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Quantum state transfer between distant optomechanical interfaces via shortcut to adiabaticity
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We propose a protocol to realize fast high-fidelity quantum state transfer between distant optomechanical
interfaces connected by a continuum waveguide. The scheme consists of three steps: two accelerating adiabatic
processes joined by a population conversion process. In comparison to the traditional adiabatic technique, our
method reaches a higher transfer fidelity with a shorter time. Numerical results show that the fidelity of this
transfer scheme in the dissipative system mainly depends on the protocol speed and the coupling strength of
the waveguide and cavities. Assisted by inverting the pulse sequence, bidirectional transfer can be implemented,
indicating the potential to build a quantum network.
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I. INTRODUCTION

The adiabatic quantum process is an efficient and robust
approach that can be utilized in various quantum operations.
One of the most well-known techniques is stimulated Ra-
man adiabatic passage (STIRAP) [1,2]. It transfers population
between source quantum state and target quantum state by
coupling them with two radiation fields via an intermedi-
ate state. In past decades, STIRAP has been applied in a
wide range of areas including atomic and molecular physics
(such as atom optics [3,4], cavity quantum electrodynam-
ics [5], ultracold molecules [6]), quantum information (such
as single- and two-qubit gates [7], entangled-state prepara-
tion [8]), and solid-state physics (such as nitrogen-vacancy
centers [9], superconducting circuits [10,11], semiconductor
quantum dots and wells [12,13]). Although STIRAP is ro-
bust against small variations of laser intensity, pulse timing,
pulse shape, and some other experimental parameters, it is
necessarily slow so that it is vulnerable to dissipation or fluc-
tuations. Thus finding ways to accelerate adiabatic evolution
arouses great interest, and such techniques are called “short-
cuts to adiabaticity” (STA). The shortcuts rely on specific
time dependencies of the control parameters or the auxiliary
couplings with respect to the reference Hamiltonian [14]. So
far, multiple STA methods (including counterdiabatic driving
[15–17], invariant-based inverse engineering [18–20], and fast
forward approach [21–23]) have been proposed and applied
to various quantum systems both theoretically and experi-
mentally [24–28]. One of the most important applications of
STA is quantum state transfer [29–32]. The transfer fidelity
is mainly affected by decoherence due to the long evolution
time, while STA can speed up this adiabatic process and
remedy this vulnerability.

In this work, we propose a quantum state transfer scheme
via shortcut to adiabaticity for the system with two distant op-
tomechanical interfaces connected by a continuum waveguide
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(optical fiber). The optomechanical interface is composed of a
superconducting resonator (SR), an optical cavity (OC), and a
nanomechanical resonator (NAMR) as an intermediate level.
Such system has been provided as a powerful medium for
high-fidelity quantum state conversion in Refs. [33,34]. At the
very beginning, the state is in the superconducting resonator
of the local part (node A). We utilize a modified superadia-
batic transitionless driving (SATD + κ) to transfer the initial
quantum state to the continuum waveguide [35]. After the
population transfer to the waveguide, we use a precise time-
control coupling to make conversion between the waveguide
and the cavity of the remote part (node B). Finally, a SATD
approach [15] is applied so that quantum state transfers to the
superconducting resonator in node B. This scheme, compared
with the similar scheme in which the last step is a STIRAP
instead of a SATD, gives a higher transfer fidelity and costs
less operation time. We also take dissipation into account, and
the transfer fidelity highly depends on the protocol speed in
this situation.

II. SYSTEM

As shown in Fig. 1, the whole protocol contains two in-
terfaces and an optical continuum waveguide. Each interface
contains a superconducting resonator, an optical cavity, and a
nanomechanical resonator that connects SR and cavity. Dis-
tant interfaces are joined by the optical fiber. Our scheme
consists of two parts: local part and remote part, and we will
introduce them respectively.

A. Local part operation

In the beginning, the target quantum state stays in the SR
of the optomechanical interface in node A and the state is first
transferred to the OC and leaks to the waveguide simultane-
ously by the SATD+κ scheme. Thus, the local part system
Hamiltonian in the interaction picture, following the stan-
dard linearization procedure and rotating wave approximation
(RWA) [36,37], takes the form HA = Hl (t ) + Hint (t ) + HWG,
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FIG. 1. (a) Schematic diagram of the optomechanical quantum
interface. Nanomechanical resonator mode b̂ couples to the mode
â of superconducting resonator and the mode ĉ of optical cavity.
(b) Schematic of the fast high-fidelity state transfer protocol. The
whole scheme contains two optomechanical interfaces (node A and
node B) and a continuum waveguide. Distant nodes are connected
by the waveguide. (Each node can be attached to a superconducting
qubit.)

with h̄ = 1 (here and hereafter):

