph [Cl] = 1

2N

(
1 + γ

γ + 2γd

)N

=
(

1 + I

2

)N

, (30)

where the degree of indistinguishability is defined as I =
γ /(γ + 2γd ) [50]. Since typically γd � γ , the expressions
above can be expanded around γd/(γ + 2γd ) = 0. In the first-
order approximation, the fidelities of the two states become
identical,

F (N )
ph,approx = 1 − N

γd

γ + 2γd
= 1 − N

1 − I

2
. (31)

Figure 4 shows plots of the fidelities for a realistic range of
parameters and different number of photons.

3. Excitation errors

Next, we take into consideration the errors that can occur
during the excitation of the transition |1〉 ↔ |2〉. The possible
errors consist of two components. First is the probability of
emitting a photon already during the finite duration of the
driving laser pulse used to excite the |1〉 ↔ |2〉 transition. In
the discussion above, the excitation process was considered
to be instantaneous and photons were retrieved only dur-
ing the relaxation time of the protocol following the pump
pulse. However, photon emissions during the driving pulse
are possible and should be taken into account. We assume
temporal filtering by keeping detectors inactive while driving
the system to the excited state, as discussed in Sec. III B.
Hence photons emitted during the driving pulses are assumed
to be lost and we consider only photons emitted during the
subsequent period of free decay.

A second source of imperfection considered here is the
probability of exciting a far-detuned transition |0〉 ↔ |3〉 as
shown in Fig. 2(c). Cavity filters are assumed to suppress
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contributions from off-resonant photons emitted on this tran-
sition, but the excitation of this will still induce dephasing due
to multiphoton emission and the filtering may not be perfect.
Hence we need to evaluate the effect of this.

We note that the two effects depend on the temporal
shape and length of the driving laser pulse in opposite
ways: short high-intensity pulses would allow to highly
suppress the second-order photon emission at the cost of
strongly driving the undesired |0〉 ↔ |3〉 transition. On the

other hand, long and weak driving pulses can suppress the
excitation of the off-resonant transition but will result in
photon emission during the pulse. Thus, our goal here is
twofold: (1) to find an optimal regime of the driving laser
and (2) to evaluate the corresponding fidelity of multiphoton
states.

An extensive analysis of this system is provided in
Ref. [51]. Below we merely outline the central results. We
start by writing a wave-function ansatz as [43]

|�eg〉 = cg(t ) |g,∅〉 + ce(t ) |e,∅〉 +
∫

dteφg(t, te)â†[vg(t − te)] |g,∅〉 +
∫

dteφe(t, te)â†[vg(t − te)] |e,∅〉

+
∫

dte1

∫
dte2φgg

(
t, te1 , te2

)
â†[vg

(
t − te1

)]
â†[vg

(
t − te2

)] |g,∅〉 , (32)

where â†(z) = 1√
2π

∫
dkâ†

kei(k−k0 )z is the creation operator
in real space and vg is the group velocity. The first three
terms in Eq. (32) are analogous to the scenario described by
Eq. (19) and include excited- and ground-states amplitudes
cg(t ) and ce(t ) and the first-order photon emission process
[φg]. The wave function (32) furthermore considers the pos-
sibility to emit a photon during the pulse and to be re-excited
[φe], and the possibility to emit one photon during and one
photon after the pulse [φgg]. Since we currently do not con-
sider the possibility of transitions between the two branches
|1〉 ↔ |2〉 and |0〉 ↔ |3〉, the wave-function ansatz (32) can be
written and solved separately for the resonant two-level sys-
tem ({g, e} = {1, 2}) and the undesired far-detuned transition
({g, e} = {0, 3}).

Taking into account all possible outcomes, the states upon
photon emission become

|1,∅〉 → (
c1 + c2Â†

0 + �1Â†
p1

+ �2Â†
p2

Â†
0

) |1,∅〉 ,

|0,∅〉 → (
c0 + c3B̂†

0 + �0B̂†
p1

+ �3B̂†
p2

B̂†
0

) |0,∅〉 , (33)

where the coefficients �i are such that |�i(Tp)|2 =
vg

∫
dte|φi(Tp, te)|2. The creation operators Â† (B̂†) corre-

spond to emission of a photon from the resonant |1〉 ↔ |2〉
(off-resonant |0〉 ↔ |3〉) transition during (Â†

pi
, B̂†

pi
) or after

(Â†
0, B̂†

0) the pulse. For simplicity we have here ignored the
possibility of two photons being emitted during the pulse. We
therefore evaluate the wave function in Eq. (32) at the end of
the pulse at time Tp keeping at most a single emission during
the pulse. After this time the system will emit a photon if it is
in the excited states. This emission process is independent of
the dynamics during the excitation process and is the denoted
by the same operators A0 and B0 irrespective of the dynamics
during the pulse. Furthermore all coefficients are to be evalu-
ated at the end of the pulse Tp. A single round of the protocol
therefore corresponds to the action of an operator

Ô†
j = R̂( |1〉 〈0| Q̂†

l, j + |0〉 〈1| Q̂†
e, j ), (34)

which has the same form as (8) with the single-
mode operators Â†

u, j replaced by the effective creation

operators

Q̂†
u, j = (

c1 + c2Â†,u
0 + �1Â†,u

p1
+ �2Â†,u

p2
Â†,u

0

)
j

× (
c0 + c3B̂†,v

0 + �0B̂†,v
p1

+ �3B̂†,v
p2

B̂†,v
0

)
j, (35)

where j is a photon number and {u, v} = {e, l}, u �= v.
The operator (35) includes all possible combinations of

photons emitted from two two-level systems in a single round
of the protocol. An ideal noiseless protocol corresponds to
a single photon coming from the resonant transition, i.e., to
Q̂†

u,ideal = ĉ2ĉ0Â†,u
0 with |c0| = |c2| = 1. In order to improve

the quality of the produced state, we consider a combination
of temporal and spectral filters to the output state (34), which
suppress contributions from the terms other than ĉ2ĉ0Â†,u

0 in
(35) as discussed in Sec. III B. First, we accept only exper-
imental instances which contain at least one photon emitted
after the driving pulse, i.e., we reject states that do not contain
Â†

0 or B̂†
0 in (34) at each round of the protocol. Next, we use

frequency filters to reject the photons emitted at the correct
time but with off-resonant frequency, that is, we suppress the
contribution from the B̂†

0 as described in Eq. (15).
The full state after applying the temporal and frequency

filters to the state is given in Appendix C. The single-protocol
operators (35) do not mix the spin states, and therefore the
expressions for the fidelities (16) and (17) are still valid,
with photons emitted during the pulse playing the role of
an environment. Since photons from different time bins are
orthogonal, the only term that survives the trace operation in
the off-diagonal terms of Eqs. (16) and (17) is

D1 = Trp

{∫ ∞

0
dt 〈∅| âv (t )Q̂†

v, j |∅〉 〈∅| Q̂u, j â
†
u(t ) |∅〉

}

= η2|c0c2|2 (36)

with u �= v. The diagonal terms read

D2 = Trp

{∫ ∞

0
dt 〈∅| âu(t )Q̂†

u, j |∅〉 〈∅| Q̂u, j â
†
u(t ) |∅〉

}

= η2(|c0c2|2 + |c0�2|2 + |�0c2|2 + |�0�2|2)

+ η2(1 − η3)(|c2c3|2 + |�2c3|2 + |�3c2|2 + |�3�2|2).
(37)
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FIG. 5. Conditional fidelities of the five-photon GHZ state for
a Gaussian-shaped pulse as a function of the pulse length γ TFWHM

(x axis) and lifetime of the excited state, 
/γ (y axis) at a fixed

 = 2π × 16 ns−1. Panels (a) and (b) correspond to the fidelity
with excitation errors F̃exc only and to the combined fidelity F̃comb,
respectively. In (b) we have assumed a ratio of 
/γd = 1.7 × 103,
which roughly corresponds to quantum dots in a 2 T magnetic field
at a temperature of 1.8 K.

