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Multipartite spatial entanglement generated by concurrent nonlinear processes
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Continuous-variable multipartite entanglement is a key resource for quantum technologies. This paper consid-
ers the multipartite entanglement generated in separated spatial modes of the same light beam by three different
parametric sources: a standard χ (2) medium pumped by two pumps, a single-pump nonlinear photonic crystal,
and a doubly pumped nonlinear photonic crystal. These sources have in common the coexistence of several
concurrent nonlinear processes in the same medium, which allows the generation of nonstandard three- and
four-mode couplings. We test the genuine nature of the multipartite entangled states thereby generated in a
common framework, using criteria based both on proper bounds for the variances of nonlocal observables and
on the positive partial transpose criterion. The relative simplicity of these states allows a (hopefully) useful
comparison of the different inseparability tests.
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I. INTRODUCTION

In optics, the most efficient sources of quantum states are
nonlinear processes, such as parametric down-conversion, that
generate photons in pairs. In the continuous-variable (CV)
regime this mechanism naturally leads to a bipartite Einstein-
Podolsky-Rosen (EPR) entanglement, involving the phase
quadratures of independent couples of modes of the radiation
field, or to squeezed states, depending whether the detec-
tion process separates or not the photons in the pair. On the
other side, photonic states in which entanglement is shared by
more than two physical modes are becoming more and more
an attractive resource for continuous-variable quantum infor-
mation. A prominent example is that of measurement-based
quantum computation [1,2], which requires one to gener-
ate multipartite entangled cluster states [3,4] in a controlled
and reconfigurable way. Multipartite entanglement may also
enable multiparty quantum communication protocols [5], as
secret quantum sharing [6], or can be used in quantum metrol-
ogy for distributed quantum sensing [7].

The traditional method to transform the bipartite entan-
glement typical of parametric processes into a multiparty
entanglement is sequential, and is based on generating several
squeezed states by independent downconversion processes
and then mixing them into a network of passive optical ele-
ments (see, e.g., Refs. [8–10]). Multipartite entanglement may
be also realized by cascaded nonlinearities [11]. Alternatively,
a powerful approach is the parallel generation of a multipartite
entanglement among different light modes that copropagate in
the same beam. Continuous-variable cluster states have been
successfully generated in the spectral structure of the fre-
quency comb of a single optical parametric oscillator [12,13],
or of a synchronously pumped optical parametric oscillator
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[14,15]. Spatial encoding, which is naturally attractive, has
been in comparison less explored, with a recent proposal
exploiting an array of nonlinear waveguides [16] interacting
with evanescent coupling, which mixes squeezing and entan-
glement.

This paper stems from some recent publications [17–22],
which showed the possibility of generating a multipartite
coupling—the prerequisite for multiparty entanglement—
among separate spatial modes copropagating in the same
beam, by properly engineered parametric processes. The
present paper will not deal with the physics of the optical
sources, extensively described in Refs. [17–22], but will focus
on the characterization and possibly on the quantification of
the multipartite entanglement thereby produced.

Figure 1 summarizes the optical schemes that will be con-
sidered, along with the states generated by each of them. In
Fig. 1(a), the medium is a standard χ (2) crystal, but the beam
that feeds the process is engineered in the form of two slightly
noncollinear modes, which determine a transverse modulation
of the pumping profile. In the case of Fig. 1(b) the pump is a
single-mode beam, but the medium is a nonlinear photonic
crystal (NPC) [23], the χ (2) response of which is artifi-
cially modulated according to a two-dimensional (2D) poling
pattern. The common feature of these apparently disparate
sources is the coexistence inside the same medium of two
concurrent nonlinear processes, which mutually reinforce dur-
ing propagation, and the existence of spatiotemporal modes
of the fluorescence radiation shared by both processes. These
constitute an infinite set of bright modes [20,21], character-
ized by the nonstandard three-mode coupling schematically
depicted by Figs. 1(a1) and 1(b1). Under special conditions,
a transition to the linear four-mode coupling of Figs. 1(a2)
and 1(b2) can take place [17,18,20,21]. The third example
is a mixture of the other two, corresponding to a nonlinear
photonic crystal pumped by two noncollinear optical modes.
In this case, four nonlinear processes coexist in the same
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FIG. 1. Parametric sources of multipartite spatial entanglement. (a) Standard χ (2) medium pumped by two noncollinear beams of
amplitudes α1 and α2. (b) Hexagonally poled NPC, pumped by a single pump αp, where two noncollinear processes are sustained by vectors �G1

and �G2 of the reciprocal lattice. (c) Doubly pumped NPC, where four processes coexist. The graphs describe the multimode coupling generated
in specific sets of spatiotemporal modes, in normal conditions (a1), (b1) or under special resonance conditions (a2), (b2), (c2) (see text). The
couplings gj ∝ α j , while g ∝ αp.

medium, and under particular resonance conditions give rise
to the square coupling in Fig. 1(c2) [19,22].

The paper has two main parts. In the first one, follow-
ing previous literature [11,24–32] we set the machinery for
describing continuous-variable multipartite entanglement and
we establish the general criteria that will be used in the second
part for characterizing our states. We shall use two methods:
the first one, in the spirit of Refs. [29,33], requires setting
proper bounds for the variances of nonlocal observables of
the system, that when violated certify the entanglement of
the state. Our inequalities have nothing substantially new
compared to others derived and used in existing literature
[29,31,32]. However, they have the advantage of being partic-
ularly simple and general, and of having the compact form of
Heisenberg-like inequalities [see Eq. (14)]. Along with them,
we also suggest a viable strategy to identify the nonlocal
observables best suited to test the inseparability of a given
Gaussian state, based on its Bloch-Messiah decomposition
[34]. Due to the relative simplicity of our states, we have full
access to their covariance matrix, which gives the possibility
of using more powerful inseparability tests directly based on
the positive partial transpose (PPT) criterion [24–26]. This
allows a (hopefully) instructive comparison between the two
kinds of inseparability tests.

II. CV MULTIPARTITE ENTANGLEMENT

Let us start by fixing the formalism and introducing the
basic concepts. We consider a system of N optical modes,
with bosonic annihilation and creation operators â j, â†

j ( j =
1, . . . , N). Hermitian quadrature operators are defined as

X̂ j = â j + â†
j , Ŷj = 1

i (â j − â†
j ), with commutator [X̂ j, Ŷk] =

2iδ j,k . By introducing the 2N-dimensional vector

Q̂ = (X̂1, . . . , X̂N , Ŷ1, . . . , ŶN )ᵀ, (1)

the fundamental commutation relations take the compact form

[Q̂α, Q̂β] = 2i�αβ (2)

where � is the 2N × 2N symplectic form � = ( 0N 1N

−1N 0N

)
,

with 1N and 0N being the identity and null matrix in N di-
mensions.1 Each state ρ̂ of the system can be associated with
a covariance matrix, containing the second-order moments of
quadrature operators in symmetric ordering:

Vαβ = 〈{δQ̂α, δQ̂β}〉 = Tr
{

1
2 (δQ̂αδQ̂β + δQ̂βδQ̂α )ρ̂

}
(3)

where δQ̂ j = Q̂ j − 〈Q̂ j〉. Gaussian states, in particular, are
uniquely determined by their covariance matrix, apart from a
displacement in phase space, inessential for the entanglement.
A legitimate covariance matrix must be real and symmetric
and must satisfy the condition

V + i� � 0, (4)

meaning that the Hermitian matrix V + i� has non-negative
eigenvalues (the same clearly holds true for the com-
plex conjugate V − i�, and for the covariance V itself).

1The specific form of � depends on the order in which operators
are arranged into Q̂. This is often defined as Q̂ = (X̂1, Ŷ1, . . . X̂N , ŶN ),
so that � becomes a block diagonal matrix, where each block is

( 0 1
−1 0).
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This condition is a straightforward consequence of the
positivity of the density operator ρ̂, and of the com-
mutation relation (2), because it ensures that any op-
erator of the form ξ̂ = ∑

α cαδQ̂α , where cα are com-
plex coefficients, satisfies 〈ξ̂ †ξ̂〉 = ∑

α,β c∗
βcα〈δQ̂αδQ̂β〉 =∑

α,β c∗
βcα〈{δQ̂α, δQ̂β} + 1

2 [Q̂α, Q̂β]〉 = c†(V + i�)c � 0 for
any 2N-dimensional vector of complex numbers c† =
(c∗

1, . . . , c∗
2N ), including the eigenvectors of the matrix V +

i�, the eigenvalues of which are therefore non-negative. The
condition (4) is often expressed in the equivalent form (see,
e.g., Ref. [30])

Eigen+[i�V ] � 1 (5)

where Eigen+[·] denotes the positive eigenvalues of
i�V , which form the so-called symplectic spectrum ν =
{ν1, ν2 . . . νN } of the covariance matrix. The inequality (4)
implies that for a legitimate covariance matrix νi � 1, ∀i =
1, . . . , N (see Appendix A1 for details).

