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Anisotropy-exchange resonance as a mechanism for entangled state switching
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We explore the three-particle spin model of an S1 = 1
2 particle (e.g., an electron) interacting with two spin-

coupled S2,3 particles with exchange coupling and magnetic anisotropy. We show that in the case of S2,3 = 1
particles, the coupled particle entanglement states can be prepared, controlled, and read by the S1 particle. We
also find that for particular resonance conditions of the magnetic anisotropy strength D and exchange coupling
strength J , the entanglement state-switching behavior is maximized and is robust against a range of anisotropic
application of the exchange coupling.
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I. INTRODUCTION

Spin state entanglement plays a key role in many sys-
tems, including those considered within quantum information
science (QIS). For example, spin qubits, the coherent super-
position of spin states within quantum objects, make use of
entangled spin states for quantum gate operations [1]. Spin
qubits have been explored theoretically and experimentally,
notably in the application of confined electrons in quantum
dots fabricated in semiconductors [2–9] and the search for
robust QIS-applicable magnetic molecule systems [10–17].
Molecular magnets in particular possess an onsite magnetic
anisotropy which gives rise to their unique magnetic proper-
ties. Molecular magnets are viable candidates for spin state
switching for QIS purposes because of their long coherence
times, the ability to tunnel between spin states resulting from
their magnetic anisotropy, and tailorable ligands [18]. For ex-
ample, the single-molecule magnet TbPc2 possesses a nuclear
spin that is electrically controllable and has long coherence
times [15,17]. In both of these QIS approaches, the Kondo ef-
fect has been found [19–21], and thus the Kondo or Anderson
impurity model [22,23] is applicable to predict some of the
features of these systems.

With these considerations, a QIS system that contains
onsite magnetic anisotropy is expected to have a complex
interaction between the system’s anisotropy and effective
exchange coupling. While some studies have examined the in-
terplay of exchange coupling and onsite magnetic anisotropy
for two particles [24], the three-particle case is a quali-
tatively different system that has not been fully explored.
Some experimental and theoretical studies have realized
multiple-quantum dot scenarios [5–7,25] or studied the two
magnetic impurity entanglement state dependency of con-
tact exchange interactions with incident electrons [26–28].
As described in the effectively three-spin-particle setup in
Ref. [29], the strong-coupling Kondo exchange regime and
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the weak-coupling spin-orbit interaction regime compete with
each other, resulting in a nontrivial interaction. Outside of
QIS, a similar balance between exchange coupling and mag-
netic anisotropy has been recently found experimentally in
a Mott insulator composed of an ultracold optical lattice of
87Rb atoms [30]. In all of these studies, the exchange coupling
mechanism plays a significant role in controlling the system of
interest. Unintended variations in this exchange can cause un-
desirable effects, and thus a system must be correspondingly
robust against them.

In this work, we explore a general spin model with
exchange and magnetic anisotropy that encompasses these
scenarios and investigates the robustness of the spin system
by extending the two-particle case of Ref. [24] to the
three-particle paradigm. We consider two magnetic sites of
either S2,3 = 1

2 or S2,3 = 1 in which an exchange interaction
is applied either isotropically or anisotropically between
them and the S1 = 1

2 particle. Because we do not treat the
electronic degrees of freedom and instead focus solely on the
model’s spin degrees of freedom, our model is a general one
with physical analogs in the recently realized experiments of
three quantum dots [5–7] and ultracold optical lattices [30].
As we will show, we find that for the C18 state space model
corresponding to S2,3 = 1, the exchange and anisotropy
interactions lead to a set of necessary conditions on the
exchange and magnetic anisotropy strengths that correspond
with perfect nonentangled to entangled state switching in four
smaller SO(2) representation subgroups. We find that at these
special resonance conditions, which we designate as “D-J res-
onances,” measurement of the coupled particle entanglement
states is possible by measurement of the S1 = 1

2 particle’s
spin. We also show the conditions in which these D-J
resonances allow for complete control of appropriately chosen
Bloch vectors within a subspace of the coupled particles’ total
spin space, which is not found for the S2,3 = 1

2 model. We
demonstrate conditions for full control of this Bloch vector,
and that for a relevant molecular magnet example, state coher-
ence is robust against anisotropic application of the exchange
coupling.
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FIG. 1. Schematic of the spin model considered in this work.
Particles 2 and 3 are coupled by an exchange interaction J23. Particle
1 is also coupled to particles 2 and 3 by an exchange interaction, J12

and J13, respectively. Particle 1 is allowed to hop between particle 2
and particle 3 with hopping strength t .

