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We investigate the influence of environment noise on the control cost and the quantum speed limit time (QSLT)
in the process of almost-exact state transmission (AEST) through a spin chain under pulse control. The chain is
immersed in its surrounding non-Markovian, finite-temperature heat baths. We find that AEST can be realized in
weak system-bath coupling, low temperature, and strong non-Markovian baths under effective external control.
Correspondingly, the control cost and QSLT increase with increasing bath temperature and coupling strength.
It is noticeable that non-Markovianity from the baths can be helpful to reduce the control cost and shorten the
QSLT. Furthermore, we find that there exists a trade-off between the control cost and transmission fidelity and
that higher fidelity requires higher cost. In addition, the minimum control cost has been found to obtain certain
transmission fidelity.
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I. INTRODUCTION

Quantum state transfer (QST) has been widely investigated
for its fundamental role to shuttle information between two
quantum elements. For short-distance communication, the
spin chain as a communication channel has been extensively
investigated since Bose’s work [1]. However, normally the
transmission fidelity decreases dramatically with increasing
length of the chain [2]. A lot of work has been suggested
to improve the transmission fidelity. For example, the perfect
state transfer (PST) can be obtained by properly engineering
the coupling configuration of the chain [3–6]. High-fidelity
QST in spin chain can also be achieved by applying ap-
propriate external fields [7,8] or by applying an effective
quantum control technique [9]. Experimentally, high-fidelity
QST based on the Floquet-engineered method in a complex
many-body system has been demonstrated [10]. In addition,
conditional state transfer between quantum spin transistors in
a Heisenberg spin chain has been realized [11].

In an actual system, the communication channel will have
interactions with its surrounding environment. Then the de-
coherence occurs and as a result the transmission fidelity
decreases [12,13]. For a Markovian environment, where the
environmental memory effects can be safely disregarded,
Lindblad equations can be used to describe the system dynam-
ics [14,15]. When the memory effects cannot be neglected,
a non-Markovian description of the system dynamics is re-
quired [16]. The non-Markovianity of the environment will
bring new physics to the open system [17–19]. For example,
the memory effect of the non-Markovian environment can
be used to generate macroscopic entanglement between two
mirrors in optomechanical system [20]. Non-Markovianity
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of the environment enhances the quality of the quantum
correlation teleportation process with a couple of two-level
atoms embedded in a zero-temperature bosonic bath [21].
Measure for the degree of non-Markovianity is undoubtedly
important, and different definitions are proposed [22–25].
One widely accepted measure is based on the decreasing
monotonicity of the trace distance under the completely pos-
itive and trace-preserving operations [22]. In a Markovian
process, the monotonicity indicates that the information of
distinguishability always flows from the system to environ-
ment, while for non-Markovian process, the monotonicity is
violated and the information of distinguishability may flow
back from the environment to the system [22]. Normally it
is a difficult task to solve the non-Markovian dynamics. The
quantum state diffusion (QSD) equation has been proved to be
a promising approach to tackle this difficulty [16,26–29]. An-
alytical or exact solutions for many interesting systems have
been obtained [30,31]. Recently, by using the QSD approach,
QST through a spin chain between two zero-temperature non-
Markovian baths [16] or in finite-temperature non-Markovian
heat baths [32] has been investigated. The transmission
fidelity is found to decrease with increasing system-bath cou-
pling strength, bath temperature, and bath Markovianity.