Hl (t ) = G1l (t ) |Al〉 〈Bl | + G2l (t ) |Cl〉 〈Bl | + H.c.,

Hint (t ) =
∫ ωmax/2

−ωmax/2
dω G3l (ω, t )[|Cl〉 〈Dω| + |Dω〉 〈Cl |],

HWG =
∫ ωmax/2

−ωmax/2
dω ω |Dω〉 〈Dω| , (1)

where |Al〉, |Bl〉, and |Cl〉 are the excitation states of SR,
NAMR, and OC in node A, respectively, with the state |Cl〉
additionally coupled to a continuum waveguide. |Dω〉 is the
excitation state in the continuum waveguide at frequency ω.
G1l (t ), G2l (t ), and G3l (ω, t ) are three time-dependent cou-
plings that can be tuned independently.

We consider the continuum waveguide with a finite band-
width ωmax, and the amplitude of the interaction between the
state |Cl〉 and the waveguide state |Dω〉 is frequency indepen-
dent [G3l (ω, t ) = G3l (t ),∀|ω| � ωmax/2]. As the waveguide
bandwidth is much greater than any other frequency scales, we
can take ωmax → ∞. And we will take the Markovian regime
throughout the whole system.

The solution of the Schrödinger equation with HA takes the
form

|ψ (t )〉 = uA(t ) |Al〉 + uB(t ) |Bl〉 + uC (t ) |Cl〉

+
∫ +∞

−∞
dω uWG(ω, t ) |Dω〉 . (2)

We can formally solve the Schrödinger equation for the
waveguide amplitude uWG(ω, t ), and use it to simplify the
Schrödinger equation for the remaining amplitudes. Thus we
can rewrite the Hamiltonian HA as an effective non-Hermitian
Hamiltonian [35]

HA1 = Hl (t ) − i[π |G3l (t )|2] |Cl〉 〈Cl | , (3)

where the Hermitian part Hl (t ) has a set of adiabatic eigen-
states that are given by

|+〉 = 1√
2

[sin θ (t ) |Al〉 + |Bl〉 + cos θ (t ) |Cl〉],

|dk〉 = − cos θ (t ) |Al〉 + sin θ (t ) |Cl〉 ,

|−〉 = 1√
2

[sin θ (t ) |Al〉 − |Bl〉 + cos θ (t ) |Cl〉], (4)

where the control fields are set as G1l (t ) = g0 sin θ1(t ) and
G2l (t ) = g0 cos θ1(t ) with the mixing angle θ1(t ).

Firstly we transform HA1 to the adiabatic frame via a time-
dependent unitary operator Uad = ∑

k=±,dk |k(t )〉 〈k|, so that
the effective non-Hermitian Hamiltonian turns to be

HA1,ad(t ) = U †
ad(t )HA1(t )Uad(t ) − iU †

ad(t )
d

dt
Uad(t ). (5)

Now we introduce dressed states |k̃(t )〉 ≡ V (t ) |k(t )〉 (k =
±, dk) defined by a unitary operator V (t ). The dressing op-
erator V (t ) satisfies the condition that at the initial and final
protocol time the dressed states coincide with the adiabatic
states, i.e., [V (ti) = V (t f ) = 1]. We also modify the couplings
G1l (t ) and G2l (t ) by a correction Hamiltonian Hcl (t ), so that
there are no transitions between the dressed dark state and
other dressed adiabatic states during the dynamics,

〈+̃| HA1,ds(t ) |d̃k〉 = 〈−̃| HA1,ds(t ) |d̃k〉 = 0. (6)

Thus the effective non-Hermitian Hamiltonian can be trans-
formed into the dressed frame

HA1,ds(t ) = V †(t )[HA1,ad(t ) + U †
ad(t )Hcl (t )Uad(t )]V (t )

−iV †(t )
d

dt
V (t ). (7)

In order to satisfy the above constraints, the dressing oper-
ator is taken as

V (t ) = exp

[
iμ1(t )

( |+〉 − |−〉√
2

〈dk| + H.c.

)]
, (8)

where μ1(t ) parametrizes the dressing strength at time t and
must tend to zero at the initial and the end time of the protocol.
And the added correction Hamiltonian Hcl (t ) is parametrized
via gxl (t ) and gzl (t ),

Hcl (t ) = Uad

[
gxl (t )

( |+〉 − |−〉√
2

〈dk| + H.c.

)

+gzl (t )(|+〉 〈+| − |−〉 〈−|)
]
U †

ad(t ). (9)

Therefore the corrected couplings G1l (t ) and G2l (t ) take the
form

G1lc(t ) = G1l (t ) − gxl (t ) cos θ1(t ) + gzl (t ) sin θ1(t ),

G2lc(t ) = G2l (t ) + gxl (t ) sin θ1(t ) + gzl (t ) cos θ1(t ). (10)
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Using these definitions and constraints, we can obtain the
expressions of gxl (t ) and gzl (t ):

gxl (t ) = −μ̇1 + 2π [G3l (t )]2

4
sin2 [θ1(t )] sin [2μ1(t )], (11)

gzl (t ) = 1

tan μ1(t )

[
θ̇1(t ) + 2π [G3l (t )]2

4
sin[2θ1(t )]

]
− g0.