The inequalities (4) and (5) can be considered as general
expressions of the Heisenberg uncertainty relations, which
bound the variances of pairs of observables. If we focus on
the simplest type of nonlocal observables, i.e., linear combi-
nations of the quadrature operators of the modes

η̂(d) =
∑

α

dαQ̂α,

(6)
η̂(d′) =

∑
α

d ′
αQ̂α,

where d = (d1, d2, . . . , d2N )ᵀ and d′ = (d ′
1, d ′

2, . . . , d ′
2N )ᵀ are

vectors of real coefficients, their variances must satisfy the
following Heisenberg bound:

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � 2
√

〈δη̂2(d)〉
√

〈δη̂2(d′)〉
� |〈[δη̂(d), δη̂(d′)]〉|. (7)

As is well known, these inequalities are a purely math-
ematical consequence of the positivity of the density
operator ρ̂, and of the fact that η̂(d) and η̂(d′) are
Hermitian operators (observables). Indeed they are based
on the Cauchy-Schwarz inequality 〈δη̂2(d)〉〈δη̂2(d′)〉 �
|〈δη̂(d)δη̂(d′)〉|2, and on the inequality |〈δη̂(d)δη̂(d′)〉| =
|dᵀ(V + i�)d′| � |dᵀ� d′| = 1

2 |〈[δη̂(d), δη̂(d′)]〉|, which in
turn is a straightforward consequence of the fact that d and
d′ are real vectors.

Notice also that the bound for the product of variances is
stronger than the one for the sum, because the inequality in
the first line of the formula (7) holds strictly unless the two
variances are equal.

A. The PPT criterion in phase space

We consider now the problem of separability of the state
with respect to a given bipartition. Let us consider a parti-
tion of the N modes into two subgroups A = { j1, j2, . . . , jk}
(Alice) and B = {m1, m2, . . . , mN−k} = AC (Bob). We call A
separable those states that can be written in the form ρ̂ =∑

n Pnρ̂
(A)
n ⊗ ρ̂ (B)

n , where Pn � 0, and ρ̂ (A)
n and ρ̂ (B)

n are den-
sity operators on Alice’s and Bob’s subspaces.

The Peres-Horodecki [24,25] PPT criterion establishes that
for any A-separable state the operator ρ̂ PT(A) obtained by

partial transposition of its density operator with respect to the
degrees of freedom of subsystem A is still a legitimate density
operator. The existence of a negative partial transpose density
operator is thus a sufficient criterion for assessing the A en-
tanglement of the state, and becomes also necessary for the
{ j1} × {m1, . . . , mN−1} partitions of Gaussian states [26,27].
For the continuous-variable systems of interest for this paper,
an elegant and useful translation of the PPT criterion to phase
space has been performed by Simon [26], who showed that in
phase space the partial transposition corresponds to a mirror
reflection of all the Y quadratures of Alice’s modes. Mathe-
matically, this amounts to a transformation of the covariance
matrix of the state, by means of the unitary matrix

�A = diag{1, 1, . . . −1
↓

N+ j1

. . . −1
↓

N+ j2

. . . −1
↓

N+ jk

} (8)

which changes the sign of the Y quadratures of modes
j1, j2, . . . , jk of the set A. The PPT criterion for continuous
variables [26,27] establishes that for any A-separable state the
matrix

V PT(A) = �AV�A (9)

is still a legitimate covariance matrix, which implies

V PT(A) + i� � 0 (10)

or, alternatively,

Eigen+[i�V PT(A)] � 1. (11)

The conditions (10) or (11) provide powerful means to test
the entanglement of the state with respect to the partition A:
whenever a negative eigenvalue of V PT(A) + i� appears (or
a symplectic eigenvalue of V PT(A) is smaller than 1), then
ρ̂ PT(A) is not a physical state, which implies that ρ̂ is not
A separable. Clearly, such a test requires access to the full
covariance matrix of the state, which is often not a viable route
in experiments because of the large number of measurements
required.

B. Criteria based on variances of nonlocal observables

Simon [26] proposed a somehow more accessible use of
the PPT criterion, that was subsequently applied to various
examples of multipartite CV entanglement [11,29,31], and
systematically generalized by the work in Ref. [32]. We pro-
pose here a simpler version of the general criteria described in
Ref. [32], sufficient for characterizing the states of interest in
this paper.

The Heisenberg inequalities (7) hold for any physical state.
A-separable states conversely impose stronger bounds, orig-
inating from their positive partial transpose. Because of the
equivalence between the partial transposition of the density
operator and the mirror reflection of the Y quadratures of
Alice, the variances of each pair of linear combinations of
mode quadratures η̂(d) and η̂(d′) satisfy the relation

〈δη̂2(d)〉ρ̂ + 〈δη̂2(d′)〉ρ̂ = 〈δη̂2(�Ad)〉ρ̂ PT(A)

+ 〈δη̂2(�Ad′)〉ρ̂ PT(A) (12)

where 〈·〉ŵ = Tr{·ŵ}, ρ̂ PT(A) is the partial transpose (with re-
spect to Alice’s set) of the density operator, and �A is the
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mirror reflection described by Eq. (8). For A-separable states
ρ̂ PT(A) is a valid density operator, so that the right-hand side
of Eq. (12) must satisfy a Heisenberg bound analog to that
of Eq. (7), which is a purely algebraic consequence of the
positivity of the density operator. Therefore, in A-separable
states the variances of observables are subject to the additional
bound

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � 2|dᵀ�A� �Ad′|. (13a)

In a similar way, the product of variances in A-separable states
is constrained to

√
〈δη̂2(d)〉〈δη̂2(d′)〉 � |dᵀ�A� �Ad′|. (13b)

Actually, Eqs. (13a) and (13b) are just examples of the
general criteria described in Ref. [32], which involve any
kind of functional of nonlocal observables. From the defini-
tion of η̂ in Eq. (6), we notice that [δη̂(�Ad), δη̂(�Ad′)] =
2i(�Ad)ᵀ��Ad′, so that Eqs. (13a) and (13b) can be recast
in the more expressive form

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � 2
√

〈δη̂2(d)〉〈δη̂2(d′)〉
� |〈[δη̂(�Ad), δη̂(�Ad′)]〉|. (14)

This inequality has the same form as the Heisenberg relation
(7), but the lower bound is determined by the commutator
between the mirrored variables. Thus we can say that the
uncertainties of observables in separable states are constrained
not only by their commutator, as in standard Heisenberg
uncertainty relations, but also by the commutators of the
mirrored observables. The inequality (14) has the further
advantage of not depending on the numerical value of the
commutator (often a source of confusion because of the dif-
ferent definitions of X̂ and Ŷ adopted by various authors), and
will be systematically used in the next sections of this paper.

If the nonlocal variables η̂(d) and η̂(d′) are properly cho-
sen, Eq. (14) jointly with the Heisenberg inequality (7) may
provide a stronger bound than Eq. (7) alone, obeyed by all
the states. A simple example is that of the Duan criterion
[33] for bipartite entanglement between two bosonic modes â1

and â2. Let us consider the nonlocal variables η̂ = 1√
2
(sX̂1 −

1
s X̂2) and η̂′ = 1√

2
(sŶ1 + 1

s Ŷ2), where s is a real number. In
any state, the sum of their uncertainties cannot be below
the Heisenberg bound |[η̂, η̂′]| = |s2 − 1

s2 |, which vanishes
for s = 1. Conversely, separable states need to respect the
stronger bound represented by the commutator of mirrored
variables 〈δη̂2〉 + 〈δη̂′2〉 � 1

2 |[sX̂1 − 1
s X̂2, sŶ1 − 1

s Ŷ2]| = s2 +
1
s2 . Therefore, violation of this bound is a sufficient condition
for the entanglement of any bipartite continuous-variable state
(which becomes also necessary for Gaussian states [33]).

In the general case of a N-mode state, negation of a bound
of the form described by Eq. (14) jointly with Eq. (7)] is
sufficient to rule out the A separability of the state. The
demonstration of a genuine N-party entanglement requires
then verifying the inseparability of the state with respect to
each of the possible partitions of the N modes, the number

of which is 2N−1 − 1.2 To be truly precise, as observed
by [11,31], such a test is able to prove the full N-party
inseparability of the state and not its genuine N-party entan-
glement, because the state could be a mixture of A-separable,
A′-separable, etc., states. However, for pure states the two
concepts luckily coincide, and thus in the following we shall
simply identify genuine N-party entanglement of a state with
its inseparability with respect to any bipartition.