To combat the detrimental effects of the environment or
the dispersion of the chain itself in the state transmission, an
effective pulse control method has been proposed to realize
almost-exact state transmission (AEST) in a spin chain [9,33].
The pulses are realized by a leakage elimination operator
(LEO) Hamiltonian and they must satisfy some certain condi-
tions to guarantee the AEST [33]. However, according to the
second law of thermodynamics, nonideal processes are always
accompanied by irreversible consumption of thermodynamic
resources [34,35]. To obtain AEST via pulse control, the
control cost must be considered. Studies on the fundamen-
tal lower bound [36–38] of the thermodynamic energy cost
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provide a significant contribution to advance the molecular
devices [39] and nanomachines [40], since thermal and quan-
tum fluctuations play considerable roles on the nanometer
scale [41,42]. Another fundamental bound is the maximal
evolution speed of the quantum system [43]. The upper bound
of state evolution speed, i.e., the quantum speed limit is es-
tablished from the uncertain relationship between Heisenberg
time and energy [44–46]. Quantum speed limit time (QSLT)
represents the intrinsic minimal time interval for a quantum
system evolving from an initial state to a target state. It has
application in virtually all areas of quantum physics, such
as quantum communication [47], quantum computation [48],
and optimal control theory [49,50]. QSLT in open systems
has also been investigated [43,51–54]. In particular, a QSLT
based on p norm for an arbitrarily driven open system has been
studied [43]. The memory effect of environment characterized
by non-Markovianity has been found to shorten QSLT in
single-qubit [43] or multiqubit [55] cases.

For open systems, the bath is usually assumed to be collec-
tive for simplicity. However, under realistic conditions such
as in adiabatic quantum computation [56,57], it is more prac-
tical to assume that each qubit interacts with its individual
bath. In this paper, we first investigate the AEST through
a spin chain by external pulse control. Each spin encoun-
ters its individual non-Markovian and finite-temperature heat
bath. Using the strategy in Ref. [33], adding an LEO Hamil-
tonian to the system, we find that AEST can be obtained
in finite-temperature heat baths with weak system-bath cou-
pling, strong non-Markovianity, and low temperature. Then
we study the influence of the environment noise on the control
cost and QSLT for the achievement of AEST. We find that
non-Markovianity of the baths plays an essential role in both
reducing the control cost and shortening the QSLT.

II. MODEL AND HAMILTONIAN

Considering a quantum system embedded in N-
independent multimode bosonic baths, the total Hamiltonian
can be written as

Htot = Hs + Hb + Hint, (1)

where Hs is the system Hamiltonian and Hb = ∑N
j=1 H j

b is the
N-independent baths Hamiltonian with the jth bath’s Hamil-
tonian H j

b = ∑
k ω

j
kbj†

k bj
k (setting h̄ = 1 from now on). bj†

k ,
bj

k represent the bosonic creation and annihilation operators
and ω

j
k refers to the bosonic frequency of the jth bath. The

interaction Hamiltonian is

Hint =
∑

j,k

(
gj∗

k L†
j b

j
k + gj

kL jb
j†
k

)
, (2)

where Lj is the Lindblad operator. It describes the coupling
between the system and the jth bath. gj

k is the coupling con-
stant between the system and kth model of jth bath.

Suppose that the initial state of the jth bath is in a thermal
equilibrium state at temperature Tj and the density operator
reads

ρ j (0) = e−β j H
j

b /Zj, (3)

where Zj = Tr[e−β j H
j

b ] is the partition function and β j =
1/KBTj . The system dynamics can be calculated by the
QSD approach. The total wave function |�tot (t )〉 is pro-
jected to the coherent state of the bath modes |z〉 and
|w〉, |�t (z∗

1,w
∗
1, . . . , z∗

N ,w∗
N )〉 = 〈z1,w1, . . . zN ,wN |�tot(t )〉,

which is known as the stochastic quantum trajectory. It obeys
a linear QSD equation [30]
∂|�t 〉

∂t

=
[
−iHs +

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)]|�t 〉,

(4)

where

z j∗
t = −i

∑
k

√
n j

k + 1gj∗
k z j∗

k eiω j
k t , (5)

w
j∗
t = −i

√
n j

kgj∗
k w

j∗
k e−iω j

k t , (6)

are the jth independent complex Gaussian processes. n j
k =

1
exp(h̄ω

j
k/KBTj )−1

is the mean thermal occupation number of

quanta in mode ω
j
k . The operators O j

z,(w) are defined by the
δ|�t 〉

δz j∗
s ,(w j∗

s )
= O j

z,(w)(t, s, z∗
1,w

∗
1, . . .)|�t 〉 [30,58], and O

j
z,(w) =∫ t

0 dsα j
z,(w)(t − s)O j

z,(w). Here α
j
z,(w)(t − s) are the correlation

functions.
From the consistency condition, the operators O j

z,(w) sat-
isfy [58]