II. THREE-PARTICLE SPIN MODEL

A representative schematic of the resulting spin model is
shown in Fig. 1. The spin Hamiltonian (h̄ = 1) is then

H = H12 + H13 + H23 + HA + Ht, (1)

where each term in the Hamiltonian is explained as follows.
Motivated by the application of exchange coupling between
two coupled dimers [31], the exchange interaction of the two
S2,3 particles is represented by

H23 = JzŜ
z
2Ŝz

3 + Jxy
(
Ŝx

2Ŝx
3 + Ŝy

2Ŝy
3

)
, (2)

where Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) is the spin operator for the ith particle,

Jz is the strength of the exchange interaction between particles
2 and 3 parallel to the direction of the magnetic anisotropy
axis, and Jxy is the strength of the exchange interaction be-
tween particles 2 and 3 perpendicular to the direction of the
magnetic anisotropy axis. When this interaction is taken to
be isotropic, i.e., Jz = Jxy ≡ J23, this equation simplifies to
H23 = J23Ŝ2 · Ŝ3. The interaction of the S1 = 1

2 particle with
the S2,3 particles is closely related to the spin portion of the
Kondo interaction and may be represented by

H1i = J1i

2

∑
μ,μ′

Ŝi · d̂†
μ,iσ̂μ,μ′ d̂μ′,i, (3)

where μ is a spin index for particle 1, σ̂μ,μ′ is the corre-
sponding μ,μ′ matrix element of the s = 1

2 Pauli matrix,
and d̂†

μ,i/d̂μ,i represents (in second quantization language) the
creation or annihilation operator of a state in which particle 1
is bound to particle i. In our general treatment, we allow J12

and J13 to take all values, i.e., we consider both ferromagnetic
and antiferromagnetic possibilities.

Additionally, we consider situations in which S2,3 = 1 par-
ticles possess an anisotropic response to applied magnetic
fields,

HA = D
(
Ŝz

2Ŝz
2 + Ŝz

3Ŝz
3

)
, (4)

where D is a uniaxial anisotropy strength. Our general treat-
ment permits D to span all values, which allows one to
consider both “easy-axis” and “hard-axis” anisotropies. The
physical origin of the magnetic anisotropy, also called “zero-
field splitting,” is dependent on the manifestation of the S2,3

particles. For example, if the two spin particles refer to mag-
netic molecules, the primary source of magnetic anisotropy
could be from geometric distortions (Jahn-Teller distortions)
of constituent ions [32]. In the ultracold optical lattice context,
an effective magnetic anisotropy is created by direct on-site
interactions between atoms in two states [30].

While we consider the spin interactions of three particles
in this work, one can in principle pursue a more realistic
treatment of the three-particle problem by incorporating the
spatial degrees of freedom. If one were to extend our model
spatially, the movement of the particles will impact the time-
dependent dynamics of the system nontrivially. The purpose
of this work, however, is to elucidate the spin dynamics of
the three-particle model, which may serve as a necessary,
but not sufficient, picture on realizing useful control of the
system’s spin states. We balance these considerations by ac-
commodating for Hamiltonian terms that may not play a key
role in spin dynamics, but ultimately may be pivotal in more
realistic contexts. In this light, we follow in the footsteps of
other models (such as the Hubbard model) and include a term
that describes the movement of the S1 particle hopping from
the S2 particle to S3 and vice versa. In spin space, this hopping
term takes the form

Ht =
∑

μ

{t d̂†
μ,2d̂μ,3 + H.c.}, (5)

where μ is the spin index for particle 1, and t is the hopping
strength.