Finally, postselection is taken into account by dividing the
fidelity by the success probability, i.e., the probability that at
least one photon has been detected,

P(n j > 0) = D2 + D3, (38)

where

D3 = η3(|c3c1|2 + |c3�1|2 + |�3c1|2 + |�3�1|2

+ |c3c2|2 + |c3�2|2 + |�3c2|2 + |�3�2|2). (39)

Substituting Eqs. (36)–(39) into (14) yields the conditional
fidelities of the GHZ and the cluster states,

F̃ (N )
exc [GHZ] = 1

2

DN
1 + DN

2

(D2 + D3)N
,

F̃ (N )
exc [Cl] = 1

2N

(
D1 + D2

D2 + D3

)N

. (40)

The detailed derivations of Eqs. (36)–(39) are provided in
Appendix C.

The final step is the calculation of the coefficients in
Eq. (40), which depend on the temporal shape of the driv-

ing light pulse, photon emission rate γ , detuning 
, and
filtering efficiencies ξ2, ξ3. In the Appendix C, we provide a
system of coupled differential equations for the coefficients
{ci(t ),�i(t )}, which where solved numerically under the as-
sumption that the driving laser pulse has a Gaussian temporal
profile. Figure 5(a) shows the calculated conditional fidelity of
the five-photon GHZ state. We vary the emission rate γ and
full width half maximum pulse length TFWHM while keeping a
fixed detuning of the state |3〉 from the resonant transition. To
ensure that we have a finite pulse duration, experiments will
have to truncate the Gaussian pulse. In our simulation we do
this at Tp = 3.2 × TFWHM. Choosing a too long pulse duration
will affect the success probability since the excitation in the
excited state will decay, and hence a compromise will have
to be made between the truncation of the Gaussian and the
success probability.

As follows from Fig. 5(a), reducing the emission rate γ

at fixed values of the detuning 
 and γ TFWHM improves the
fidelity of the state. On the other hand, according to Eq. (30),
increasing the emission rate results in a higher dephasing
fidelity since the system spends less time in the excited state.
Therefore, we show the combined fidelity F̃comb = FphF̃exc in
Fig. 5(b) assuming fixed values 
 = 2π × 16 ns−1 and γd =
0.06 ns−1. The calculated optimal parameters are TFWHM,opt =
0.06 ns and γopt = 3.2 ns−1, which corresponds to a degree
of indistinguishability Iopt = 0.96 and falls within the ex-
perimentally realistic range of parameters for quantum dots.
Figure 5 shows only the results for the GHZ state since the
fidelity of the cluster state is almost identical in the considered
range of parameters. Figure 6(a) shows comparison between
the fidelities with and without frequency filters. Evidently,
frequency filters have a very small effect on the excitation
errors in the assumed range of experimental parameters, but as
shown below it will have a much larger effect on the branching
error.

In Appendix C we also derive an analytical solution corre-
sponding to the simplified model where (1) a square-shaped
driving pulse is used, (2) frequency filters have perfect effi-
ciency, ξ2 = 1, ξ3 = 0, and (3) dynamics is solved up to the
first order in perturbation theory. Furthermore we chose the
pulse duration and intensity such that a perfect π -pulse is
achieved on the resonant transition, whereas the off-resonant
transition perform an off-resonant 2π Rabi oscillation, ideally
returning all amplitude from state |3〉 to state |0〉. With these
assumptions, the conditional fidelity reads

F̃ (N )
exc,sq = 1 − N

√
3π

8

γ



. (41)

Using a square shape approximation of the driving laser pulse
serves as a good approximation and gives a simple analytical
expression for the fidelity at optimal parameters, as one can
observe in Fig. 6(b).

B. Branching error

In the preceding discussion, we have assumed that only the
vertical transitions in Fig. 2(c) were allowed. This section is
devoted to studying a more complex decay structure.

First, we study how imperfect decay ratios affect the qual-
ity of the generated quantum state. A level diagram with an
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FIG. 6. (a) Effect of frequency filtering. Optimized combined
fidelities of the GHZ (circles) and the cluster (dots) states as a func-
tion of a number of photons with frequency filters such that η2 = 1,
η3 = 0.02. Solid and dashed lines correspond to, respectively, the
GHZ and the cluster state without frequency filtering. (b) Validity of
the first-order and square-shaped pulse approximations. Comparison
between the combined fidelity of the GHZ state from the exact
numerical solution for a Gaussian driving pulse (40) (circles) and its
first-order approximation for a square pulse (41) (black solid line),
respectively. The exact and first-order fidelities of the cluster state
are shown with red dots and dashed lines, respectively. Parameters
values are given in the text.

additional decay path is shown in Fig. 2(d). Since the excita-
tion of the level |3〉 in Fig. 2(c) constitute an error in itself,
we will ignore a similar additional decay path from this level
and focus on the level scheme in Fig. 2(d). We characterize
the two decay paths by parameters β‖ and β⊥, which are
the probabilities to emit a photon into the waveguide through
the correct (|2〉 −→ |1〉) or the incorrect diagonal (|2〉 −→ |0〉)
transition, respectively.

Next, we consider photon losses, which we will divide into
intrinsic and extrinsic losses. Intrinsic losses correspond to the
photon emitted through the vertical or the diagonal transition
out of the waveguide mode, corresponding to two additional
processes shown in Fig. 2(d). The two processes occur with
probabilities β ′

‖ and β ′
⊥ for the desired and undesired transi-

tion, respectively. Extrinsic losses were discussed in Sec. III B
and correspond to the overall efficiency η of the experimental
setup and include all possible losses between the waveguide

and the detector. Taken together, the probabilities to emit and
detect a photon coming from either the vertical or the diagonal
transition are given by

p‖ = η2β‖, p⊥ = η3β⊥, (42)

while the probabilities of losing the corresponding photons are

p′
‖ = β ′

‖ + (1 − η2)β‖,

p′
⊥ = β ′

⊥ + (1 − η3)β⊥, (43)

where ηi = ηξi, η � 1, and ξi = 1 (ξi � 1) without (with)
frequency filters on the ith transition. The full state after a
single round of the protocol then reads

|� (1)〉 = 1√
2

R̂
( |0〉 {√

p‖ |e,∅〉 +
√

p′
‖ |1e‖,∅〉 + √

p⊥ |l ′,∅〉

+ p⊥ |l ′, e′〉 +
√

p⊥ p′
⊥ |l ′, 1e⊥〉

+
√

p′
⊥ |1l⊥,∅〉 +

√
p⊥ p′

⊥ |e′, 1l⊥〉 + p′
⊥ |1e⊥, 1l⊥〉}

+ |1〉 {√
p‖ |l,∅〉 + √

p‖ p⊥ |l, e′〉 +
√

p‖ p′
⊥ |l, 1e⊥〉

+
√

p′
‖ |1l‖,∅〉 +

√
p′

‖ p⊥ |e′, 1l‖〉

+
√

p′
‖, p′

⊥ |1l‖, 1e⊥〉}), (44)

where |e′〉 and |l ′〉 are, respectively, early and late photons
emitted into the waveguide through the diagonal |2〉 → |0〉
transition of Fig. 2(d) and |1u‖〉 (|1u⊥〉) denotes a late (u = l)
or an early (u = e) photon that has been lost after being
emitted in a vertical (diagonal) transition. Again the operator
R̂ is X̂ and Ĥ for the GHZ and the cluster state, respectively.
As expected, Eq. (44) reduces to the ideal state (7) for p‖ = 1
and p⊥ = p′

⊥ = p′
‖ = 0.

The expressions for the fidelities (16) and (17) were de-
rived under the assumptions that only the vertical transitions
between spin states were allowed, and are thus not valid when
imperfect branching in Fig. 2(d) is taken into account. We thus
need to derive new expressions for the fidelity in this case.
This calculation is different for the GHZ and cluster states,
and will thus be handled separately below.