∂O j
z

∂t
=

[
−iHs +

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)
, O j

z

]

−
∑

j

(
L†

j

δO
j
z

δz j∗
s

+ Lj
δO

j
w

δz j∗
s

)
, (7)

∂O j
w

∂t
=

[
−iHs+

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)
, O j

w

]

−
∑

j

(
L†

j

δO
j
z

δw
j∗
s

+ Lj
δO

j
w

δw
j∗
s

)
. (8)

Now we use Eqs. (7) and (8) to derive a non-Markovian
master equation. We define Pt ≡ |�t 〉〈�t | and the reduced
density matrix of the system ρs = M[Pt ]. Here M[Pt ] is given
by the ensemble average over all of the quantum trajectories.
According to Refs. [58,59], the evolution equation of the
system density matrix reads
∂

∂t
ρs = −i[Hs, ρs] +

∑
j

{[
Lj, M

[
Pt O

j†
z

]] − [
L†

j , M
[
O

j
z Pt

]]

+ [
L†

j , M
[
Pt O

j†
w

]] − [
Lj, M

[
O

j
wPt

]]}
. (9)

The above equation is the master equation in finite-
temperature baths. However, this equation is not a closed
equation for ρs. The O

j
z,(w) operators generally contain

noises except for some special cases. The noise-independent
O

j
z,(w)(t ) operators can be obtained by invoking a perturbation

technique [60]. For weak system-bath coupling, the zero order
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of the function expansion plays a leading role and we use the
approximation O

j
z,(w)(t, z∗

1,w
∗
1, . . . , z∗

N ,w∗
N ) = O

j
z,(w)(t ), then

Eq. (9) becomes a closed master equation [32]
∂

∂t
ρs = −i[Hs, ρs] +

∑
j

{[
Lj, ρsO

j†
z (t )

] − [
L†

j , O
j
z (t )ρs

]

+ [
L†

j , ρsO
j†
w (t )

] − [
Lj, O

j
w(t )ρs

]}
. (10)

In order to calculate the correlation function, we need
to introduce the spectral density. Here we use the spectrum
density J (ω j ) = 	 j

π

ω j

1+(ω j/γ j )2 , which is Ohmic type with a
Lorentz-Drude cutoff [61], where 	 j , γ j are real parameters.
	 j represents the coupling strength between the system and
the jth bath and γ j is the characteristic frequency of the jth
bath. For weak system-bath coupling, 	 j � 1, we have [32]

α j
z (t − s) = 	 jTj� j (t, s) + i	 j�̇ j (t, s), (11)

α j
w(t − s) = 	 jTj� j (t, s), (12)

where � j (t, s) = γ j

2 e−γ j |t−s| is an Ornstein-Uhlenbeck corre-
lation function and it decays on the environmental memory
time 1/γ j . For γ j → ∞, it corresponds to a Markovian limit.
Now the two correlation functions in Eqs. (11) and (12) satisfy

∂α
j
z(w)(t − s)

∂t
= −γ jα

j
z(w)(t − s). (13)

From the above relations, the O
j
z,(w) operators satisfy the

following equations [32]:

∂O
j
z

∂t
=

(
	 jTjγ j

2
− i	 jγ

2
j

2

)
Lj − γ jO

j
z

+
[
−iHs −

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
z

]
, (14)

∂O
j
w

∂t
= 	 jTjγ j

2
L†

j − γ jO
j
w

+
[
−iHs −

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
w

]
. (15)