C. Gaussian states and Bloch-Messiah reduction

The inequalities (14) provide a viable strategy to test the
separability of the state with respect to any bipartition, espe-
cially for pure Gaussian states for which the Bloch-Messiah
reduction can be performed. According to the Bloch-Messiah
theorem [34], any N-mode pure Gaussian state can be de-
composed into N independent squeezed states followed by
linear passive transformations, i.e., transformations that do
not mix creation and destruction operators (namely, beam
splitters and phase rotations). In terms of bosonic operators,
it is always possible to find a NxN unitary matrix UB, such
that UBU†

B = U†
BUB = 1N , and⎛

⎝ â1
...

âN

⎞
⎠ = UB

⎛
⎝ ŝ1

...

ŝN

⎞
⎠ (15)

where ŝ j are bosonic operators in independent squeezed states
(eventually in the vacuum state). The same decomposition
transforms the quadrature operators as Q̂ = SBQ̂s, where
SB = (Re(UB ) −Im(UB )

Im(UB ) Re(UB )

)
is a symplectic matrix, and the vec-

tor Q̂s = (X̂s1 , . . . , ŶsN )ᵀ contains the quadrature operators of
the squeezed modes, which are characterized by conjugate
variances 〈δX̂ 2

s j
〉 = σ j and 〈δŶ 2

s j
〉 = 1/σ j . By inverting SB,

the quadrature of the squeezed modes can be expressed as
linear combinations of those of the original modes: then,
the squeezed quadratures (say Ŷs j , j = 1, . . . , k, with k � N)
straightforwardly provide a set of nonlocal operators the vari-
ances of which are below shot noise, and potentially vanish
in the limit of large squeezing parameters. Notice that the
nonlocal variables obtained in this way commute pairwise
by construction, because the squeezed modes are indepen-
dent. Therefore, the only bounds which need to be negated
in order to demonstrate entanglement are those defined by
the Heisenberg-like inequalities for mirrored observables in
Eq. (14). We shall see applications of this procedure in the
next sections.

Clearly, knowledge of the Bloch-Messiah decomposition
permits one also to calculate the covariance matrix, which for

2A simple demonstration that the number of bipartitions of N
modes is 2N−1 − 1 can be done by induction. If the number of parti-
tions of N − 1 modes is F (N − 1), then the number of partitions of
N modes is F (N ) = 2F (N − 1) + 1, because by adding a new mode,
say jN , each grouping A × B of the j1, . . . jN−1 modes generates the
2 new partitions {A, jN } × B and A × {B, jN }. Moreover there is the
additional partition jN × { j1, . . . , jN−1}. Clearly F (2) = 1, and by
using the above recurrence relation F (N ) = ∑N−2

k=0 2k = 2N−1 − 1.
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a pure state can can be written in the form

V = SBV sqSᵀ
B;

V sq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0 . . . 0
0 σ2 0 . . . 0

. . .
...

σN

σ1
−1

...
. . .

0 . . . σ−1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

III. DOUBLY PUMPED BULK CRYSTAL, OR
SINGLE-PUMP NPC: THREE-MODE COUPLING

Let us start with the case of two concurrent nonlinear
processes in the standard configuration, i.e., away from the
resonances that will be studied in the next section.

Specifically, we consider the scheme of Fig. 1(a), in which
two pump beams propagate noncollinearly in a bulk χ (2)

crystal and originate two intersecting families of fluorescence
cones (see Refs. [18,21] for details). A second example is
that of a 2D nonlinear photonic crystal pumped by a single
beam in Fig. 1(b): in this case, two nonlinear processes co-
exist in the same medium because phase matching can be
simultaneously satisfied by means of two noncollinear vectors
( �G1 and �G2 in the figure) of the reciprocal lattice of the 2D
poling pattern [17,20]. In both examples, the possibility of
having a multiparty entanglement arises from the existence
of spatiotemporal modes of the down-converted light shared
by both processes, which host photons generated indistin-
guishably by process 1 or by process 2. When a photon is
created in such a mode, its twin appears in either of two
paired modes. This mechanism naturally leads to a tripartite
entangled state. In practice, the triplets of entangled modes
constitute an infinite set of bright modes, which appear as hot
spots on a background of ordinary (i.e., two-mode) parametric
fluorescence: their position and frequency are determined by
the requirement that phase matching of both processes, i.e.,
the conservation of the momentum in the microscopic process
of pair creation, is simultaneously satisfied for the same space-
time mode of the fluorescence radiation [17,18,20,21].

Let us focus on a specific triplet of modes. Let â0 be the
photon destruction operator of the shared mode, and â1 and
â2 those of the modes coupled to it via process 1 and 2,
respectively. Their evolution equations along the sample can
be found in Ref. [18] in the case of a doubly pumped bulk
crystal, or in Ref. [17] for the single-pump NPC. For perfect
phase matching, such equations can be written as â j (z) =
e− i

h̄ P̂zâ j (0)e
i
h̄ P̂z, where e

i
h̄ P̂z is the unitary z-evolution opera-

tor, and the longitudinal momentum operator is

P̂ = −ih̄(g1â†
0a†

1 + g2â†
0â†

2 − g∗
1â0â1 − g∗

2â0â2). (17)

Here g1 and g2 are the parametric coupling strengths of each
process. In the dual pump case they are proportional to the
complex amplitudes α1 and α2 of the two pump waves, while
for the single-pump NPC g1 = g2 := g ∝ αp. Alternatively, in
the picture where the state evolves along the medium,

|ψ (z)〉 = e
i
h̄ P̂z|ψin〉 = e(g1â†

0a†
1+g2 â†

0 â†
2−H.c.)|ψin〉. (18)

In Ref. [18] it was shown that the dynamics could be
decomposed into a single parametric process generating a pair
of EPR entangled modes, followed by a beam splitter that
mixes one of the EPR modes with an independent mode in
an arbitrary input state. In this paper we prefer the standard
Bloch-Messiah decomposition in terms of squeezed modes.
To this end, the phase rotations â1 → â1ei arg[g1] and â2 →
â2ei arg[g2] are first performed: since these are local operations
that do not affect the entanglement of the state, they will be
neglected in what follows. Next, we consider the transforma-
tion ⎛

⎝â0

â1

â2

⎞
⎠ = 1√

2

⎛
⎝ 1 1 0

cos θ − cos θ −√
2 sin θ

sin θ − sin θ
√

2 cos θ

⎞
⎠

⎛
⎝ŝ0

ŝ1

ŝ2

⎞
⎠

:= UB

⎛
⎝ŝ0

ŝ1

ŝ2

⎞
⎠ (19)

where ŝ0, ŝ1, and ŝ2 are independent bosonic operators and

tgθ = |g2|
|g1| . (20)

It can be easily recognized that it corresponds to the action
of a 50 : 50 beam splitter on modes 0 and 1, followed by a
beam splitter with R = sin2 θ and T = cos2 θ acting on modes
1 and 2. By calling ÛB the generator of such transformation,
and applying it to to the momentum operator in Eq. (17), one
easily finds that

Û†
Be

i
h̄ P̂zÛB = e

ḡ
2 (ŝ†

0 ŝ†
0−H.c.)ze− ḡ

2 (ŝ†
1 ŝ†

1−H.c.)z

= Ŝ0(ḡz) ⊗ Ŝ1(−ḡz) (21)

where Ŝ j (r) = exp ( r
2 ŝ†

j ŝ
†
j − H.c.) is the single-mode squeeze

operator for mode j, and

ḡ =
√

|g1|2 + |g2|2. (22)

In this way, the z evolution has been reduced to the action of
two independent squeezers with opposite squeezing param-
eters ±r̄ = ±ḡz, acting on modes 0 and 1 (mode 2 is not
squeezed), followed by the passive transformation described
by Eq. (19): e

i
h̄ P̂z = ÛB�̂0(ḡz)�̂1(−ḡz)Û†

B. When applied to
a vacuum input state, the rightmost operator Û†

B has no ef-
fect, and the overall dynamics can be decomposed according
to the schematic in Fig. 2. We observe that for the doubly
pumped crystal the effective squeezing parameter r̄ = ḡz ∝√

|α1|2 + α2|2 is proportional to the square root of the total
energy. Thus the level of squeezing coincides with what would
be obtained by injecting in the same material a single pump
with the same total energy. Conversely, for the single-pump
NPC, r̄ = √

2 g ∝ √
2|αp|, i.e., there is a net

√
2 increase of

the amount of squeezing or gain in the 2D poled material, due
to the coherent superposition of the two concurrent nonlinear
processes.