Incorporating each of the aforementioned Hamiltonian
terms, we provide a representative example of Fig. 1. One
could imagine a scenario of a magnetic molecule dimer (e.g.,
coupled TbIII ions in a molecular complex) placed on a weakly
interacting substrate next to a quantum dot. Exchange inter-
actions could then be achieved by appropriate gating. The
dynamics of the system, which may involve entangled par-
ticle scenarios, is described by the density operator ρ in the
Schrödinger picture,

i
∂ρ

∂t
= [H, ρ], (6)

where the brackets denote the commutator.
There are various basis sets that uncover different aspects

of the dynamics of the three-spin system. One convenient
representation of the Hamiltonian and density operator can be
built from the basis |s, ms〉, where S = S1 + S2 + S3. Because
we also need to examine the possible entangled states of the
S2,3 particles in anticipation of correlating states within a
qubit representation, we designate a “device” basis with states
|s1, m1〉|s23, m23〉. In this representation, the |s23, m23〉 states
are designated the “coupled particle” basis states.
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III. RESULTS

We first consider the S2,3 = 1 model and the impact of each
term within the total Hamiltonian of Eq. (1) on the states of
the system. We find that the hopping term given in Eq. (5) is
diagonal in the spin space and can therefore be ignored for
purposes of examining the spin dynamics of the system. We
remove the hopping term in what follows, though one may not
be able to ignore it when considering a spatial extension of
the considered model. Next, when the exchange Hamiltonians
involving S1 are applied anisotropically (i.e., J12 �= J13), the
Hamiltonian connects states between different s23 subspaces
in the device representation and can no longer be block diag-
onalized by the s23 subspaces. Instead, the effective exchange
Hamiltonian can be block diagonalized by m values, where
Hm is the block Hamiltonian corresponding to m, and H±5/2

are diagonal. In the H±3/2 subspaces, the |m1〉|s23, m23〉 =
|± 1

2 〉|2,±1〉, |± 1
2 〉|1,±1〉, and |∓ 1

2 〉|2,±2〉 states partici-
pate, forming three-dimensional subspaces. Similarly, the
H±1/2 subspaces contain the interactions of the |± 1

2 〉|2, 0〉,
|± 1

2 〉|1, 0〉, |± 1
2 〉|0, 0〉, |∓ 1

2 〉|2,±1〉, and |∓ 1
2 〉|1,±1〉 states,

making the subspaces five-dimensional. These forms of the
effective exchange Hamiltonian will play a pivotal role in
transitions between states with the same m value.

In the S2,3 = 1 model, resonant transitions between states
are found in several of the m subspaces. By inspecting the
m = 3

2 subspace, which corresponds with the dynamics of
the |m1〉|s23, m23〉 = {|↑〉|2, 1〉, |↑〉|1, 1〉, |↓〉|2, 2〉} states, the
block Hamiltonian takes the form (a common t + t∗ + Jxy +
D + 1

4�1 is removed from the diagonal),

H3/2 = 1

4

⎛
⎝ 0 �1 2�1

�1 −8Jxy −2�1

2�1 −2�1 −3�1 + 4D + 4�23

⎞
⎠, (7)

where the notation �1 ≡ J12 − J13, �1 ≡ J12 + J13 ≡ 2J1,
and �23 ≡ Jz − Jxy has been introduced. When the application
of the S1 exchange coupling is isotropic by choosing J12 =
J13 = J1 and �1 = 0, the |↑〉|1, 1〉 state is no longer coupled
to the other states within this block. Under these conditions,
the total Hamiltonian takes the form

Heff = JzŜ
z
2Ŝz

3 + Jxy
(
Ŝx

2Ŝx
3 + Ŝy

2Ŝy
3

)
+ J1(Ŝ1 · Ŝ2 + Ŝ1 · Ŝ3) + D

(
Ŝz

2Ŝz
2 + Ŝz

3Ŝz
3

)
. (8)

Inspecting the m = 3/2 subspace again, the effective Hamil-
tonian block becomes

−1

2

(
D − 3

2
J1 + �23

)(
1 0
0 −1

)
+ J1

(
0 1
1 0

)
. (9)