The master equation (10) can be numerically calculated by
using Eqs. (14) and (15). In the Markovian limit, the system
density matrix reduces to the Lindblad equation [32]:

∂

∂t
ρs = −i[Hs, ρs]

+
∑

j

	 jTj

2
[(2LjρsL

†
j − L†

j L jρs − ρsL
†
j L j )

+ (2L†
j ρsL j − LjL

†
j ρs − ρsL jL

†
j )]. (16)

Here we consider a one-dimensional XY spin chain as the
communication channel,

Hs =
N−1∑
i=1

Ji,i+1
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (17)

where Ji,i+1 is the coupling strength between the nearest
neighbor sites i and i + 1. σ k

i (k = x, y) are the Pauli operators
acting on the ith spin. We set Ji,i+1 = −1, and it corresponds
to a uniform chain with open boundary conditions.

Suppose initially the system is prepared at the state
|�s(0)〉 = |1 . . . 00〉, and the target task is to transfer the state
|1〉 to the other end of the chain at time t with |�s(t )〉 =
|0 . . . 01〉. Here the size of the system is typically small so that
each sites are close to share the same environment parameters.
Therefore, we assume that the parameters of N-independent
baths are taken as same, 	i = 	, γi = γ , Ti = T for i =
1, 2, 3 . . . N [32]. We emphasize that even all the parameters
are assumed to be equal, it is different from the one single
bath with 	, γ , and T cases. For N-independent baths model,
there are 2N coupled equations in total for O

j
z,(w) operators.

As a comparison, there would be just one equation for a
single common bath. The fidelity at time t can be defined
as F (t ) = √〈�s(t )|ρs(t )|�s(t )〉, where ρs(t ) is the system
density matrix in Eq. (10). Now the initial state of the whole
system is

ρtot (0) = ρs(0) ⊗ ρ1(0) ⊗ · · · ⊗ ρN (0), (18)

where ρ j (0) indicates that the jth bath is in a thermal equilib-
rium state at time t = 0.

III. AEST IN FINITE TEMPERATURE HEAT BATHS
UNDER PULSE CONTROL

Dispersion effects and the environmental noise often
degrade the transmission fidelity [2,15]. Pulse control tech-
nique has been used to realize the AEST [9,33], adiabatic
speedup [62], adiabatic QST [63–65], and adiabatic quan-
tum computation [59,66]. In this part, we investigate AEST
through a uniform spin chain in finite-temperature heat baths
by pulse control. The basic idea is letting the system go along
the AEST passage by adding an LEO Hamiltonian to the
system’s dynamics.

At first we construct an LEO Hamiltonian as in Ref. [33].
This will be achieved by considering PST Hamiltonian (HPST),
whose coupling strength Ji,i+1 = −√

i(N − i) in Eq. (17).
Then the PST can be obtained, at time t = nπ/4 (n is an odd
integer), by the PST couplings driving [3]. The initial state
of the system is still |�s(0)〉 and its evolution is denoted as
|ψ1(t )〉 = exp(−iHPSTt )|�s(0)〉. The LEO Hamiltonian can
be constructed as [33]

HLEO = c(t )|ψ1(t )〉〈ψ1(t )|, (19)

where c(t ) is the control function. The LEO Hamiltonian
can be realized by a sequence of pulses and how to apply
the control has been discussed in Ref. [33]. Then the total
Hamiltonian is

H = Htot + HLEO. (20)

In this paper, we consider nonperturbative control pulse
which is tunable and finite both on the strength and duration.
We choose the zero-area pulse sequence [64,67] and the pulse
takes alternating positive and negative values. The character-
istic of such sequence is its net area is always zero in a control
period. For the rectangular pulses, the control function can be
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taken as [68]

c(t ) =
{

I,nτ < t < (n + 1)τ, n is even
−I, otherwise ,

(21)

where I and τ are the pulse intensity and half-period, respec-
tively. The effective control can be obtained when the pulses
satisfy Iτ = 2πm with m = 1, 2, 3, . . . [68]. Similarly, for the
sine function [69], c(t ) = Isin(ωt ) with ωτ = π , the effective
control condition is J0(Iτ/π ) = 0. J0(x) is the zeroth-order
Bessel function of the first kind [33,62].