Clearly, Fig. 2 can be read also in the inverse way: when
a member of an EPR pair with squeezing parameter r = ḡz is
mixed with a vacuum input on a beam splitter of transmission
T = cos2 θ , the result is the tripartite entangled state in the
figure, obtained from the action of the momentum (17), with
g1 = ḡcos θ and g2 = ḡ sin θ .
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FIG. 2. Bloch-Messiah decomposition of the tripartite entangled
state generated by two concurrent parametric processes of strengths
g1 and g2: ŝ0 and ŝ1 are squeezed modes, with opposite squeezing
parameters ±ḡz, where ḡ = √|g1|2 + |g2|2. BS is a balanced beam
splitter, while BSθ has a splitting ratio R/T = |g2|2/|g1|2.

Tripartite entanglement

We now apply the entanglement criteria outlined in Secs.
II B and II C. Provided that squeezing is along the Y quadra-
ture for ŝ0 while it is along the X quadrature for ŝ1, inversion of
the matrix (19) permits one to identify the nonlocal variables
with subshot noise fluctuations. These are

η̂(d) = 1√
2

(X̂0 − X̂1 cos θ − X̂2 sin θ ) = e−ḡzX̂ in
s1

, (23)

η̂(d′) = 1√
2

(Ŷ0 + Ŷ1 cos θ + Ŷ2 sin θ ) = e−ḡzŶ in
s0

(24)

where, according to the formalism developed in
Sec. II, d = 1√

2
(1,− cos θ,− sin θ, 0, 0, 0)ᵀ and d′ =

1√
2
(0, 0, 0, 1, cos θ, sin θ )ᵀ. The two variables commute,

[η̂(d), η̂(d′)] = 0, so that there is no lower Heisenberg bound
(7) to their variances. Indeed for the vacuum input

〈δη̂2(d)〉 = 〈δη̂2(d′)〉 = e−2ḡz → 0 (25)

for ḡz 
 1. Let us now check the bounds that must be obeyed
by separable states. The bipartitions of three modes are those
corresponding to the three possible choices of a single mode
with respect to the other two. Let us check them one by one,
by applying the separability criterion of Eq. (14).

1. Separability of the shared mode â0

The operation of partial transposition with respect to mode
0 corresponds in phase space to the application of the mir-
roring matrix �0 = diag{1, 1, 1,−1, 1, 1} that inverts the sign
of Ŷ0. Clearly, this has an effect only on d′ → �0d′ =

1√
2
(0, 0, 0,−1, cos θ, sin θ )ᵀ. Any state separable with re-

spect to mode 0 must respect the following bound:

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � |[η̂(�0d′), η̂(�0d)]| = 2, (26)

which is violated by our state for any finite amount of squeez-
ing ḡz > 0. Therefore we conclude that mode 0 is never

separable from the other two, as should be rather intuitive
from the graph of the state in Fig. 2.

2. Separability of mode â1

Partial transposition with respect to mode 1 now transforms
d′ → �1d′ = 1√

2
(0, 0, 0, 1,− cos θ, sin θ )ᵀ. States separable

with respect to mode 1 must respect the bound

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � |[η̂(�1d′), η̂(�1d)]|
= 1

2 |[X̂0 − X̂1 cos θ − X̂2 sin θ,

× Ŷ0 − Ŷ1 cos θ + Ŷ2 sin θ ]|
= 2 cos2 θ. (27)

When applied to our tripartite state, using Eq. (25), a sufficient
condition for inseparability of mode 1 is

ḡz > ln
√

1 + |g2/g1|2, (28)

which is shown in Fig. 3(a) by the blue curve. The condition
becomes more and more demanding as g1 → 0: when mode
1 is weakly coupled, more squeezing is required for verifying
its entanglement.

3. Separability of mode â2

In this case d′ → �2d′ = 1√
2
(0, 0, 0, 1, cos θ,− sin θ )ᵀ.

States separable with respect to mode 2 must satisfy the in-
equality

〈δη̂2(d)〉 + 〈δη̂2(d′)〉 � |[η̂(�2d′), η̂(�2d)]|
= 1

2 |[X̂0 − X̂1 cos θ − X̂2 sin θ,

× Ŷ0 + Ŷ1 cos θ − Ŷ2 sin θ ]|
= 2 sin2 θ. (29)

As could be expected, the results for mode 2 are obtained from
those of mode 1 by exchanging cos θ → sin θ , or alternatively
g1 → g2. For our tripartite state, using Eq. (25), a sufficient
condition for inseparability of mode 2 is

ḡz > ln
√

1 + |g1/g2|2, (30)

which again becomes more and more demanding as g2 → 0,
i.e., as the coupling of mode 2 becomes weaker. The bound is
shown in Fig. 3 by the red curve labeled as “mode 2.”

We notice that for cos θ = sin θ (i.e., g1 = g2) the bounds
(27) and (29) coincide, and are always smaller than the
bound for mode 0 in Eq. (26). Therefore, a sufficient con-
dition for genuine tripartite entanglement which holds for
any three-mode state is that 〈[δX̂0 − (δX̂1 + δX̂2)/

√
2]2〉 +

〈[δŶ0 + (δŶ1 + δŶ2)/
√

2]2〉 < 2, and we retrieve the van
Loock–Furusawa criterion formulated in Eq. (21) of Ref. [29]
(where a factor 4 in the numeric value of the bound arises
from the different definitions of field quadratures). In the
nonsymmetric case, we find more in general that a sufficient
criterion for genuine tripartite entanglement is

〈[δX̂0 − δX̂1 cos θ − δX̂2 sin θ ]2〉 + 〈[δŶ0 + δŶ1 cos θ

+ δŶ2 sin θ ]2〉 < 4 min [cos2 θ, sin2 θ ]. (31)
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FIG. 3. Entanglement of the three-mode state (18). (a) Sufficient
criteria based on the violation of Heisenberg-like inequalities: mode
0 is never separable, while the entanglement of mode 1 and 2 is
verified in the region above the blue and the red curve, respectively,
according to (28) and (30). (b, c) Contour plots of the smallest sym-
plectic eigenvalue ν

(1)
− and ν

(2)
− of the partial transpose with respect

to mode 1 and 2, respectively, showing that actually entanglement is
always present, unless trivially g1 or g2 vanishes.

We stress that this is not the more general inequality for
the variances of nonlocal observables, but it is one of the
many which can be derived by systematic application of the
Heisenberg-like inequalities in (14).

When applied to our tripartite state, the criterion is satisfied
provided that

ḡz >

{
ln

√
1 + |g2/g1|2 for |g2| � |g1|

ln
√

1 + |g1/g2|2 for |g2| < |g1|
. (32)

Figure 3 summarizes the results for the tripartite entanglement
of the state. Figure 3(a) shows the results of the test based
on the violation of the Heisenberg-like inequalities (26), (27),
and (29) for the mirrored observables: violation always occurs
for mode â0, which is never inseparable, while the blue and
red curves are the boundaries (28) and (30) above which the

entanglement of â1 and â2 is verified. Therefore, the white
zone above both curves guarantees the presence of a genuine
tripartite entanglement, according to this test. We stress that
these criteria are sufficient but not necessary, therefore the
shaded regions below the curves may or may not be entangled.

Figures 3(b) and 3(c) of the figure, conversely, show the
result of the more powerful criterion directly based on the
positivity of the partial transpose, specifically on the request
in Eq. (11) that all the symplectic eigenvalues of V PT(A) are
not below 1 for A-separable states. For this low-dimensional
case, the symplectic eigenvalues can be analytically calculated
(Appendix A1). For mode 1, the smallest symplectic eigen-
value of the partial transpose V PT(1) is

ν
(1)
− = 1+2[cos θ sinh (ḡz)]2−

√
{1+2[cos θ sinh (ḡz)]2}2 − 1,

(33)
which is always smaller than 1, unless cos θ = 0, i.e., un-
less the coupling g1 vanishes. The result for mode 2 can
be obtained by switching cos θ → sin θ : therefore also V PT(2)

always has a symplectic eigenvalue ν
(2)
− < 1, apart from the

limit case sin θ = 0, when the coupling strength g2 vanishes.
Figures 3(b) and 3(c) plot contour lines of ν

(1)
− and ν

(2)
− in

the parameter plane ( |g2|
|g1| , ḡz). It is important to remark that

a symplectic eigenvalue να < 1 of the partial transpose not
only certifies the entanglement, but also provides a measure of
the bipartite entanglement, via, e.g., the logarithmic negativity
EN = −∑

να<1 log2 να [28], with smaller να corresponding to
a larger amount of entanglement.