1. GHZ state with branching errors

We start by calculating the fidelity of the GHZ state, which
corresponds to R̂ = X̂ in Eqs. (44) and (11). Using the same
formalism as in the previous sections, the single round opera-
tors that produce a correct GHZ state read

Ô†
j = |1〉 〈1| (√p‖Â†

e, j +
√

p′
⊥ p⊥Â†

e′, j L̂
†
j

)
+ |0〉 〈0| √p‖Â†

l, j + |0〉 〈1|
√

p′
⊥ p‖Â†

l, j Ê
†
j , (45)

where L̂†
j = |1l⊥, j〉 〈∅| and Ê†

j = |1e⊥, j〉 〈∅|. Therefore, for a
single round of the protocol,

ô1(t1)Ô†
1 = |1〉 〈1| âe,1(t1)

(√
p‖Â†

e,1 +
√

p′
⊥ p⊥Â†

e′,1L̂†
1

)
+ |0〉 〈0| √p‖â1(t1)Â†

l,1

+ |0〉 〈1|
√

p′
⊥ p‖âl,1(t1)Â†

l,1Ê†
1 . (46)
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Repeating the protocol N times with the initial spin state |�0〉,
we arrive at

〈�0| ô1(t1) · · · ôN (tN )Ô†
N · · · Ô†

1 |�0〉

= 1

2

[
N∏

j=1

âe, j (t j )(
√

p‖Â†
e, j +

√
p′

⊥ p⊥Â†
e′ j L̂

†
j )

+ p‖N/2

(
N∏

j=1

âl, j (t j )Â
†
l, j +

√
p′

⊥

N∏
j=1

âl, j (t j )Â
†
l, j Ê

†
j

)]
.

(47)

We now insert Eq. (47) and its Hermitian conjugate into
(10) (for detailed derivations, see Appendix D) and arrive at
the expression for the unconditional fidelity of the GHZ state,

F (N )
br [GHZ] = (p‖ + p′

⊥ p⊥)N + pN
‖ (3 + p′

⊥)

4
. (48)

Since we reject the experimental outcomes where no pho-
tons have been detected, the final conditional fidelity (14)
has to be normalized to the probability of detection P(n1 >

0, . . . , nN > 0) and becomes

F̃ (N )
br [GHZ] = (p‖ + p′

⊥ p⊥)N + pN
‖ (3 + p′

⊥)

4P(n1 > 0, . . . , nN > 0)
. (49)

Each round of the protocol mixes the spin states due to
the branching error, and the probability of detecting a photon
in each of N rounds is not merely a product of individual
probabilities. Instead, the success probability can be expanded
as a product of conditional probabilities. Let P(nj, s = s0)
be a probability that a photon has been emitted and de-
tected in jth round of the protocol with the spin ending
in a state s0. Then the following set of equations can be
written:

P(n1, . . . , nN ) = P(n1, . . . , nN , s = 0) + P(n1, . . . , nN , s = 1) = (1 1)

(
P(n1, . . . , nN , s = 0)

P(n1, . . . , nN , s = 1)

)

= (1 1)

(
P(nN , s = 0|n1, . . . , nN−1, s = 0)P(n1, . . . , nN−1, s = 0) + P(nN , s = 0|n1, . . . , nN−1, s = 1)P(n1, . . . , nN−1, s = 1)

P(nN , s = 1|n1, . . . , nN−1, s = 0)P(n1, . . . , nN−1, s = 0) + P(nN , s = 1|n1, . . . , nN−1, s = 1)P(n1, . . . , nN−1, s = 1)

)

= (1 1)

(
P(n1, s = 0|n1, . . . , nN−1, s = 0) P(nN , s = 0|n1, . . . , nN−1, s = 1)

P(nN , s = 1|n1, . . . , nN−1, s = 0) P(nN , s = 1|n1, . . . , nN−1, s = 1)

)(
P(n1, . . . , nN−1, s = 0)

P(n1, . . . , nN−1, s = 1)

)

= (1 1)

(
M00 M01

M10 M11

)(
P(n1, . . . , nN−1, s = 0)

P(n1, . . . , nN−1, s = 1)

)
= (1 1)MN

(
P(s = 0)

P(s = 1)

)
= (1 1)MN

(
1/2

1/2

)
, (50)

where the matrix M consists of the elements Mi j which are the probabilities to detect a photon while changing spin state from j
to i between adjacent repetitions of the protocol. The elements of M can be derived by taking into account all possible processes
in (44) that result in at least one photon detection,

M00 = p‖, M11 = p‖ + 2p⊥ p′
⊥ + p2

⊥, M01 = p‖(p⊥ + p′
⊥) + p′

‖ p⊥, M10 = p⊥. (51)

Finally, we insert (48), (50), and (51) into Eq. (14) to obtain an expression for the conditional fidelity. Numerically calculated
conditional fidelities for different number of photons are shown in Fig. 7.

The success probability (50) can be expanded up to the first order around a small parameter pwrong/p‖ � 1 as

P(N ) = 1

2
(1 1)MN

(
1

1

)

= pN
‖

2
(1 1)

[
1̂ + 1

p‖

(
0 p‖(p⊥ + p′

⊥) + p⊥ p′
‖

p⊥ p⊥(p⊥ + 2p′
⊥)

)]N(
1

1

)

= pN
‖

(
1 + N

2p‖
[p‖(p⊥ + p′

⊥) + p′
‖ p⊥ + p⊥(1 + p⊥ + 2p′

⊥)]

)
,

where pwrong is any p other than p‖. The conditional fidelity (14) to first order in pwrong/p‖ then becomes

F̃ (N )[GHZ] = F (N )[GHZ]

pN
‖
{
1 + N

2p‖
[p‖(p⊥ + p′

⊥) + p′
‖ p⊥ + p⊥(1 + p⊥ + 2p′

⊥)]
}

≈
(

1 + p′
⊥ p‖ + N p′

⊥ p⊥
4p‖

)(
1 − N

2p‖
[p‖(p⊥ + p′

⊥) + p′
‖ p⊥ + p⊥(1 + p⊥ + 2p′

⊥)]

)

≈ 1 − N
p⊥(1 + p‖) + p′

‖ p⊥ + p‖ p′
⊥

2p‖
+ p′

⊥
4

. (52)
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FIG. 7. State fidelities with imperfect branching. Numerically
calculated fidelities of the GHZ and cluster states are shown circles
and dots, respectively. The solid lines show the first-order perturba-
tive expressions for both the GHZ and the cluster states. Black and
blue correspond to the fidelities with and without frequency filters,
respectively. Here we use numerically simulated branching param-
eters for quantum dots embedded in a photonic crystal waveguide
[52]: β⊥ = 0.05, β ′

⊥ = 0.0025, β ′
‖ = 0.0025, β‖ = 1 − β⊥ − β ′

⊥ −
β ′

‖ = 0.99, corresponding to a branching ratio of B ≈ 140.

As one can see from Fig. 7, the first-order approximation is
accurate for few-photon GHZ states with high fidelity.

Next, we consider the typical experimental situation, where
the collection efficiency is low and no frequency filtering is
applied, which corresponds to η3 = η2 = η. Substituting (42)
and (43) into Eq. (52) yields

F̃ (N )
br,approx[GHZ] ≈ 1 − N

(
3β⊥ + β ′

⊥
2

)
+ β ′

⊥
4

. (53)

Frequency filters can be applied to suppress the con-
tribution from the undesired diagonal transition, which
corresponds to the creation operator B̂† in (15). Filtering the
undesired photons can be accounted for by putting η3 � η2 =
η, which then yields

F̃ (N )
br,approx[GHZ] ≈ 1 − N

β⊥ + β ′
⊥

2
+ β⊥ + β ′

⊥
4

= 1 − 1

2(B + 1)

(
N − 1

2

)
, (54)

where B = (β‖ + β ′
‖)/(β⊥ + β ′

⊥) is the branching ratio be-
tween vertical and diagonal transitions in Fig. 2(d). As evident
from Fig. 7, application of spectral filters improves the fidelity
of the generated GHZ state with imperfect decay, which con-
trasts with the case of imperfect excitation (see Fig. 6).