First we use the sine function as an example. The pulse
parameters are taken as τ = π/32 and I = 76.96 which sat-
isfy Iτ = 2.405π . Note here 2.405 is the zero point of the
zeroth-order Bessel function. In Fig. 1, we plot the fidelity
F versus the rescaled time t/Ttot for different parameters 	,
γ , and T , respectively. We take L = σ− = ∑N

j=1 σ−
j as an

example, where σ−
j denotes the lowering operator for the

jth spin. The total evolution time is taken as Ttot = π/4
throughout the paper, which corresponds to a fixing actual
driving time. Also AEST is realized at this time when the
chain has the PST coupling [4]. The length of the chain
is chosen to be N = 7. In Fig. 1(a), we plot the influence
of the system-bath coupling strength 	 to the transmission
fidelity F . γ = 2, T = 40. It shows that when adding the
pulse, AEST can be obtained. When 	 = 0.06, F ≈ 0.96 at
t = π/4. In Fig. 1(b), we consider different parameters γ .
	 = 0.04, T = 50. The results show that non-Markovianity
from the baths plays an essential role in boosting the fidelity.
AEST can only be obtained in strong non-Markovian baths.
This observation is in agreement with Ref. [25]. For example,
γ = 0.5, F = 0.999. It is also in accordance with Ref. [9] that
memory effects can boost the effectiveness of LEO control
pulses in a zero-temperature bath. Clearly the control fails
to boost the fidelity in Markovian baths. In Fig. 1(b), we
also plot the comparison of the fidelity evolution with and
without control in Markovian baths and find that the fidelity
is almost equal. This can be explained by the fact that for a
Markovian bath the correlation function becomes a δ function,
and then gives O

j
z = 	 jTjL j/2, O

j
w = 	 jTjL

†
j /2. The control

Hamiltonian HLEO will fail to affect O
j
z,(w) operators, and as a

result, the control loses its effectiveness [9]. Figure 1(c) plots
the time evolution of the fidelity for different temperature T ,
	 = 0.02, γ = 2. As expected, the fidelity is more higher
in a lower temperature. AEST can even be realized for a
higher temperature as long as the bath is non-Markovian. For
example, T = 150, F (Ttot ) = 0.952.

IV. TRADE-OFF BETWEEN CONTROL COST AND
TRANSMISSION FIDELITY

When adding the external driving, the control cost must be
considered. A family of cost function has been proposed [41]
to quantify the driving cost. One of the cost function can be
defined as Cn

t ≡ νt,n
∫ τ

0 dt‖HLEO(t )‖, where ‖A‖ =
√

tr{A†A}
is the Hilbert-Schmidt norm [70], and in the following we set

FIG. 1. Controlled AEST in L = σ− open system: the fidelity
F as a function of rescaled time t/Ttot for different environmental
parameters (a) 	, γ = 2, T = 40; (b) γ , 	 = 0.04, T = 50; (c) T ,
	 = 0.02, γ = 2. The total evolution time is Ttot = π/4 for the
controlled or free evolution. The control function is c(t ) = Isin(ωt )
with ωτ = π . τ = π/32, I = 76.96, which satisfies the condition
Iτ = 2.405π . The length of the chain is chosen to be N = 7.
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νt,n = n = 1 for simplicity [41]:

C1
t ≡ C =

∫ τ

0
dt‖HLEO(t )‖. (22)

The cost C can be viewed as the additional effect of control
pulse [41]. Therefore, it is easy to see that the instantaneous
cost of the control pulse is

∂tC = ‖HLEO(t )‖ = |c(t )|
√∑

n

|〈n|ψ1(t )〉|2. (23)