For comparison, the same procedure is repeated for the m =
1/2 subspace, where the effective Hamiltonian corresponding
with the |↑〉|1, 0〉 and |↓〉|1, 1〉 basis takes the form

1

2

(
D + 1

2
J1 − �23

)(
1 0
0 −1

)
+ 1√

2
J1

(
0 1
1 0

)
. (10)

If one prepares the initial density matrix of the system
to represent a pure | ↓〉|2, 2〉 state (e.g., by utilizing a setup
similar to Refs. [6,7] to prepare a particular spin state), an
application of the Rabi formula results in the probability of

TABLE I. Pure state transitions for the S2,3 = 1 model, where
JR is the condition on J1 to reach resonance, PR is the maximum
transition probability amplitude at resonance, and �R is the Rabi
frequency at resonance.

State transitions JR PR �R

|↑〉|2,+1〉, |↓〉|2,+2〉 2
3 (D + �23) 1 2

3 |D + �23|
|↑〉|2,−2〉, |↓〉|2, −1〉 2

3 (D + �23) 1 2
3 |D + �23|

|↑〉|1, 0〉, |↓〉|1, +1〉 −2(D − �23) 1
√

2|D − �23|
|↑〉|1, −1〉, |↓〉|1, 0〉 −2(D − �23) 1

√
2|D − �23|

measuring the |↑〉|2, 1〉 state as

P|↑〉|2,+1〉(t ) =
(

J1

�

)2

sin2(�t ), (11)

with Rabi frequency

� =
√

J2
1 + 1

4

(
D − 3

2
J1 + �23

)2

. (12)

Transforming between the considered device basis states
and their site-basis representation (|m1〉|s23, m23〉 →
|m1〉|m2〉|m3〉),

|↓〉|2, 2〉 = |↓〉|1〉|1〉, (13)

|↑〉|2, 1〉 = 1√
2

(|↑〉|0〉|1〉 + |↑〉|1〉|0〉), (14)

one can see that the |↓〉|2, 2〉 state corresponds with a nonen-
tangled coupled particle state, and the |↑〉|2, 1〉 corresponds
with a maximally entangled coupled particle state. Thus a
single measurement of particle 1’s spin orientation determines
the entanglement state of particles 2 and 3. This demonstrates
the readout of the entanglement state if the measurement of
the S1 spin polarization is taken at any general time t . This also
demonstrates preparation of the entanglement state if the S1

spin polarization is measured at a specific time t correspond-
ing with a peak in the Rabi oscillation.

As shown in Eqs. (9) and (10), the magnetic anisotropy D,
average exchange interaction strength J1, and the anisotropy
of the S2 − S3 exchange interaction �23 determine the Rabi
frequency and transition amplitudes of the system. When
the Rabi frequencies and amplitudes are calculated for the
other possible two state systems in the S2,3 = 1 model, we
see that particular conditions on the magnitude and sign of
J1, �23, and D result in resonant transition probabilities,
i.e., each state’s transition probability oscillates with a max-
imum amplitude of 1. Table I lists these possible magnetic
anisotropy and exchange strength resonance conditions, i.e.,
D-J resonances, for two-state switching. To see the physical
consequence of these D-J resonances, we turn to a represen-
tation of the states involved in a transition, where one can
project the two-state systems onto a Bloch sphere. For the
m = 3/2 case, Eq. (9) is written suggestively to highlight
the effect of the unitary operator U (t ) = e−iHt on the Bloch
vector V prepared as (|V|, θ, φ) = (1, 0, 0). In the case of
Eq. (9), the Bloch vector’s poles are defined by the |↓〉|2, 2〉
and |↑〉|2, 1〉 states. The first term in Eq. (9) corresponds
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FIG. 2. Bloch sphere representation of the states within the
|↓〉|2, 2〉, |↑〉|2, 1〉, m = 3

2 subspace when J12 = J13 = J1. (a) When
J1 is tuned to a D-J resonance, rotation about the x-axis is realized.
(b) When J1 = 0, (D + �23)-modulated rotation about the z-axis is
possible.

with a rotation (up to a global phase) of the Bloch vector
about the z-axis with a frequency D − 3