(12)

Since G1l (t ) and G2l (t ) are controllable, we can get the sim-
plest nontrivial correction by choosing gzl (t ) = 0. Thus we
can easily obtain the dressing strength μ1(t ) by Eq. (12):

μ1(t ) = arctan

[
θ̇1(t ) + (2π [G3l (t )]2/4) sin[2θ1(t )]

g0

]
.

(13)

With μ1(t ) determined, the modified pulses are immediately
given by Eqs. (10) and (11).

Using this approach, the initial state of the SR in node A
will transfer to the cavity through a NAMR and eventually
leak to the waveguide. And the fidelity Fl (t ) of the SATD+κ

operation at time t , can be defined as the population in the
waveguide

Fl (t ) =
∫

dω|uWG(ω, t )|2

=
∫ t

ti

dτ 2π [G3l (τ )]2|uC (τ )|2. (14)

B. Remote part operation

After the operation in node A, we start to transfer the
population in the waveguide to the SR in node B. Note that the
sequence with the cavity-waveguide coupling in the SATD+κ

scheme makes the evolution in node A irreversible, and simply
reversing the pulse sequence in the SATD+κ scheme cannot
realize the inverse process. So we propose a two-step scheme
to transfer the population from the waveguide to the SR in
node B. First, a population conversion between the waveguide
and the cavity in node B is implemented. After the population
completely moves to the cavity, we use the SATD scheme to
transfer the population to the SR in node B. For the population
conversion process, we have to turn off the coupling between
the waveguide and the cavity in node A and only keep the
coupling between the waveguide and the cavity in node B in
order to avoid the population moving back to node A. Thus the
Hamiltonian of this process in the rotating frame after RWA
takes the form

Hcon(t ) =
∫ ωmax/2

−ωmax/2
dω G3r (ω, t )[|Cr〉 〈Dω| + |Dω〉 〈Cr |].

(15)

Here |Cr〉 is the excitation state of the cavity in node B and
G3r (ω, t ) is a tunable time-dependent coupling. We take the
same consideration which is introduced in the node A part:
the amplitude of the interaction between |Dω〉 and |Cr〉 is
frequency independent [G3r (ω, t ) = G3r (t ),∀|ω| � ωmax/2],
and we take ωmax → ∞. The states in the waveguide will

completely transfer to the cavity in node B when the coupling
turns on for a proper time interval tc = π/(2|G3r|).

After the conversion process, we turn off the waveguide-
cavity coupling and then apply a SATD approach to transfer
the quantum state from the cavity to the SR in node B. The
Hamiltonian of the three-level interface system in the inter-
action picture, after the standard linearization procedure and
RWA, is given by

HB(t ) = G1r (t ) |Cr〉 〈Br | + G2r (t ) |Ar〉 〈Br | + H.c., (16)

where |Ar〉 and |Br〉 are excitation states of SR and NAMR.
G1r and G2r are two tunable time-dependent couplings. The
adiabatic states of HB(t ) have the same form in Eq. (4). Thus
in the adiabatic frame, the Hamiltonian of the three-level
interface system becomes

HB,ad(t ) = U †
ad(t )HB(t )Uad(t ) − iU †

ad(t )
d

dt
Uad(t ). (17)

The dressing operator parametrized by μ2(t ), takes the
same form with Eq. (8). In the dressed frame, the transformed
Hamiltonian is given by

HB,ds(t ) = V †(t )
[
HB,ad(t ) + U †

ad(t )Hcr (t )Uad(t )
]
V (t )

−iV †(t )
d

dt
V (t ). (18)

With the same correction Hamiltonian form mentioned in
Eq. (9), the modified couplings G1rc(t ) and G2rc(t ) are read as
follows:

G1rc(t ) = G1r (t ) − gxr (t ) cos θ2(t ) + gzr (t ) sin θ2(t ),

G2rc(t ) = G2r (t ) + gxr (t ) sin θ2(t ) + gzr (t ) cos θ2(t ). (19)

In order to satisfy the condition in Eq. (6) that there are no
transitions between the dressed dark state |d̃k〉 and the other
dressed adiabatic states |±̃〉 during the dynamics, gxr (t ) and
gzr (t ) are given by

gxr (t ) = −μ̇2(t ), (20)

gzr (t ) = θ̇2(t )

tan μ2(t )
− g0. (21)