From Eq. (23), we can see that the control cost only
depends on the control function c(t ) itself and the sum of
| f1,n(t )|2. Here f1,n(t ) = 〈n|ψ1(t )〉 is the transition amplitude
of an excitation from the initial state to the |n〉 state [1]. We
take L = σ x as an example in this part. We point out that
the types of the Lindblad operators do not change the con-
clusion of the paper. The environmental parameters are taken
as γ = 1, T = 30, 	 = 0.03. We use the rectangular pulses
defined in Eq. (21) and the intensities in Fig. 2 all satisfy the
control condition Iτ = 2π . In Fig. 2(a), we plot the fidelity
F versus the rescaled time t/Ttot for different control intensi-
ties (I = 32, 64, 112, 128). Clearly, the final fidelity increases
with increasing control intensity. When I = 32, the final fi-
delity is F = 0.971, and when I = 64, F = 0.995. Figure 2(b)
plots the corresponding instantaneous cost ∂tC as a function
of the rescaled time t/Ttot for the same pulse intensities as
plotted in Fig. 2(a). Figure 2(b) shows that a higher fidelity F
corresponds to a higher control cost, so there exists a trade-off
between the fidelity and the control cost. When the intensity is
strong enough, the fidelity is almost one. For example, when
I = 112, F = 0.999. In this case, increasing the intensity just
improves the control cost and it does not boost the fidelity
(I = 128, F = 0.999). Then the minimum control intensity
with minimum cost can be found to obtain certain transmis-
sion fidelity when the environmental parameters are fixed. To
compare the effects of different types of Lindblad operator on
the control cost, in Fig. 2(c) we plot the instantaneous cost ∂tC
as a function of rescaled time t/Ttot for L = σ z, L = σ−, and
L = σ x, respectively. The final fidelity is set as F = 0.999.
In the inset of Fig. 2(c), we plot the strength of the pulse I
as a function of rescaled time t/Ttot. Clearly different pulse
intensities are required to obtain certain fidelity for different
types of L. The maximum control cost corresponds to L = σ x,
L = σ z is the least, and L = σ− is in the middle.

Next we consider the control cost when transferring a
quantum state with certain fidelity. In Figs. 3(a)–3(c), we
plot the instantaneous cost ∂tC as a function of the rescaled
time t/Ttot for different parameters 	, γ , and T , respectively.
The final fidelity is 0.996 under rectangular pulse control.
As expected, we observe that the control cost increases with
increasing coupling strength 	, the parameter γ , and bath
temperature T for a fixed final fidelity. Strong system-bath
coupling and high temperature will destroy the quantumness
of the system and as a result more control cost is required.
Non-Markovianity from baths can be helpful to reduce the
control cost notably from Fig. 3(b). A possible explanation
may be that a memory environment has the property with the

FIG. 2. (a) Controlled AEST in L = σ x open system: the fidelity
F as a function of rescaled time t/Ttot for different control pulse in-
tensities. (b) The instantaneous cost ∂tC as a function of rescaled time
t/Ttot under different control pulses. (c) The instantaneous cost ∂tC
as a function of rescaled time t/Ttot for different Lindblad operators.
γ = 1, T = 30, 	 = 0.03, N = 6.

reverse information flow from baths to the system, with less
loss of quantumness of the system.
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FIG. 3. The instantaneous cost ∂tC as a function of the rescaled
time t/Ttot for different parameters 	, γ , and T , respectively. (a) 	,
γ = 2, T = 30; (b) γ , 	 = 0.02, T = 40; (c) T , 	 = 0.03, γ = 1.
The length of the chain is chosen to be N = 6.