In conclusion, the state (18) always exhibits a genuine
tripartite entanglement, revealed by the PPT criterion, which
however becomes weaker in the limit of a strong unbal-
ance between the two coupling strengths |g2/g1| → 0 and
|g2/g1| → ∞. In these limit situations, a larger amount of
squeezing is necessary in order to detect the entanglement
by means of the less powerful criteria based on violations of
Heisenberg-like bounds for the variances of nonlocal observ-
ables. This state is indeed a very good example of the fact that
these criteria, although very useful and accessible, are indeed
only sufficient to verify entanglement, and may fail to detect
weakly entangled states.

IV. DOUBLY PUMPED BULK CRYSTAL, OR
SINGLE-PUMP NPC: FOUR-MODE LINEAR COUPLING

An interesting feature of the three-mode coupling gener-
ated by the hexagonally poled NPC is that several independent
triplets of entangled modes coexist at any pair of conjugate
wavelengths of the fluorescence radiation. As highlighted
by Ref. [20], by tilting the direction of propagation of the
pump field inside the medium, it is possible to reach special
resonance conditions in which pairs of triplets, originally
uncoupled, degenerate into a group of four entangled modes.
This process takes place when the periodicity of the transverse
phase modulation of the pump exactly matches that of the
poling pattern; it involves the whole emission spectrum, and
is accompanied by a sudden enhancement of the local gain
[20]. Specifically, by considering the two triplets {â0, â1, â2}
and {â′

0, â′
1, â′

2}, at resonance the shared mode of each group
superimposes to a coupled mode of the other, e.g., â0 → â′

1
and â′

0 → â1. This gives rise to the four-mode coupling shown
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in Fig. 1(b2), the quantum properties of which were described
as a golden ratio entanglement [17], because of the appearance
of this particular irrational number. Recently, striking similar
resonances have been demonstrated in a doubly pumped beta
barium borate (BBO) crystal [18,21]. Also in this second
case the resonances are reached by tilting one of the pump
modes inside the nonlinear medium, but their physical origin
is quite different, because it involves the superposition of the
Poynting vector of the pump carrier, representing the mean
flux of the energy injected into the medium, with the direction
of propagation of one pump mode [18]. As in the previous
case, at resonance each two triplets of modes degenerate into
a group of four modes, the coupling of which is described
by Fig. 1(a2). The only difference with the NPC case is
the appearance of two distinct coupling strengths g1 and g2,
controlled by the complex amplitudes α1 and α2 of the two
pumps.

Let us focus on a specific group of four-entangled modes
{â1, â2, â3, â4}. Their evolution equations along the sample
can be found in Ref. [17] for the NPC and in Ref. [18] for
the doubly pumped bulk crystal. They can be derived from a
longitudinal momentum operator of the form

P̂ = −ih̄(g1â†
1â†

2 + g2â†
2â†

3 + g2â†
4â†

1 − H.c.), (34)

where â1 and â2 are shared modes,characterized by two links
in Figs. 1(a2) and 1(b2), while â3 and â4 are unshared modes,
with a single link. We notice that these graphs correspond to
a linear chain of nearest-neighbor interactions (we show them
as open polygons to keep continuity with the previous works
[17,18]).

References [17,18] showed that the z evolution of the
four modes could be decomposed into two independent
standard (i.e., two-mode) parametric processes, mixed on
an unbalanced beam splitter. Based on these results, we
can immediately derive the Bloch-Messiah decomposition of
state. Let us first perform local phase rotations, inessential
for entanglement: (â1, â2) → e

i
2 arg(g1 )(â1, â2) and (â3, â4) →

ei[arg(g2 )− 1
2 arg(g1 )](â3, â4), which eliminates from the problem

the phases of g1 and g2. This physically means that the phase
of the pump beam is irrelevant for the entanglement of the
state.3 Thus, as in the previous section, the parameter space is
spanned by the two variables

x = |g2|
|g1| , r̄ =

√
|g1|2 + |g2|2 z (35)

representing the unbalance between the two processes and the
total squeezing or gain available for a medium of length z,
respectively. Next we consider the transformation

⎛
⎜⎝

â1

â3

â2

â4

⎞
⎟⎠ = 1√

2

⎛
⎜⎝

cos γ 0 − sin γ 0
0 cos γ 0 − sin γ

sin γ 0 cos γ 0
0 sin γ 0 cos γ

⎞
⎟⎠

3In practice the pump phases are relevant because they determine
the directions in phase-space where squeezing occurs.

×

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎠

⎛
⎜⎝

ŝ1

ŝ2

ŝ3

ŝ4

⎞
⎟⎠

:= UB

⎛
⎜⎝

ŝ1

ŝ2

ŝ3

ŝ4

⎞
⎟⎠ (36)

where ŝ1–ŝ4 are independent bosonic modes, and the angle γ

is defined by

tgγ =
√

�δ

�σ

, �σ,δ (x) = ḡ√
x2 + 1

√
4x2 + 1 ± 1

2
. (37)

Under this transformation the momentum operator in Eq. (34)
becomes the product of four independent quadratic momenta:

Û†
B P̂ ÛB = −ih̄

(
�σ

2
ŝ†

1ŝ†
1 − �σ

2
ŝ†

2ŝ†
2 − �δ

2
ŝ†

3ŝ†
3

+�δ

2
ŝ†

4ŝ†
4 − H.c.

)
(38)

where UB is the generator of the transformation (36). As a
result, the z evolution of the four-mode state decouples into
the product of four single-mode squeeze operators Ŝ j (r) =
exp ( r

2 ŝ†
j ŝ

†
j − H.c.), each acting on mode j = 1, . . . , 4:

Û†
Be

i
h̄ P̂zÛB = Ŝ1(�σ z) ⊗ Ŝ2(−�σ z)

⊗ Ŝ3(−�δz) ⊗ Ŝ4(�δz), (39)

where the squeeze parameters are given by Eq. (37). For a
vacuum input, the dynamics of the four-mode state can be
unfolded according to the scheme in Fig. 4: here the four
squeezed modes obtained from the action of the squeezers in
Eq. (39) are first mixed on balanced beam splitters to form
two independent pairs of EPR modes, labeled as σs, σi and
δs, δi, where s and i stand for signal and idler, with squeezing
parameters �σ z and −�δz, respectively. Next the EPR modes
are pairwise mixed (signal with signal and idler with idler)
on two identical beam splitters, the splitting ratio of which is
linked to the squeeze eigenvalues by

R

T
= �δ

�σ

. (40)

Indeed, this is the condition which ensures that modes â3 and
â4 are uncoupled, and that the graph of the coupling reduces
to a linear chain.

We notice that for x = 1 �σ → ḡ√
2
� and �δ → ḡ√

2
1
�

,

where � = 1
2 (1 + √

5) is the golden ratio. Thus for the single-
pump NPC, the squeeze parameters are g� and g/�, and the
“golden ratio” squeezing or gain enhancement described in
Refs. [17,20] takes place. For the doubly pumped BBO, one
eigenvalue is always smaller than ḡ, �δ/ḡ ∈ (0, 1), but the
other is always larger, �σ/ḡ ∈ (1, 2√

3
), with the maximum

value 2/
√

3 = 1.15 occurring when pump 2 is twice as intense
as pump 1. Thus, in contrast to the three-mode case, the
doubly pumped scheme at resonance exhibits a true increase
of the squeezing or gain level of certain modes, with respect
to the use of a single pump with the same energy.
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FIG. 4. Bloch-Messiah decomposition of the four-mode state (34), generated at resonance by a doubly pumped BBO or by a single-pump
NPC. ŝ1–ŝ4 are independent squeezed modes, the squeeze parameters ±�σ,δz of which depend on |g1| and |g2| according to Eq. (37). BS are
balanced beam splitters, while BSγ have R

T = tg2γ = �δ

�σ
. For the NPC, �σ = g�, �δ = g/�, and R/T = 1/�2, where � is the golden ratio.

Quadripartite entanglement of the linear state

As for the tripartite state, the four-mode entanglement will
be characterized both by using criteria based on variances of
nonlocal observables [Eq. (14)] and by means of the symplec-
tic eigenvalues of the partial transpose [Eq. (11)].