2. Cluster state with branching errors

The calculation of the cluster-state fidelity with branching
errors is similar to that of the GHZ state. Keeping only the
terms that generate a correct cluster state, the single-round
operator reads

Ô†
j = |+〉 〈1| (

√
p‖Â†

e, j +
√

p′
⊥ p⊥Â†

e′, j L̂
†
j )

+ |−〉 〈0| √p‖Â†
l, j + |−〉 〈1|

√
p′

⊥ p‖Â†
l, j Ê

†
j δ j,1. (55)

The first two processes correspond to the ideal operation of
the protocol, while the other two produce the correct state
due to the incorrect operation, i.e., via the diagonal transition.
Furthermore, the Kronecker delta in the last term expresses
the fact that only the first photon can produce the correct state
when emitted in such process. Any other photon emitted in
such process will results in a wrong spin-photon entangled
state and hence will not contribute to the fidelity of the final
state. As shown in Appendix. D 2, the unconditional fidelity
of the cluster state reads

F (N )
br [Cl] =

(
p‖ + p⊥ p′

⊥
4

)N−1(
p‖ + p⊥ p′

⊥
4

+ p‖ p′
⊥

4

)
.

(56)

The success probability P(n1 > 0, . . . , nN > 0) (50) is calcu-
lated analogously to the GHZ state with the matrix elements

M11 = M01 = p‖ + p2
⊥ + p⊥ p‖ + p′

⊥ p‖ + p⊥ p′
‖ + 2p⊥ p′

⊥
2

,

M10 = M00 = 1

2
(p‖ + p⊥).

Normalizing the fidelity (56) to the success probability yields
the conditional fidelity shown in Fig. 7. In the first-order
approximation, the fidelities of the cluster and GHZ state are
identical and read

F̃ (N )
br,approx[Cl] = F̃ (N )

br,approx[GHZ]

≈ 1 − N

(
3β⊥ + β ′

⊥
2

)
+ β ′

⊥
4

(57)

and

F̃ (N )
br,approx[Cl] = F̃ (N )

br,approx[GHZ]

≈ 1 −
(

N − 1

2

)(
β⊥ + β ′

⊥
2

)
, (58)

without and with the frequency filters, respectively. The dif-
ference of β⊥ between the frequency-filtered and unfiltered
output states can be understood by considering the difference
between the effect of wrong photons emitted in the early and
late time bins. With filtering, a diagonal transition in the late
time bin does not create any photon and is thus removed by
postselection. Bad effects thus appear only if the diagonal
decay happens in the early time bin, followed by vertical
decay in the late time bin. With filtering the wrong decay thus
enters with only half the probability (β⊥ + β ′

⊥)/2 (except if if
happens in the first round where it disturbs only coherences
and thus has half the effect, hence the factor of N − 1/2).
Without filtering, however, also diagonal decays going into
the waveguide in the late time bin will be accepted and early
emissions on the diagonal transition will have twice the proba-
bility to be accepted since two photons are emitted in this case.
Both of these effects result in the addition of the probability
β⊥/2.

C. Total fidelity and nature of the errors

Taking into account all error sources discussed above, we
approximate the fidelity of the GHZ and cluster states by the
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FIG. 8. Total fidelity versus number of photons with all imper-
fections and frequency filtering taken into account. Circles and dots
show the fidelity of the GHZ and cluster states, respectively, and the
solid line shows the first-order perturbative approximation of both
states (60). Red symbols correspond to the different contributions
in Eq. (59), namely, dephasing Fph (×), excitation errors F̃exc (�),
and imperfect branching F̃br (+). Here 
 = 2π × 64 GHz, γd =
0.06 ns−1, γopt = 5.3 ns−1, and β-factors are the same as in Fig. 7.

product of the individual fidelities,

FGHZ/Cl = Fph × F̃exc × F̃br. (59)

Combining Eqs. (30), (41), and (58), the first-order analytical
expression is equivalent for both states and reads

Fapprox = 1 + 1

4(B + 1)

− N

(
γd

γ + 2γd
+ 1

2(B + 1)
+

√
3π

8

γ




)
. (60)

Figure 8 shows the comparison between the full states fideli-
ties and the first-order perturbative formula (60).

So far we have considered only the fidelity of the state,
which gives a simple characterization of the quality of the
state. The fidelity, however, reduces all imperfections to a
single number and does not provide a full characterization of
the complex many body state. More insight into the nature of
the generated state can be obtained by further characterizing
the nature of the errors occurring in the generation process.

The error arising from dephasing affects the coherence
between the internal states |0〉 and |1〉 or equivalently the
early and late time bins. This error can thus be char-
acterised as a phase flip error acting on the spin qubit
before the last rotation pulse R̂, or on the emitted pho-
ton. The excitation error takes a similar form. In the limit
where we have efficient filtering of off-resonant photons,
the excitation errors conserve the logical basis states. This
error can thus also be represented as the same phase flip.
The branching error is more complicated. This process
simultaneously affects the spin and the emitted photon.
We analyze this situation more carefully in Appendix E,
where we show that the dominant term from the branching
error simultaneously affect two neighboring qubits.

A detailed understanding of nature of the error can be im-
portant for understanding potential applications of the states

towards more advanced applications. As a particular example
Refs. [53–55] investigate the application of cluster states for
universal quantum computation. Here different error thresh-
olds are derived for models where single qubit errors are
applied after the state preparation and for more detailed model
that include initialization, entanglement, memory, and mea-
surement errors. In the former model an error threshold of
3.2% (1.4%) per qubit are derived when computations are
made with 3D (2D) cluster states. In Fig. 8 we use the realistic
parameters for a QD-based emitter embedded in a photonic
nanostructure [52]. Such systems are considered to be main
candidates for producing streams of entangled photons due
to simultaneously achievable high photon generation rates
[50], good optical and spin coherence properties [50,56–58],
near-perfect spin rotations [59], and a high internal efficiency
β [60]. For the parameters of Figs. 7 and 8, the resulting
infidelity per photon is 2.1%, which consists of 1.8% of
single-qubit errors and 0.3% of two-qubit errors. The error is
thus roughly comparable to those models and it is very encour-
aging that our estimates for current experimental parameters
are of a similar magnitude as fault-tolerance requirements.
Extending cluster states to two or three dimensions will of
course introduce additional errors that are likely to reduce
the quality of the produced states below the requirements
for fault tolerance. Furthermore errors due to photon loss
will also have to be accounted for. The exhaustive theoretical
analysis conducted in this work, however, identifies the main
bottlenecks and provides a clear pathway for improving fur-
ther beyond what is currently possible in the experiments. A
full assessment of higher-dimensional states is outside of the
scope of this work and calls for further extensive theoretical
investigation.

Finally, while fault-tolerant quantum computation is be-
yond reach of any currently available technology, the require-
ments for quantum communication tasks are typically much
less stringent. The generated states are time-bin-entangled
states of photons and thus ideally suited for quantum com-
munication through optical fibers. Indeed the generated
GHZ-states can be directly applied to anonymous transmis-
sion [61–63], secret sharing [30], and leader election [64].
Taking the anonymous transmission protocol [61–63] as an
example, the error threshold is known to depends on the
number of communicating parties. According to the security
analysis of Ref. [61], the predicted error rates are within the
threshold for up to at least 50 parties and almost an order of
magnitude below the threshold for four parties.