V. QSLT IN CONTROLLED AEST

In quantum physics, the uncertain relationship between
the Heisenberg energy and the time limits the quantum

FIG. 4. The quantum speed limit time τQSL for various values of
environment parameters. (a) T = 40; (b) 	 = 0.03. The length of the
chain is chosen to be N = 5.

speed of performing a quantum operation or QST [54].
Recently, the QSLT in open systems has been extensively
studied [51,53,71–74]. In Ref. [43], Deffner and Lutz derived
a unified bound for the QSLT in an open system by using
the Cauchy-Schwarz inequality. Their approach defines a geo-
metric Bures angle, L(ρ0, ρt ) = arccos(

√〈ψ0|ρt |ψ0〉), which
implies the “distance” between the initial and final states.
Then by using the time derivative of the Bures angle and
x � |x| [75], we can arrive an inequality

2cos(L)sin(L)L̇ � |〈ψ0|ρ̇t |ψ0〉|. (24)

Using Eq. (24) and the Cauchy-Schwarz inequality, we obtain

2cos(L)sin(L)L̇ � ‖ρ̇‖. (25)

Integrating Eq. (25) over time leads to the Mandelstam-Tamm
type bound on the rate of quantum evolution, i.e., the QSLT
τQSL

t � τQSL ≡ 1

�t
sin2[L(ρ0, ρt )]. (26)
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Here �t = 1
t

∫ t
0 dt‖ρ̇‖ represents the average of ‖ρ̇‖ over

the actual driving time duration t . There are two viewpoints
about QSLT. One focuses on the actual evolution time t ,
and the fastest evolution occurs when the actual driving time
t equals the QSLT. It has been used in the discussion of
entanglement-assisted speedup of quantum evolution [76,77].
Another viewpoint is that the QSLT can be studied by first
fixing the actual driving time t , which as been utilized to
explore the non-Markovinity of the baths on the speed of
quantum evolution [43,55].

Next, we will discuss the influence of the environmental
noise on the QSLT during the process of AEST. In our paper,
we fix the actual driving time t = π/4 in Eq. (26) since at this
time AEST can be realized as mentioned above. Additionally,
the final fidelity is taken as F (t = π/4) = 0.999 for different
parameters to guarantee that the initial state and the target state
can be approximately the same. The values of τQSL for differ-
ent environmental parameters are presented in Fig. 4. Note
that the parameter windows are taken as 	 ∈ [0.01, 0.05],
T ∈ [10, 100], and γ ∈ [0.1, 5] in Fig. 4 due to the weak
coupling approximations and the fidelity cannot reach 0.999
for baths with strong Markovianity. Figures 4(a) and 4(b) plot
τQSL versus γ for different 	 (T = 40) and T (	 = 0.03),
respectively. They show that from the initial state |1 . . . 00〉
to the target state |0 . . . 01〉, τQSL increases with increasing 	

or T , which means that weak system-bath couplings and low
temperature will reduce the QSLT. Figures 4(a) and 4(b) also
show that non-Markovinity from the baths can help to shorten
the QSLT and thus increase the capacity for potential speedup.
The memory effect of environment is an important element for
further reduction in QSLT [55].

VI. CONCLUSIONS

Realization of AEST is a key to successfully complete
quantum information processing tasks; however, the environ-
ment noise around the communication channel will always
destroy the state transmission fidelity. In this paper, we have
explored the QST through a spin chain under pulse control,
where each spin of the chain is immersed in a non-Markovian,
finite-temperature heat bath. Using QSD equation approach,
we numerically calculate the dynamics of this open system.
We find that AEST can be obtained in non-Markovian and
low-temperature heat baths with weak system-bath coupling
under a suitable pulse intensity and duration. We then con-
sider the control cost and QSLT during the process of this
AEST. We find that the cost and QSLT increase with in-
creasing parameters 	, γ , and T for certain fidelity. Higher
transmission fidelity corresponds to higher cost. The mini-
mum cost has been found to obtain a certain target state.
Moreover, it is also found that strong non-Markovianity (long
memory time) can help to reduce the control cost and shorten
the QSLT. Our findings will have potential applications for
the control cost and information transfer in quantum device
design.
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