Inversion of the matrix (36) permits one to identify the
nonlocal variables with subshot noise fluctuations. Taking into
account the sign of the squeezing parameters in Eq. (39), these
are

η̂(d′
σ ) = 1√

2
[cos γ (Ŷ1 + Ŷ2) + sin γ (Ŷ3 + Ŷ4)]

= e−�σ zŶ in
s1

, (41a)

η̂(dσ ) = 1√
2

[cos γ (X̂1 − X̂2) + sin γ (X̂3 − X̂4)]

= e−�σ zX̂ in
s2

, (41b)

η̂(dδ ) = 1√
2

[− sin γ (X̂1 + X̂2) + cos γ (X̂3 + X̂4)]

= e−�δzX̂ in
s3

, (41c)

η̂(d′
δ ) = 1√

2
[− sin γ (Ŷ1 − Ŷ2) + cos γ (Ŷ3 − Ŷ4)]

= e−�δzŶ in
s4

. (41d)

By construction, the variables commute pairwise
[η̂(dα ), η̂(d′

β )] = 0 and their variances asymptotically vanish
in the limit of large squeezing ḡz 
 1:

〈δη̂2(dα )〉 = 〈δη̂2(d′
α )〉 = e−2�αz, (α = σ, δ). (42)

Conversely, if we consider states that are separable with re-
spect to a given partition {A} × {B} of the set of four modes,

the variances of the observables (41) are constrained by the
four bounds that arise from the nonzero commutators of the
mirrored variables. Precisely, by using Eq. (14), these bounds
are

〈δη̂2(dα )〉 + 〈δη̂2(d′
α )〉 � |[η(�Adα ), η(�Ad′

α )]|
(α = σ, δ), (43a)

2
√

〈δη̂2(dα )〉 〈δη̂2(d′
β )〉 � |[η(�Adα ), η(�Ad′

β )]|
(α �= β = σ, δ) (43b)

where �A is the mirror matrix defined by Eq. (8). Notice that
for α �= β [Eq. (43b)] we directly wrote the criterion for the
product of variances because in this case it is more stringent
than the one for the sum. Violation of any of these bounds is
sufficient to verify that the state is not A separable.

For each of the possible partitions of the system, we
checked the four constraints, and we chose among them the
one that is violated first in terms of the total gain (see Table V
in Appendix A). The seven distinct partitions of four modes
are listed in Table I.

Figures 5(a)–5(e) show the results obtained for each bi-
partition. The curves plot the lowest one of the constraints
(43), so that in the white region above each curve all the
Heisenberg-like inequalities (43) are violated, which guar-
antees that the state is inseparable with respect to the given
partition. We remind the reader that the criterion is only suf-
ficient, so that the shaded regions below each curve may or
may not be entangled. For reasons of symmetry, the results
for P2 and P4 are identical to those for P1 and P3, respectively,
and therefore are not shown. Figure 5(f) summarizes all the
bounds, where the yellow region above all curves guaran-
tees the presence of a genuine quadripartite entanglement,
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TABLE I. Seven distinct partitions of four modes.

P1 P2 P3 P4 P12 P13 P14

{1} × {2, 3, 4} {2} × {1, 3, 4} {3} × {1, 2, 4} {4} × {1, 2, 3} {1, 2} × {3, 4} {1, 3} × {2, 4} {1, 4} × {2, 3}

according to this test. Notice that violation always occurs for
partition P13 [Fig. 5(d)], implying that for any finite gain ḡz �=
0 the state is never fully separable. This is a straightforward
consequence of the existence in the subspace {â1, â3} of linear
combinations of modes, namely, the EPR signal modes σs and
δs in Fig. 4, that are maximally entangled to their EPR part-
ners σi and δi living in the complementary subspace {â2, â4}.
Figure 6 shows instead the results of the more powerful test
based on the PPT criterion, namely, on the request [Eq. (11)]
that for A-separable states all the symplectic eigenvalues of
V PT(A) satisfy να � 1. For each of the seven bipartitions, the
symplectic spectra have been analytically calculated, and are
reported in Table III of Appendix B. Figure 6 shows contour
plots, in the parameter plane (|g2/g1|, ḡz), of the product∏

να<1 να . We remind the reader that this quantity provides a
quantitative assessment of the bipartite entanglement, via the
logarithmic negativity EN = − log2(

∏
να<1 να ) [28].

As already noticed for the three-mode state, the PPT cri-
terion reveals the presence of entanglement in regions of the
parameter space where the Heisenberg-like criteria (43) fail
to detect it. Actually, according to the results in Fig. 6, the

four-mode linear state exhibits a genuine four-party entangle-
ment for any finite value of the gain ḡz, unless trivially one of
the two couplings vanishes, g1 = 0 or g2 = 0. In particular, for
the single-pump NPC, where g2 = g1 = √

2ḡ, the four-mode
entanglement is always a genuine one.

Indeed the analysis of the symplectic spectra provides a
quantitative assessment of what could be intuitively expected
for a linear chain of nearest-neighbor interactions. Assuming
a given amount of the total gain ḡz > 0, the shared modes
1 and 2, characterized by two links of strength g1 and g2

with the other modes, are never separable [Fig. 6(a)], and
their level of entanglement remains fairly constant with the
ratio |g2/g1|. Conversely, the entanglement of modes 3 and
4, which have the single link g2, is weaker and vanishes
for g2 → 0 [Fig. 6(b)]. Concerning the 2 × 2 bipartitions,
we notice that P12 [Fig. 6(c)] has a double link of strength
g2: therefore, it may become separable for g2 = 0, but has a
quite high level of entanglement when |g2| > |g1|. In com-
parison, P14 [Fig. 6(e)], which becomes separable for g1 → 0,
has a weaker entanglement because it has a single link. The
“signal-idler” partition P13 [Fig. 6(d)] is clearly the most

/

/

(a) (b) (c)

(f)(e)(d)
genuine 4-mode 

entanglement 

/ /

/ /

FIG. 5. Entanglement of the four-mode linear state (34), according to sufficient criteria based on the violation of the Heisenberg-like
inequalities (43). (a)–(e) The results for partitions P1, P3, P12, P13, and P14, respectively, where inseparability is guaranteed in the region above
the curve. The plots for P2 and P4 are identical to those for P1 and P3, respectively. (f) Summary of all the bounds, with a genuine four-party
entanglement being verified in the yellow region above all curves.
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FIG. 6. Entanglement of the four-mode linear state (34), according to the PPT criterion. (a–e) Contour plots of the symplectic eigenvalues
να < 1 of V PT(A) listed in Table III, for each partition. For P1, P3, and P14 there is a single eigenvalue να < 1, shown in (a), (b), and (e) (the
results for P2 and P4 are identical to those for P1and P3, respectively, and are not shown). For P12 and P13, panels (c) and (d) show the product
of the two eigenvalues below 1.

entangled one: it is never separable, because its three links of
different strengths cannot simultaneously vanish for ḡz > 0.
In this case, the symplectic eigenvalues να < 1 of the partial
transpose have the particularly simple expressions e−2�δz and
e−2�δz (Table III), where �σ z and �δz are the squeeze param-
eters of the Bloch-Messiah decomposition of the state, given
by Eq. (37). Using this equation, some simple calculations
yield to a logarithmic negativity EN = 2

ln 2

√
4|g2|2 + |g1|2.

Thus, for g2 = 0 EN → 2
ln 2 |g1|z, which is the logarithmic

negativity of a single EPR state with gain |g1|z, while for
g1 = 0 EN → 4

ln 2 |g2|z, corresponding to the entanglement of
two independent EPR states.

V. DOUBLY PUMPED NPC: FOUR-MODE
SQUARE COUPLING

The last example that we consider is that of doubly pumped
NPC, schematically shown by Fig. 1(c): here the intensity
pattern created by the interference of the two pump modes
superimposes to the static pattern of the periodic poling. The

four possible combinations of the pump modes with the grat-
ing vectors �G1 and �G2 drive four concurrent processes which
create four families of intersecting cones [19,22]. An espe-
cially important configuration is reached at spatial resonance,
when the periodicity of the pump pattern matches that of
the poling pattern, and two of the four processes degenerate
into a single one, the parametric gain of which is controlled
by the coherent sum of the two pump amplitudes |α1 + α2|
[19,22]. This gives rise to the four-mode coupling shown in
Fig. 1(c2) in proper groups of spatiotemporal light modes.
Remarkably, this coupling is topologically different from the
one of the single-pump NPC, because it is a closed square
chain of nearest-neighbor interactions.

As detailed in Ref. [19], the generator of the z evolution
along the sample of each quadruplet of coupled modes is the
longitudinal momentum

P̂ = −ih̄(g1â†
1â†

2 + (g1 + g2)â†
2â†

3 + g2â†
3â†

4

+ (g1 + g2)â†
4â†

1 − H.c). (44)
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FIG. 7. Bloch-Messiah decomposition of the four-mode state (44), generated at resonance by a NPC pumped by two pumps of equal
intensity |g1| = |g2|. Modes ŝ1–ŝ4 have squeeze parameters ±�σ,δz which depend on the pump phase difference φ− as described by Eq. (48).
BS are balanced beam splitters.

We notice that in this case all modes are shared between two
of the three processes, and are characterized by two links in
the graph of Fig. 7. We also notice that the central links have
strengths g1 + g2 controlled by the phases of g1 and g2, i.e., by
the phases of the pump modes, which represents the specific
feature of this configuration, absent in the case of the doubly
pumped bulk crystal where the phases were irrelevant.