V. CONCLUSION

In conclusion, we have developed a theoretical approach
for assessing the fidelity of entangled photonic states pro-
duced by a single quantum emitter. We derive simple
analytical expressions for evaluating the fidelity of the gen-
erated states. These expression provide a clear recipe for
optimization of experimental parameters, such as photon
emission rate and duration of the driving laser pulses. Our
framework can be straightforwardly applied to a broad range
of quantum emitters, including semiconductor QDs coupled
to nanophotonic structures, defect centers in solids, and atoms
in cavities. With the rapid experimental developments in
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quantum nanophotonics we expect that these results can form
the basis of near-future realizations of multiphoton emitters
with a performance exceeding existing methods.

The considered time-bin generation protocol appears to be
a particularly promising approach for the sequential produc-
tion of entangled photons from quantum dot emitters (see also
a more detailed discussion in Ref. [52]). Here it is highly
appealing that our analysis shows that the output state is insen-
sitive to a number of slow drifts of experimental parameters.
Therefore, for instance, the very short T ∗

2 coherence time of
spin qubits in quantum dots, which is a limiting factor in many
quantum-information applications, does not compromise the
protocol considered here. Based on our theoretical considera-
tions, we predict that currently available quantum dot emitters
can be used to produce five-photon GHZ and cluster states
with fidelities of approximately 80%. A fidelity above the
50% level is present in states containing up to 10 subsequent
photons. This is comparable to the state of the art achieved
thus far with other methods [21,22], but the generation rate is
expected to be much higher with the presented deterministic
approach.
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APPENDIX A: IDEAL SCHEME FOR GENERATION
OF THE CLUSTER STATE

Below we prove that the ideal scheme generates the cluster
state for arbitrary large number of photons. Consider a single
round of the protocol discussed in Sec. II, which can be
written as

Ô† = Ĥ L̂†X̂ Ê† = 1√
2

((|0〉 + |1〉) 〈0| + (|0〉 − |1〉) 〈1|)

× (|0〉 〈0| + |1〉 〈1| â†
l )( |0〉 〈1| + |1〉 〈0|)

× (|0〉 〈0| + |1〉 〈1| â†
e )

= 1√
2

(|0〉 + |1〉) 〈1| â†
e + 1√

2
(|0〉 − |1〉) 〈0| â†

l , (A1)

where Ê† and L̂† are, respectively, the operators correspond-
ing to the generations of an early and a late photons. For
convenience, let us change basis and choose the logical spin
states as |0〉 → |1〉, |1〉 → |0〉 and the logical photon states
as â†

e → â†
0, â†

l → −â†
1, thus turning the operator of Eq. (A1)

into

Ô† = |+〉 〈0| â†
0 + |−〉 〈1| â†

1, (A2)

where â†
0 and â†

1 create photons in states |0〉 and |1〉,
respectively, and |±〉 = (|0〉 ± |1〉)/

√
2. By definition, an

(N+1)-qubit cluster state is a simultaneous eigenstate of the

operators ĝi, where

ĝi = Ẑi−1X̂iẐi+1 ∀i = [1, N − 1],

ĝ0 = X̂0Ẑ1, ĝN = ẐN−1X̂N , (A3)

with Ẑ and X̂ being the Pauli-Z and Pauli-X ma-
trices, respectively. We will now prove the following
theorem:

Theorem. Assume that |�N 〉 is a cluster state generated by
the action of the operator Ô† (A2), such that gi = 1 ∀ i =
[0, N]. Then the state |�N+1〉 = Ô† |�N 〉 is also a cluster state
with gi = 1 ∀ i = [0, N + 1].

Proof. We start by writing the operator Ô† from (A2) in two
bases,

Ô†
x←z = |+〉 â†

0 〈0| + |−〉 â†
1 〈1| (A4)

and

Ô†
z←x = 1√

2
( |0〉 â†

+ + |1〉 â†
−) 〈+|

+ 1√
2

( |0〉 â†
− + |1〉 â†

+) 〈−| , (A5)

where â± = (â0 ± â1)/
√

2.
Since the cluster state is an eigenstate of ĝN and ĝN−1, the

general form of the state |�N 〉 can be written in each of the
two bases, ∣∣� (xz)

N

〉 = |+0〉 ∣∣� (+0)
N−2

〉 + |−1〉 ∣∣� (−1)
N−2

〉
(A6)

and ∣∣� (zx)
N

〉 = |0 + 0〉 ∣∣� (0+0)
N−3

〉 + |1 − 0〉 ∣∣� (1−0)
N−3

〉
+ |0 − 1〉 ∣∣� (0−1)

N−3

〉 + |1 + 1〉 ∣∣� (1+1)
N−3

〉
, (A7)

where we label the spin-photon states such that the spin state
is always the ket-vector furthest to the left followed by the
photon states, i.e., |�N 〉 = |Spin, PhotonN , PhotonN−1, . . .〉.

To prove that the state |�N+1〉 is a cluster state, we need
to show that all stabilizers obey gi = 1 ∀ i = [0, N + 1]. The
operator Ô† acts only on the qubit no. N and adds the qubit no.
(N + 1). Thus, it does not change the value of the stabilizers
g1 to gN−2 and it suffices to prove that the eigenvalues of the
stabilizers ĝN−1, ĝN , and ĝN+1 are equal to 1. First, we act with
the operator Ô†

x←z (A4) on the state |� (zx)
N 〉 (A7),∣∣�xz

N+1

〉 = Ô†
x←z

∣∣� (zx)
N

〉
= |+0 + 0〉 ∣∣� (0+0)

N−3

〉 + |−1 − 0〉 ∣∣� (1−0)
N−3

〉
+ |+0 − 1〉 ∣∣� (0−1)

N−3

〉 + |−1 + 1〉 ∣∣� (1+1)
N−3

〉
. (A8)

From the second line of the equation above it follows that the
gN+1 = 1 and gN−1 = 1.

Next, we act with the operator Ô†
z←x (A5) on the state

|� (xz)
N 〉 (A6),∣∣�zx

N+1

〉 = Ô†
z←x

∣∣� (xz)
N

〉
= |0 + 0〉 ∣∣�+0

N−2

〉 + |1 − 0〉 ∣∣�−0
N−2

〉
+ |0 − 1〉 ∣∣�−1

N−2

〉 + |1 + 1〉 ∣∣�+1
N−2

〉
. (A9)

052604-14



FIDELITY OF TIME-BIN-ENTANGLED MULTIPHOTON · · · PHYSICAL REVIEW A 104, 052604 (2021)

Therefore, the state |�zx
N+1〉 obeys gN = 1 and we have proven

that all stabilizers obey gi = 1. Thus, an operator Ô† takes an
N-qubit cluster state to an (N + 1)-qubit cluster state. This
concludes the proof of the theorem. �

To complete the proof that the procedure creates a cluster
state we still need to show that we can generate a cluster state
for a small N . This can be proven by applying the operator Ô†

of Eq. (A2) twice to a qubit initially prepared in |�0〉 = |+〉,
which produces a state

|�2〉 = Ô†
2Ô†

1 |�0,∅〉 = 1√
2

( |+0+〉 + |−1−〉)

= 1

2
(|0 + 0〉 + |1 + 1〉 + |0 − 1〉 + |1 − 0〉). (A10)

This state can be directly verified to be a cluster state.