2 J1 + �23 and the
second with a rotation about the x-axis with a frequency
of 2J1.

As shown in Fig. 2, at the D-J resonance condition of
J1 = 2

3 D + �23, the z-axis rotation vector is 0, and the Bloch
vector is rotated solely about the x-axis. In this way, with
appropriate pulsing of the D-J resonance condition, control of
the Bloch vector in the x = 0 plane is realized. Physically the
magnitude of the exchange couplings and magnetic anisotropy
determine the contribution of the device states that are ener-
getically favorable for that parameter. At the D-J resonance,
these state contributions are equally balanced. In other words,
there is equal probability to collapse the device state upon
measurement to one that favors the S1 exchange coupling or to
one that favors some sort of anisotropy (magnetic or between
S2 and S3).

Similarly by turning off the exchange coupling between S1

and the two S2,3 particles, the x-axis rotation is suppressed,
leading to rotation solely about the z-axis with frequency
D + �23. Combinations of these rotations, accomplished by
appropriate tuning of J1, can realize any point on the Bloch
sphere. By turning off these interactions, or utilizing another
type of anisotropy (e.g., if one can control �23), the dynamics
can be stopped after a desired rotation operation after a given
time t . Thus any relevant operation in the qubit representa-
tion on the Bloch sphere, and by extension any equivalent
SU(2) operation, can be accomplished by utilizing the D-J
resonance.

Next, we find that when small values of anisotropy of the
exchange coupling are included, the numerical calculation of
the Bloch vector’s projection on the x-axis oscillates, resulting
in a correspondingly small deviation in its z-axis projection.
This originates from the inclusion of additional off-diagonal
states [e.g., see Eq. (7)] that correspond with one of the az-
imuthal axes in the Bloch sphere. Moreover, these additional
states include contributions of the exchange interaction be-
tween particles 2 and 3, so that five parameters now control
the rotation of the Bloch vector. Despite these contributions,
we find that for certain parameters, the projection of the Bloch
vector onto the z-axis (which directly corresponds with the
switching behavior as measured by the electron) results in a

(a) (b)

FIG. 3. (a) Probability of measuring a state corresponding with
the x̂ (dotted), ŷ (dashed), and ẑ (solid) unit vectors on the Bloch
sphere defined in Fig. 2, as a function of time. The Bloch vector is
initially prepared in the state |↓〉|2, 2〉, and an anisotropic application
of the exchange coupling strength has been used (�1/J1 = 0.072).
The parameter set has been prepared around the D-J resonance.
(b) The corresponding Bloch sphere representation of the path traced
by the Bloch vector over the same time interval considered. In units
of cm−1, the parameters are J23 = −0.05, J1 = −0.40, D = −0.60,
t = 0.05.

maximal transition probability above P = 0.995 even when
using significant ratios of anisotropy in the application of the
exchange coupling, in our case �1/J1 = 0.072, as shown in
Fig. 3. When the anisotropic application of the exchange
coupling is larger than the �1/J1 = 0.072 ratio for the set of
parameters considered, the projection onto the Bloch sphere’s
z-axis is more distorted, as additional rotations about axes
lying in the azimuthal plane are included.

We also find that there doesn’t appear to be a simple
relationship of the distortions and the strength of J23. For
example, using the same parameters as Fig. 3 and setting
J23 = 0.60 cm−1, we find that the maximal transition prob-
ability remains above P = 0.995. When J23 = −0.20 cm−1,
the maximal transition probability falls below P = 0.995, but
again rises above P = 0.995 when J23 = −0.40 cm−1. The
�23 parameter, on the other hand, provides a target from
which to maintain fidelity. Inspection of the D-J resonance
conditions indicate that modulating J1 to account for �23

allows one to reach resonance. By looking to the variables that
participate in the dynamics in each block of the Hamiltonian
[e.g., Eq. (7)], we find that these distortions of the Rabi-like
oscillations are enhanced by larger values of Jxy and �1, and
thus the relative magnitudes of the five parameters (�1, �1,
Jxy, �23, and D) dictate the limit of robustness of a particular
resonance scenario.