In order to emphasize this feature (and also for reasons of
brevity), in the following we limit our analysis to the symmet-
ric case, in which the pumps have equal intensities and

|g1| = |g2|. (45)

By performing the local phase rotations (â1, â2) →
e

i
2 arg(g1 )(â1, â2) and (â3, â4) → −e

i
2 arg(g2 )](â3, â4), the

momentum operator reduces to P̂ = −ih̄ ḡ√
2
[â†

1â†
2 + â†

3â†
4 +

2 cos φ−(â†
2â†

3 + â†
4â†

1) − H.c.]. The parameter space is
spanned by the two variables

φ− = arg(g1) − arg(g2)

2
r̄ =

√
|g1|2 + |g2|2 z (46)

representing the phase shift between the two processes (phys-
ically, φ− is the offset between the transverse modulations
of the pump and of the poling pattern [19]) and the total
squeezing available for a medium of length z, respectively.

The Bloch-Messiah decomposition of state is shown in
Fig. 7; it is obtained by means of the transformation

⎛
⎜⎝

â1

â3

â2

â4

⎞
⎟⎠ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

ŝ1

ŝ2

ŝ3

ŝ4

⎞
⎟⎠ := UB

⎛
⎜⎝

ŝ1

ŝ2

ŝ3

ŝ4

⎞
⎟⎠ (47)

where the squeezed modes ŝ1, ŝ2, ŝ3, and ŝ4 have squeeze pa-
rameters +�σ z,−�σ z,−�δz, and + �δz in order, with

�σ,δ = ḡ√
2

(2 cos φ− ± 1) = |g1 + g2| ± |g1|. (48)

We notice that the decomposition is very similar to the one in
Fig. 4, but the condition (40) is released, with the BSγ replaced
by balanced beam splitters, having R/T = tg2γ = 1.

Quadripartite entanglement of the square state

For the state generated by the square coupling (44) we omit
the long but simple analysis based on the variances of nonlocal
observables, which can be performed along the guidelines of
the previous sections, by inverting the transformation (47)
(some caution should be taken with the sign of �δ). As in
the other examples, this kind of analysis does not actually add
anything to the results based on the symplectic eigenvalues of
the partial transpose matrix V PT(A), which for this simple state
can be analytically performed and are presented in Fig. 8.

Before discussing these results, let us consider the fol-
lowing points: according to our definitions, �δ in Eq. (48)
is positive for φ− < π

3 and negative for φ− > π
3 . The point

φ− = π
3 ( mod π )4 at which �δ = 0 and modes ŝ3 and ŝ4 are

not squeezed is characterized by the fact that all the inter-
modal links have the same strength: |g1 + g2| = |g1| = |g2|.
At this point, the four-mode state corresponds to a balanced
mixture of an EPR state with a vacuum or coherent state, as
discussed in Ref. [19]. The other important point is φ− = π

2

4We limit to φ− ∈ (0, π

2 ), which corresponds to a phase difference
between the two pumps ∈ (0, π ).
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FIG. 8. Entanglement of the four-mode square state (44), accord-
ing to the PPT criterion. (a)–(e) Contour plots of the product of the
symplectic eigenvalues να � 1 of V PT(A) listed in Table IV, for each
partition of the system. (a) The results for the one-mode partitions
Pj , which are all identical. (b)–(d) The results for the remaining
partitions. The quadripartite entanglement is always genuine, except
at the point φ− = π

2 , where g1 + g2 = 0 and P12 in (b) becomes
separable.

at which g1 + g2 = 0, and the two central links vanish, so that
the four-mode coupling degenerates into the product of two
independent two-mode couplings. At this point �δ = −�σ ,
and, according to the Bloch-Messiah decomposition in Fig. 7,
the state is the mixture of two identical EPR states on a bal-
anced beam splitter, which again results in two independent
EPR pairs. Correspondingly, we expect that the quadripartite
entanglement of the state ceases to be a genuine one.

These considerations are well reflected by the analysis
of the entanglement based on the PPT criterion. Table IV
reports our results for the symplectic spectrum of the partial
transpose matrix V PT(A), and shows the conditions for having
symplectic eigenvalues να < 1 which guarantee inseparability
with respect to each given partition. Figure 8 shows con-
tour plots of the product

∏
να<1 να in the parameter plane

(φ−, ḡz) for each partition of the system. Figure 8(a) shows
the results for the one-mode partitions, which in this case
are all identical, because of the symmetry of state. These
partitions are never separable, because each mode has one link
of strength |g1| = |g2| that never vanishes, while the strength
of the other |g1 + g2| = 2|g1| cos φ− decreases from φ− = 0
to π

2 , and this behavior is reflected by the entanglement of the

partition. P12 = {1, 2} × {3, 4} is the only partition which be-
comes separable at φ− = π

2 , where its double link g1 + g2

vanishes. The signal-idler partition P13 is always entangled,
and so is the partition {1, 4} × {2, 3}: in this last case the
amount of entanglement remains constant with the phase dif-
ference φ−, because the strengths of its two links are |g1| =
|g2|.

VI. DISCUSSION AND CONCLUSIONS

There are two kinds of conclusions which can be drawn
from this analysis.

̅

(a) (b)

(d)(c)

(e)

̅̅

̅

̅

FIG. 9. Four-mode linear coupling: symplectic eigenvalues να �
1 of V PT(A) listed in Table III. (a)–(e)

∏
να<1 να for each partition. The

plots for partitions P2 and P4 are identical to those for P1and P3 in
panels (a) and (b), respectively.
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TABLE II. Three-mode coupling (18): symplectic spectrum of the partial transpose matrix. The first column indicates the partition, via
the Alice set A; the second column describes the symplectic spectrum of V PT(A), where θ and ḡ are the parameters of the Bloch-Messiah
decomposition in Eqs. (20) and (22). The last column gives the smallest eigenvalue and the conditions for να < 1 ensuring inseparability.

Partition Symplectic spectrum of V PT(A)

A Spectrum Eigenvalues να < 1

{0} (e−2ḡz, 1, e2ḡz ) e−2ḡz None
{1} (ν−, 1, ν+) ν± = b ± √

b2 − 1 • b = 1 + 2[cos θ sinh (ḡz)]2 ν− g1 �= 0
{2} (ν−, 1, ν+) ν± = b ± √

b2 − 1 • b = 1 + 2[sin θ sinh (ḡz)]2 ν− g2 �= 0

From the point of view of physics, it has been shown
that a genuine multipartite entanglement among separate
spatial modes of the electromagnetic field can be generated by
spatially engineering the effective nonlinearity of parametric
sources. In this paper, this is achieved by a simple transverse
modulation of the pump beam driving the process and/or the
nonlinear response in a NPC. The quantum states generated in
this way are rather simple, since the entanglement is limited
to sets of three or four modes; as such, they cannot compete
at the present stage of analysis with the multipartite states
generated by more powerful schemes based on tailoring the
spectral entanglement of frequency combs [12–15]. However,
a more complex setting may be envisaged, involving more
spatial modes of the pump beam or more reciprocal vectors of
the nonlinear pattern of the NPC. For example, one may think
of driving a parametric process by means of N plane-wave
pumps, the wave vectors of which are symmetrically tilted
over a conical surface, similarly to the scheme proposed in
Ref. [35]. Preliminary investigations have shown [36] that
there exist realistic configurations (in terms of the choice of
the material, of the type of interaction, of the frequencies
involved, etc.) in which N modes of the down-converted radi-
ation may become coupled to each other, according to a closed
chain of nearest-neighbor interactions, realizing thus a higher-
dimensional version of the square four-mode entanglement
described in Sec. V. In the same setup, by slightly changing
the parameters a situation can be also achieved in which there
is a single central mode of the down-converted light coupled
to each of the N spatially separated modes [36], thus realizing
the multipartite entanglement analyzed in Ref. [35].

It should be also noticed that even in the simpler setup con-
sidered in this paper (N = 2 or, equivalently, two reciprocal

vectors of the nonlinear grating) there are actually infinite sets
of triplets (or quadruplets) of entangled modes which coexist
independently in the same beam. These are distinguished by
their spatial coordinates in one transverse direction, say y, as,
e.g., shown by Figs. 6 and 7 in Ref. [17]. Strategies for entan-
gling independent groups of modes in a higher-dimensional
state could be envisaged, for example, by employing in the
spatial domain techniques analogous to those used in the tem-
poral domain to generate the extended EPR state in Ref. [10],
with the temporal delay being replaced by a spatial shift.

We hope that the proof-of-principle analysis performed in
this paper may stimulate experimental work in this sense.