APPENDIX B: FIDELITIES OF NON-SPIN-MIXING ERRORS

1. GHZ state

The N-photon operators that enter the expression for the operational fidelity (10) read

ô1 · · · ôN Ô†
N · · · Ô†

1 = |1〉 〈1| âe,1(t1)Â†
e,1 · · · âe,N (tN )Â†

e,N + |0〉 〈0| âl,1(t1)Â†
l,1 · · · âl,N (tN )Â†

l,N . (B1)

Inserting (B1) and its Hermitian conjugate into equation for the operational fidelity (10), we obtain

F (N )[GHZ] = Trenv

{∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| 〈�0| ( |1〉 〈1| âe,1(t1)Â†

e,1 · · · âe,N (tN )Â†
e,N + |0〉 〈0| âl,1(t1)Â†

l,1 · · · âl,N (tN )Â†
l,N )

|�0〉 |∅〉 〈∅| 〈�0| ( |1〉 〈1| Âe,1â†
e,1(t1) · · · Âe,N â†

e,N (tN ) + |0〉 〈0| Âl,1â†
l,1(t1) · · · Âl,N â†

l,N (tN )) |�0〉 |∅〉

= 1

4
Trenv

{ ∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| (âe,1(t1)Â†

e,1 · · · âe,N (tN )Â†
e,N + âl,1(t1)Â†

l,1 · · · âl,N (tN )Â†
l,N ) |∅〉

〈∅| (Âe,1â†
e,1(t1) · · · Âe,N â†

e,N (tN ) + Âl,1â†
l,1(t1) · · · Âl,N â†

l,N (tN )) |∅〉
}

= 1

4
Trenv

{ ∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| (âe,1(t1)Â†

e,1 · · · âe,N (tN )Â†
e,N |∅〉 〈∅| Âe,1â†

e,1(t1) · · · Âe,N â†
e,N (tN )) |∅〉

+
∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| (âl,1(t1)Â†

l,1 · · · âl,N (tN )Â†
l,N |∅〉 〈∅| Âe,1â†

e,1(t1) · · · Âe,N â†
e,N (tN )) |∅〉

+
∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| (âe,1(t1)Â†

e,1 · · · âe,N (tN )Â†
e,N |∅〉 〈∅| Âl,1â†

l,1(t1) · · · Âl,N â†
l,N (tN )) |∅〉

+
∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| (âl,1(t1)Â†

l,1 · · · âl,N (tN )Â†
l,N |∅〉 〈∅| Âl,1â†

l,1(t1) · · · Âl,N â†
l,N (tN )) |∅〉

}

= 1

4
Trenv

∑
u,v=e,l

( ∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅〉 〈∅| Âv â†
v (t ) |∅〉

)N

. (B2)

In the last step we have used that the photonic operators Âu for different time periods commute. This means that the photonic
part of the matrix element can be separated into products. Note, however, that the operators Â†

u may contain couplings to different
degrees of freedom, for which this factorization may not be the applicable, e.g., in Sec. IV A 2, Â†

u contain the coupling to
a phononic environment. In this case the N th order product of Â†

u operators should in principle be evaluated as a suitable
time-ordered product for different periods. We will, however, consider only situations in which this product can be completely
separated, e.g., a Markovian phononic reservoir.

In general the approximation applied here is reminiscent of the Markovian approximation often employed in quan-
tum optics, but not exactly the same. In particular slowly varying classical parameters as considered in Sec. IV A 1 do
not fit into the usual Markovian approximation, but is still compatible with (B2), provided that the average over the
classical parameter (implied by Trenv) is performed for the final N th-order product and not for each term individually.
On the other hand, the situation would be more complicated if we were, e.g., considering a non-Markovian phononic
reservoir.
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2. Cluster state

For the cluster state the two-photon operator is

ô1(t1)ô2(t2)Ô†
2Ô†

1 = ( |1〉 〈0| âe,1(t1) + |0〉 〈1| âl,1(t1))Ĥ†( |1〉 〈1| âe,2(t2)Â†
e,2 + |0〉 〈0| âl,2(t2)Â†

l,2)Ĥ ( |0〉 〈1| Â†
e,1 + |1〉 〈0| Â†

l,1)

= 1

2
[ |1〉 〈1| âe,1(t1)Â†

e,1 ⊗ (âe,2(t2)Â†
e,2 + âl,2(t2)Â†

l,2) + |1〉 〈1| âl,1(t1)Â†
l,1 ⊗ (âe,2(t2)Â†

e,2 + âl,2(t2)Â†
l,2)]

= 1

2
( |1〉 〈1| âe,1(t1)Â†

e,1 + |0〉 〈0| âl,1(t1)Â†
l,1) ⊗ (âe,2(t2)Â†

e,2 + âl,2(t2)Â†
l,2), (B3)

where we have omitted cross-terms such as âl,1(t1)âl,2(t2)Â†
l,2Â†

e,1 since they will vanish when sandwiched with the photon

vacuum, 〈∅1| âl,1(t1)Â†
e,1 |∅1〉 = 0. For arbitrary N , this generalizes to

ô1(t1) · · · ôN (tN )Ô†
N · · · Ô†

1 = 1

2N−1
( |1〉 〈1| âe,1(t1)Â†

e,1 + |0〉 〈0| âl,1(t1)Â†
l,1) ⊗

N∏
j=2

(âe, j (t j )Â
†
e, j + âl, j (t j )Â

†
l, j ), (B4)

and applying it to the initial spin state |�0〉 = (|0〉 + |1〉)/
√

2 we find

〈�0| ô1(t1) · · · ôN (tN )Ô†
N · · · Ô†

1 |�0〉 = 1

2N

N∏
j=1

(âe, j (t j )Â
†
e, j + âl, j (t j )Â

†
l, j ). (B5)

Substituting (B5) into (10), one arrives at

F (N )[Cl] = Trenv

∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| 〈�0| ô1(t1) · · · ôN (tN )Ô†

N · · · Ô†
1 |�0〉 |∅〉 〈∅| 〈�0| Ô1 · · · ÔN ô†

N (tN ) · · · ô†
1(t1) |�0〉 |∅〉

= 1

22N
Trenv

∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅|

N∏
j=1

(âe, j (t j )Â
†
e, j + âl, j (t j )Â

†
l, j ) |∅〉 〈∅| (Âe, j â

†
e, j (t j ) + Âl, j â

†
l, j (t j )) |∅〉

= 1

22N
Trenv

∫ ∞

0
dt1 〈∅1| (âe,1(t1)Â†

e,1 + âl,1(t1)Â†
l,1) |∅1〉 〈∅1| (Âe,1â†

e,1(t1) + Âl,1â†
l,1(t1)) |∅1〉 × · · ·

×
∫ ∞

0
dtN 〈∅N | (âe,N (tN )Â†

e,N + âl,N (tN )Â†
l,N ) |∅N 〉 〈∅N | (Âe,N â†

e,N (tN ) + Âl,N â†
l,N (tN )) |∅N 〉

= Trenv

(
1

4

∑
u,v=e,l

∫ ∞

0
dt 〈∅| âu(t )Â†

u |∅〉 〈∅| Âv â†
v (t ) |∅〉

)N

. (B6)

In the last step we have again applied the approximation discussed after Eq. (B2).

APPENDIX C: TWO-PHOTON EMISSIONS

We are interested in taking into account the action of the temporal and frequency filters on the output state (33).

1. Frequency filters

For convenience, we start from frequency filtering. Applying the transformation in Eq. (15), the creation operators (35)
become

ˆ̃Q†
u, j = (

c1 + c2
√

η2Â†,u
0 + c2(1 − √

η2) ˆ̃A†,u
0 �1Â†,u

p1
+ �2

√
η2Â†,u

p2
Â†,u

0 + �2

√
1 − η2Â†,u

p2

ˆ̃A†,u
0

)
j

× (
c1 + c2

√
η3B̂†,v

0 + c2(1 − √
η3) ˆ̃B†,v

0 �1Â†,v
p1

+ �2
√

η3B̂†,v
p2

B̂†,v
0 + �2

√
1 − η3B̂†,v

p2

ˆ̃B†,v
0

)
j, (C1)

where j is the photon number and {u, v} = {e, l}, u �= v.