The behavior of the S2,3 = 1 model is not possible for
S2,3 = 1

2 without additional spin selection methods. Repeating
the same type of procedure and analysis for the S2,3 = 1

2
model, and noting that magnetic anisotropy is not expected
for S = 1

2 particles, we find that the maximum probability
amplitude is 8/9 for both transition types. When the two states
involved in a transition are mapped onto a Bloch sphere, the
effect of the unitary operator as a rotation is not about an
axis solely on the azimuthal plane, but instead contains a
component in the polar plane.

IV. DISCUSSION

Figure 3 forms the primary consequence of the main result
of this paper, namely, that resonance conditions exist in the
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S2,3 = 1 model in which preparation and measurement of the
coupled particles’ degree of entanglement can be accomplish
by appropriate measurement of the S1 = 1

2 particle. Further-
more, realization of these D-J resonances is robust against
anisotropy of the exchange coupling between the coupled
particles. This is found to not be the case for the S2,3 = 1

2
model. In particular, as shown in Table I, the D-J resonance
conditions for maximal transitions between nonentangled and
entangled states are controlled by the nontrivial interaction of
the exchange coupling, J12 and J13, between particles 1 and 2
and 3, the anisotropic exchange coupling interaction �23, and
the magnetic anisotropy D of particles 2 and 3 in the S2,3 = 1
paradigm.

The D-J resonance conditions indicate a possible avenue
for investigating complex spin spaces and the conditions re-
quired to simplify complicated spin Hamiltonians, such as
those that represent the interactions of magnetic monomers
or dimers with an electron, or when applied to three-particle
Bose-Hubbard-like spin models such as in ultracold optical
lattices. It is interesting to note that because our model has
not required particular physical mechanisms for the exchange
coupling and magnetic anisotropy, it is possible that outside
of condensed matter physics, the block diagonalization of
similar C18 state systems could result in isolated SO(2) repre-
sentation subgroups. The D-J resonance feature introduces a
different level of control in Bloch vector rotation operations.
The inclusion of the S1 = 1

2 particle allows for preparation,
manipulation, and reading of the entangled coupled particles.

In quantum dot QIS systems, states are often prepared with
applied magnetic fields. Electrically controlled methods, how-
ever, are attractive because of the relative ease of manipulating
electric fields within a variety of environmental conditions.
The results of our model predict that single-electron control
of entangled particles without any use of applied magnetic
fields is possible. Furthermore, an important conclusion to be
drawn from Fig. 3 is that the Bloch vector, in time, is forgiving
against misalignment, so that this scheme does not actually
require impossible experimental perfection to work.

Last, we note that if the resonances are used for QIS
applications, several additional factors must be incorporated

that have not been considered in this paper. As an illustrative
example, the parameters chosen in Fig. 3 are inspired by a
scenario involving [Mn3]2 [33]. The [Mn3]2 dimer, however,
has higher spin, and thus a formula to determine the resonance
conditions for higher S2,3 is desired. For general QIS scenar-
ios, the order of parameters used in Fig. 3 implies that several
oscillations have completed within 1 ns. This time is smaller
than relevant spin-lattice and spin-spin relaxation times in
most novel molecular magnets and quantum dots. Tuning the
magnitudes of the D, �23, and J1 parameters can lead to faster
oscillations. In this way one can identify the T1 and T2 times
for a particular system and tailor the search of D-J resonance
conditions based on those parameters.

Determining a more complete picture of a transient S1

particle requires the incorporation of additional degrees of
freedom not considered here, such as the S1 particle’s source
and drain. We note, however, that while the source of the S1

particle has not been explicitly identified, some generaliza-
tions of the source (e.g., to a conduction band of a metal)
will not substantially change the overall model or results.
On the other hand, if the S1 particle is not transient, but
instead is confined on a surface or within bulk material,
additional exchange coupling interactions between the par-
ticle and the confinement source may need to be accounted
for. Regardless of the physical mechanism chosen to real-
ize this model, the use of these D-J resonances provides an
exciting avenue to uncover interesting highly correlated spin
phenomena.
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