The second conclusion is more on the formal side and
concerns the effectiveness of the various strategies for detect-
ing entanglement. We formulated general bounds [Eq. (14)]
which must be respected by states that are separable with
respect to a given partition of the system. As previously
mentioned, these inequalities are not fundamentally new com-
pared to similar ones that can be found in the existing
literature [29,31,32], but have the merit of a very general and
expressive form, in which the variances of nonlocal observ-
ables are bounded by the commutators of the corresponding
“mirrored” observables. Moreover, for a given Gaussian state,
we suggested a simple method for identifying the nonlocal ob-
servables that are most likely to certify its entanglement, based
on its Bloch-Messiah decomposition. The states examined
in this paper, thanks to their relative simplicity, gave us the
possibility of verifying to what extent these criteria are effi-
cient in detecting the entanglement. By performing analytical
calculations of the various symplectic spectra involved, we
have shown that, although weaker than the PPT criteria which
require the whole covariance matrix, the more experimentally

TABLE III. Four-mode linear coupling (34): symplectic spectrum of the partial transpose. The first column indicates the bipartition, via the
Alice set A; the second column describes the symplectic spectrum of V PT(A), where γ and rσ,δ = �σ,δz are the parameters of the Bloch-Messiah
decomposition of the state in Eq. (37). The last column lists the eigenvalues να � 1, and the conditions that guarantee inseparability through
να < 1.

Partition Symplectic spectrum of V PT(A)

A Spectrum Eigenvalues να � 1

{1} or {2} (ν−, 1, 1, ν+) ν± =
√

b ± √
b2 − 1 • b = 2[cosh(2rσ ) cos2 γ + cosh(2rδ ) sin2 γ ]2 − 1 ν− None

{3} or {4} (ν−, 1, 1, ν+) ν± =
√

b ± √
b2 − 1 • b = 2[cosh(2rσ ) sin2 γ + cosh(2rδ ) cos2 γ ]2 − 1 ν− g2 �= 0

{1, 2} (ν−, ν−, ν+, ν+) ν± = √
1 + a2 ± a • a = sin(2γ ) sinh(rδ + rσ ) ν− ν− g2 �= 0

{1, 3} (e−2rσ , e−2rδ , e2rδ , e2rσ ) e−2rσ e−2rδ None

{1, 4} (ν−, ν+, μ−, μ+) ν± = e−c
√

p ± √
p2 − 1 • c = rσ − rδ � 0 ν− g1 �= 0

μ± =
√

pe2c ± e−2c
√

p2 − 1 • p = 1 + 2[cos(2γ ) sinh(rδ + rσ )]2
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TABLE IV. Four-mode square coupling (44): symplectic spectrum of the partial transpose. The first column gives the partition via the
Alice set A; the second column describes the symplectic spectrum of V PT(A), where rσ,δ = �σ,δz are the squeeze parameters in Eq. (48). The
last column lists the eigenvalues να � 1, and the conditions that guarantee inseparability through να < 1.

Partition Symplectic spectrum of V PT(A)

A Spectrum Eigenvalues να < 1

{ j = 1, . . . , 4} (ν−, 1, 1, ν+) ν± =
√

b ± √
b2 − 1 • b = 1

2 [cosh(2rσ ) + cosh(2rδ )]2 − 1 ν− None
{1, 2} (ν−, ν−, ν+, ν+) ν± = e±|rσ +rδ | • |rσ + rδ| = 2|g1 + g2|z ν− ν− g1 + g2 �= 0
{1, 3} (e−2rσ , e−2|rδ |, e2|rδ |, e2rσ ) e−2rσ e−2|rδ | None
{1, 4} (ν−, ν−, ν+, ν+) ν± = e±(rσ −rδ ) • rσ − rδ = |g1|z + |g2|z ν− ν− None

accessible criteria based on the Heisenberg-like inequalities
(14) capture the essential structure of the entanglement of the
state (but, clearly, they are unable to give any quantitative
assessment).

APPENDIX A: SYMPLECTIC SPECTRA

1. Williamson normal form and symplectic eigenvalues

According to a theorem due to Williamson [37], any
real, positive-definite, symmetric 2N × 2N matrix can be
brought to a diagonal form by means of a linear ba-
sis change that preserves the symplectic form �. When
applied to the covariance matrix, it implies that any covari-
ance matrix can be written as V = SV inSᵀ, where V in =
diag{ν1, ν2, . . . , νN , ν1, ν2, . . . , νN }, and S is a symplectic
transformation, i.e., a 2N × 2N matrix that preserves the
fundamental commutation relation Sᵀ�S = �. The set of N
positive numbers ν = {ν1, ν2, . . . , νN } is called the symplec-
tic spectrum of V , and can be obtained by calculating the
eigenvalues of i�V which are ±ν1,±ν2, . . . ,±νN . Then, the
inequality (4) implies that for a legitimate covariance matrix
να � 1, ∀α = 1, . . . , N , which physically corresponds to V in

being the covariance matrix of N independent thermal states.
For pure Gaussian states, να = 1, ∀α = 1, . . . , N .

Considering a partition {A} × {B} of the system, the par-
tial transpose matrix V PT(A) is still real, positive definite, and
symmetric. Therefore the Williamson theorem can be applied
to it, and the symplectic spectrum calculated from the eigen-
values of i�V PT(A). In this case, however, nothing ensures
that να � 1: only for A-separable states, V PT(A) is a legitimate
covariance matrix, and its symplectic spectrum must satisfy

να � 1, ∀α = 1, . . . , N . Conversely, the appearance of an
eigenvalue να < 1 in the symplectic spectrum of the partial
transpose is sufficient to demonstrate that the state is not A
separable.

2. Calculation of the symplectic spectra of the partial transpose

For each state considered in the main text, its Bloch-
Messiah reduction was exploited in order to calculate the
covariance matrix V associated with the state, following the
procedure described in Sec. II C [see in particular Eq. (16)].
For each partition {A} × {B} of the system, the partial trans-
pose matrix was then calculated as V PT(A) = �AV�A, where
�A is the mirror transformation (8). Finally, the characteristic
polynomial associated to the matrix i�V PT(A) was analyzed,
and its eigenvalues calculated with the help of MATHEMATICA

[38].
Results for the three-mode state (18) are shown in Table II.

The results for the four-mode linear state (34) are provided
in Table III, while Fig. 9 plots the corresponding eigenvalues
να < 1 (or

∏
να<1 να when there is more than one) as a func-

tion of the total gain ḡz. Finally, Table IV lists the symplectic
spectra for the four-mode square state (44).

APPENDIX B: HEISENBERG-LIKE BOUNDS FOR THE
FOUR-MODE LINEAR STATE

Table V reports our explicit calculations for the violation of
the Heisenberg-like inequalities (43) for the variances of the
nonlocal observables (41), which provide sufficient criteria
for the entanglement of the four-mode linear coupling de-
scribed by Eq. (34). For each partition, we calculated the four

TABLE V. Four-mode linear coupling (34): sufficient criteria for inseparability based on the violation of the Heisenberg-like bounds (43).
The first column indicates the bipartition, via the Alice set A; the second column gives the four bounds, where we highlighted the one which
is violated for smaller values of the gain ḡz. The last column lists the corresponding conditions sufficient for inseparability. γ and rσ,δ = �σ,δz
are the parameters of the Bloch-Messiah decomposition in (37).

Bαβ = |[η̂(�Adα ), η̂(�Ad′
β )]|

Partition
A Bσσ Bσδ = Bδσ Bδδ Inseparability Needs

{1} or {2} 2 cos2 γ 2 cos γ sin γ 2 sin2 γ e−2rσ < rσ
rσ +rδ

None

{3} or {4} 2 sin2 γ 2 cos γ sin γ 2 cos2 γ e−2rδ < rσ
rσ +rδ

g2 �= 0

{1, 2} 0 4 cos γ sin γ 0 e−(rσ +rδ ) <
2
√

rσ rδ
rσ +rδ

g2 �= 0

{1, 3} 2 0 2 e−2rσ < 1 None

{1, 4} 2(cos2 γ − sin2 γ ) 0 2(cos2 γ − sin2 γ ) e−2rσ <
rσ −rδ
rσ +rδ

g1 �= 0
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commutators at the right-hand side of the inequalities (43):
these are reported in the central column of Table V. By using
the explicit expressions of the variances reported in Eq. (42),
we chose among the four bounds the best one, i.e., the one
which is violated for the smallest value of ḡz (highlighted
in gray in the table): the last two columns show then the

corresponding sufficient condition for separability. This has
been explicitly written as a function of the squeeze parameters
rσ = �σ z and rδ = �δz, by substituting cos2 γ = rσ

rσ +rδ
and

sin2 γ = rδ

rσ +rδ
[see Eq. (37)]. Finally, the explicit expression

of the squeeze parameters in Eq. (37) was used to calculate
the curves reported in Fig. 5.
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