2. Temporal filters

We condition on detecting a photon in the decay period of either the early or the late pulse. We thus apply the projector P̂n0 j>0

on the operator above thus keeping only the terms that correspond to receiving at least one photon after each excitation pulse,

P̂n0 j>0
ˆ̃Q†

u, j = c1c3
√

η3B̂†,v
0 + c1�3

√
η3B̂†,v

0 B̂†,v
p2

+ c2c0
√

η2Â†,u
0 + c2�3

√
η2

√
η3Â†,u

0 B̂†,v
0 + c2c3

√
η2

√
1 − η3Â†,u

0
ˆ̃B†,v

0

+ c2�0
√

η2Â†,u
0 B̂†,v

p1
+ c2�3

√
η2

√
η3Â†,u

0 B̂†,v
p2

B̂†,v
0 + c2�3

√
η2

√
1 − η3Â†,u

0 B̂†,v
p2

ˆ̃B†,v
0 + c2c3

√
η3

√
1 − η2

ˆ̃A†,u
0

ˆ̃B†,v
0
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+ c2�3
√

η3

√
1 − η2

ˆ̃A†,u
0 B̂†,v

p2
B̂†,v

0 + c3�1
√

η3
ˆ̃A†,u

p1
B̂†,v

0 + �1�3
√

η3
ˆ̃A†,u

p1
B̂†,v

p2
B̂†,v

0 + �2c0
√

η2
ˆ̃A†,u

p2
Â†,u

0

+ �2c3
√

η2
√

η3
ˆ̃A†,u

p2
Â†,u

0 B̂†,v
0 + �2c3

√
η2

√
1 − η3

ˆ̃A†,u
p2

Â†,u
0

ˆ̃B†,v
0 + �2�0

√
η2

ˆ̃A†,u
p2

Â†,u
0

ˆ̃B†,v
0

+ �2�3
√

η2
√

η3
ˆ̃A†,u

p2
Â†,u

0 B̂†,v
0 B̂†,v

p2
+ �2�3

√
η2

√
1 − η3

ˆ̃A†,u
p2

Â†,u
0

ˆ̃B†,v
0 B̂†,v

p2

+ �2c3

√
1 − η2

√
η3

ˆ̃A†,u
p2

ˆ̃A†,u
0 B̂†,v

0 + �2�3

√
1 − η2

√
η3

ˆ̃A†,u
p2

ˆ̃A†,u
0 B̂†,v

0 B̂†,v
p2

. (C2)

3. Conditional fidelity

We can now calculate the fidelities (16) and (17), with the photons emitted during the excitation sequence playing a role of
the environment. Since the photons emitted in different time bins are orthogonal, the only off-diagonal terms in (16) and (17)
which survive the trace operation are

Trpulse

∫ ∞

0
dt 〈∅| âu(t )P̂n>0

ˆ̃Q†
u |∅〉 〈∅| (P̂n>0

ˆ̃Q†
v )†â†

v (t ) |∅〉

=
∫ ∞

0
dt 〈∅| âu(t )P̂n>0

(
c1c3

√
η3B̂†,v

0 + c0c2
√

η2Â†,u
0

) |∅〉 〈∅| (c1c3
√

η3B̂†,u
0 + c0c2

√
η2Â†,v

0 )†â†
v (t ) |∅〉 = η2|c0c2|2. (C3)

The diagonal terms will contain contribution from all terms that include Â†
0 in (C2). Since none of these terms interfere, the

diagonal terms is given by the sum of the corresponding coefficients square,

Trpulse

∫ ∞

0
dt 〈∅| âu(t )P̂n>0

ˆ̃Q†
u |∅〉 〈∅| (P̂n>0

ˆ̃Q†
u)†â†

u(t ) |∅〉

= η2(|c0c2|2 + |c0�2|2 + |c2�0|2 + |�0�2|2) + η2(1 − η3)(|c3c2|2 + |c3�2|2 + |c2�3|2 + |�2�3|2). (C4)

Finally, for the calculation of the detection probability all terms in (C2) contribute and none of the terms interfere, therefore
the success probability is given by the sum of the square of all coefficients in (C2) and becomes (38).

4. Calculations of the wave-function coefficients

In order to obtain an expression for the conditional fidelity affected by imperfect excitation process, we need to calculate all
the coefficients in (35). Following a wave-function ansatz method of Ref. [43] and after some algebra, the coupled differential
equations for the first-order coefficients become

∂

∂τ
ce(τ ) = i

�̃

2
cg(τ ) −

(
1

2
+ i
̃

)
ce(τ ),

∂

∂τ
cg(τ ) = i

�̃

2
ce(τ ), ce(0) = 0, cg(0) = 1, (C5)

while the second-order coefficients are governed by

φg(τ, τe) = ie−i
̃τ ce(τe)θ (τe − τ ), φe(τ, τe) = 0 (C6)

for τ < τe and

∂

∂τ
φe(τ, τe) = i

�̃

2
φg(τ, τe) −

(
1

2
+ i
̃

)
φe(τ, τe),

∂

∂τ
φg(τ, τe) = i

�̃

2
φe(τ, τe), φg(τe, τe) = ie−i
̃τe ce(τe), φe(τe, τe) = 0 (C7)

for τ > τe, respectively. The dimensionless units used above are τ = γ t , 
̃ = 
/γ , and �̃ = �/γ . The equations above have
been analytically solved in first-order perturbation theory for a square-shaped pulse in Ref. [51]. Adjusting the square pulse to the
optimal duration Topt,sq = √

3π/
, which ensures that a 2π Rabi oscillation has been performed on the off-resonant transition,
while the the resonant transition performs a π rotation, the wave-function coefficients read

|c3|2 = 0, |c0|2 = 1, |c1|2 =
√

3π

2
̃
, |c2|2 = 1 −

√
3π

2
̃
,

|�2|2 =
√

3π

8
̃

(
1 −

√
3π

2
̃

)
, |�1|2 = 3

√
3π

8
̃
− 3π2

2
̃2

(
3

8
− 1

π2

)
,

|�3|2 = 3

16

(√
3π

8
̃
− 3π2

16
̃2

)
, |�0|2 = 13

√
3π

128
̃

(
1 −

√
3π

2
̃

)
. (C8)
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Inserting these coefficients into Eq. (40) and expanding up to the first order in γ /
, we arrive at an expression for the fidelities
of both the GHZ and the cluster states

F̃exc,sq = 1 − Nγ
√

3π

256


(
29 + 3

[
1 + ξ3

ξ2

])
. (C9)

With perfect frequency filters ξ2 = 1, ξ3 = 0, this turns into

F̃exc,sq = 1 − N
γ
√

3π

8

. (C10)

APPENDIX D: FIDELITIES OF THE STATES WITH BRANCHING ERRORS

1. GHZ state with branching error

Substituting (47) and its Hermitian conjugate into Eq. (10) yields

F (N ) = Trphotons

{∫ ∞

0
dtN · · ·

∫ ∞

0
dt1 〈∅| 〈�0| ô1(t1) · · · ôN (tN )Ô†

N · · · Ô†
1 |�0〉 |∅〉 〈∅| 〈�0| Ô1 · · · ÔN ô†

N (tN ) · · · ô†
1(t1) |�0〉 |∅〉

}

= 1

4
Trphotons

{∫ ∞

0
dt1 · · ·

∫ ∞

0
dtN 〈∅|

[
N∏

j=1

âe, j (t j )(
√

p‖Â†
e, j +

√
p′

⊥ p⊥Â†
e′ j L̂

†
j ) + p‖N/2

N∏
j=1

âl, j (t j )Â
†
l, j

+
√

p′
⊥ p‖ p‖(N−1)/2

N∏
j=1

âl, j (t j )Â
†
l, j Ê

†
j

]
|∅〉 〈∅|

[
N∏

i=1

âe,i(ti )(
√

p‖Â†
e,i +

√
p′

⊥ p⊥Â†
e′iL̂

†
i )

+ p‖N/2
N∏

i=1

âl,i(ti )Â
†
l,i +

√
p′

⊥ p‖ p‖(N−1)/2
N∏

i=1

âl,i(ti )Â
†
l,iÊ

†
i

]†

|∅〉
}

= 1

4
Trphotons

{
N∏

j=1

∫ ∞

0
dt j 〈∅| âe, j (t j )(

√
p‖Â†

e, j +
√

p′
⊥ p⊥Â†

e′ j L̂
†
j ) |∅〉 〈∅| (

√
p‖Âe, j +

√
p′

⊥ p⊥Âe′ j L̂ j )â
†
e, j (t j ) |∅〉

+ pN
‖

4

N∏
j=1

∫ ∞

0
dt j 〈∅| âl, j (t j )Â

†
l, j |∅〉 〈∅| Âl, j â

†
l, j (t j ) |∅〉 + pN

‖ p′
⊥

4

N∏
j=1

∫ ∞

0
dt j 〈∅| âl, j (t j )Â

†
l, j |∅〉 〈∅| Âl, j â

†
l, j (t j ) |∅〉

+ pN/2
‖
4

[
N∏

j=1

∫ ∞

0
dt j 〈∅| âe, j (t j )(

√
p‖Â†

e, j +
√

p′
⊥ p⊥Â†

e′ j L̂
†
j ) |∅〉 〈∅| Âl, j â

†
l, j (t j ) |∅〉 + H.c.

]}

= (p‖ + p′
⊥ p⊥)N + pN

‖ (3 + p′
⊥)

4
.

2. Cluster state with branching error

A single round of the cluster-state preparation protocol in the presence of imperfect branching updates the state according to
Eq. (55):

Ô†
j = |+〉 〈1| (

√
p‖Â†

e, j +
√

p′
⊥ p⊥Â†

e′, j L̂
†
j ) + |−〉 〈0| √p‖Â†

l, j + |−〉 〈1|
√

p′
⊥ p‖Â†

l, j Ê
†
j . (D1)

The last term in the equation above gives a nonzero contribution to the fidelity only when the first photon is generated. To
calculate the fidelity, we first ignore this term. The operator ô(t1)Ô† in Eq. (10) corresponding to as single-photon state reads

ô1(t1)Ô†
1 = √

p‖( |1〉 〈1| âe,1(t )Â†
e,1 + |0〉 〈0| âl,1(t )Â†

l,1) +
√

p⊥ p′
⊥ |1〉 〈1| âe,1(t )Â†

e′,1L̂†
1 . (D2)

The corresponding fidelity reads

F (1) =
∫ ∞

0
dt1Trphotons{ 〈�0| ô1(t1)Ô†

1 |�0〉 〈∅| 〈∅| 〈�0| Ô1ô†
1(t1) 〈�0| } = p‖ + p′

⊥ p⊥
4

. (D3)

Analogously, for two photons,

ô1(t1)ô2(t2)Ô†
1Ô†

2 = p‖
2

( |1〉 〈1| âe,1(t )Â†
e,1 + |0〉 〈0| âl,1(t )Â†

l,1)(âe,2(t )Â†
e,2 + âl,2(t )Â†

l,2)
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+
√

p⊥ p′
⊥ p‖

2
[( |1〉 〈1| âe,1(t )Â†

e,1 + |0〉 〈0| âl,1(t )Â†
l,1)âe′,2(t )Â†

e′,2L̂†
2

+ |1〉 〈1| âe,1(t )Â†
e,1L̂†

1 (âe,2(t )Â†
e,2 + âl,2(t )Â†

l,2)] + p⊥ p′
⊥

2
|1〉 〈1| âe,2(t )Â†

e,2L̂†
2 âe,1(t )Â†

e,1L̂†
1, (D4)

and the corresponding fidelity is

F (2) =
∫ ∞

0
dt2Trphotons{〈�0| ô1(t1)ô2(t2)Ô†

2Ô†
1 |�0〉 |∅〉 〈∅| 〈�0| Ô1Ô2ô†

2(t2)ô†
1(t1) |�0〉} =

(
p‖ + p′

⊥ p⊥
4

)2

. (D5)

Repeating the same procedure N times, the N-photon unconditional fidelity reads

F (N ) =
(

p‖ + p′
⊥ p⊥
4

)N

. (D6)

Finally, we multiply by the probability for the first photon to be emitted via the process described by the last term in Eq. (D1),
which yields the total unconditional fidelity of the cluster state in the presence of imperfect branching (56),

F (N )[Cl] =
(

p‖ + p⊥ p′
⊥

4

)N−1(
p‖ + p⊥ p′

⊥
4

+ p‖ p′
⊥

4

)
. (D7)

APPENDIX E: BRANCHING ERROR DECOMPOSITION

As discussed in the main text dephasing and and excitation errors can be seen as single qubit errors affecting only a single
photon. In this Appendix we analyze the nature of the branching errors, which flips the spin state. Since the spin acts as an
entangler between subsequently emitted photons, errors in spin operation could potentially lead to delocalization of such errors
between many photonic qubits. Below we show that this is not the case, and imperfect branching introduces only effective
two-qubit errors between two subsequently emitted photons.

Consider all possible processes arising from branching errors. After a single round of the protocol, the state takes the form of
Eq. (44), where all but two terms occur from various unwanted decay processes. For the realistic experimental parameters used
in Fig. 8, only one of these processes occurs with a nonvanishing probability P = p′

⊥ p‖ and is described by an operator

ˆ̃O† = R̂ |1〉 〈1| Â†
l, j Ê

†
j . (E1)

Here we choose R̂ = Ĥ that produces the cluster state, but the same analysis applies to the GHZ state. The remaining coefficients
in Eq. (44) are at least two orders of magnitude smaller and such event therefore almost never appear in real situation. Ignoring
these terms, we can represent a single repetition of the protocol with

ρ̂ → p‖Ô†
idρ̂Ôid + p′

⊥ p‖ ˆ̃O†ρ̂ ˆ̃O = p‖Ô†
idρ̂Ôid + p′

⊥ p‖Ê†Ô†
idρ̂ÔidÊ, (E2)

where Ô†
id is the ideal operation of the protocol, ˆ̃O† is defined in Eq. (E1), and ρ̂ is the systems density matrix. Hence, to prove

that imperfect branching introduces at most two-photon errors, one needs to show that Ê† is a two-qubit operator.
Consider two photons emitted in the ideal protocol, transforming the state according to

Ô†
id, j+1Ô†

id, j = |+〉 a†
e, j+1(a†

e, j 〈1| − a†
l, j 〈0| ) + |−〉 a†

l, j+1(a†
e, j 〈1| + a†

l, j 〈0| ). (E3)

On the other hand, a photon emitted through the wrong process of Eq. (E1) followed by a correctly emitted photon corresponds
to

Ô†
id, j+1

ˆ̃O†
j = ( |+〉 〈1| a†

e, j+1 + |−〉 〈0| a†
l, j+1) |−〉 〈1| a†

l, j = |−〉 〈1| a†
l, j+1a†

l, j − |+〉 〈1| a†
e, j+1a†

l, j . (E4)

Comparing the two equations above, one can notice that

Ô†
id, j+1

ˆ̃O†
j = −a†

l, jae, j Ẑ j+1Ô†
id, j+1Ô†

id, j . (E5)

Therefore, the spin-flip error of Eq. (E1) effectively applies a two-photon error between subsequently emitted photons j and
j + 1,

Ê† = −a†
l, jae, j Ẑ j+1. (E6)

This error simultaneously flips the phase of photon j + 1 and replaces the early jth photon with the late photon. Any subsequent
operations commute with this error term, since they affect only later photons. The final state of the protocol can thus be
understand as an error affecting an ideal state after its preparation.

As was noted earlier, for realistic experimental parameters used in this paper, any error other that (E1) occurs with a
vanishingly small probability. Hence, incorrect branching operation always applies a two qubit error Ê, which according to
Fig. 7 is 0.3%.
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