Here we choose the simplest nontrivial choice (gzr = 0) [15].
Thus the parameter function μ2(t ) takes the form

μ2(t ) = arctan

[
θ̇2(t )

g0

]
. (22)

With μ2(t ) in hands, we can obtain the modified couplings
by Eq. (19). The final fidelity of the three-step operation can
be defined as the population in the SR of node B,

Fe = |uc′ (te)|2. (23)

III. NUMERICAL SIMULATION

We apply the STA part of our scheme to the optimal STI-
RAP pulses discussed by Vitanov and co-workers in Ref. [38].
The mixing angle θ (t ) of the pulse is defined as follows:

θ (t ) = π

2(1 + e−vt )
, (24)
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FIG. 2. Comparison of the fast double-STA method and the STA-STIRAP method. The fast double-STA method contains three operations:
a SATD+κ , a conversion process, and a SATD. (a) Different coupling strengths in the double-STA scheme as a function of time t . G1lc, G2lc

(orange dashed line, blue solid line) and G1rc, G2rc (cyan dashed line, purple solid line) are the corrected pulse strengths for SATD+κ and
SATD, respectively. G3l (red dashed line) and G3r (green solid line) are the coupling strengths of different cavities and waveguide. G3l only
turns on during the SATD+κ and G3r only turns on during the conversion process with |G3l | = |G3r | = 0.5g0. (b) Different coupling strengths
as a function of time t in the STA-STIRAP scheme. (c) Population distribution of different devices depends on time t in the fast double-STA
scheme. Aj, Bj,Cj ( j = l, r) stands for the SR, NAMR, and OC in node A or B, and Dω stands for the waveguide. The STA-STIRAP
method consists of a SATD+κ , a conversion process, and a STIRAP. (d) Population distribution of different devices depends on time t in
the STA-STIRAP scheme.

where v stands for the protocol speed. Here to simulate a
real experiment in a laboratory, we truncate the pulses to a fi-
nite time interval −ti = t f = 7.5/v, which ensures G1lc(ti ) =
G1rc(t ′

i ) = G2rc(t ′
f ) = 10−3g0, where ti or t ′

i is the initial time
of the pulses in nodes A or B and t ′

f is the end time of the
pulses in node B.

We first use our fast double-STA approach to simulate
the state transfer process without dissipation in the transfer
system. Here, the protocol speeds of SATD+κ and SATD are
the same, setting as vl = vr = 2.62g0. Figure 2(a) shows the
different coupling strengths as a function of time t , where
the coupling strengths of OCs and the waveguide are |G3l | =
|G3r | = 0.5g0. In the SATD+κ process, the ideally corrected
Vitanov pulses G1lc, G2lc (orange dashed line, blue solid line),
and the coupling G3l (red dashed line) of the OC in node A and
the waveguide last for tl = 30/vl to ensure that the population
in the OC completely leaks to the waveguide. At the end of the
SATD+κ process, we turn off G3l and turn on the coupling
G3r (green solid line) of the OC in node B and the waveguide,
starting the conversion process. After a while tc = π/(2|G3r |),
the states in the waveguide convert to the OC in node B,
the coupling G3r is turned off and a SATD approach will
be applied on node B. The ideally corrected Vitanov pulses
G1rc, G2rc (cyan dashed line, purple solid line) last for the

same time interval t ′
f − t ′

i = 15/vr due to the same protocol
speed. The population distribution of the whole evolution is
shown by Fig. 2(c), where Aj, Bj,Cj ( j = l, r) stands for the
SR, NAMR, and OC in node A or B, and Dω stands for the
waveguide. The total fidelity of our scheme is 99.999% and
the time cost of these three operations is 20.32g−1

0 .
In order to demonstrate the advantages of our scheme,

we use a STA-STIRAP scheme to transfer the state between
distant interfaces. The difference between the STA-STIRAP
scheme and the double-STA scheme is that we use the tradi-
tional STIRAP state transfer approach instead of the SATD
approach in node B. And the STIRAP process is realized by
taking the original Vitanov pulses with the protocol speed
vr = g0. Figure 2(b) shows the coupling strengths as a func-
tion of time t and Fig. 2(d) shows the population distribution
of the whole evolution depends on the time t . The fidelity
of the STA-STIRAP state transfer scheme is 86.06%, and
the time cost is 29.59g−1

0 . Compared with the STA-STIRAP
approach, our double-STA approach reaches a higher fidelity
and costs less time, which is more robust when the dissipation
is taken into account.

Now we consider the case that the system exhibits dissipa-
tion during the state transfer process. The system Hamiltonian
in this case can be easily obtained by adding non-Hermitian
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FIG. 3. Infidelity of a fast double-STA scheme with dissipation
depends on the protocol speed v and coupling strength of cavities and
waveguide |G3| (here we assume the coupling strengths of different
cavities and waveguide is the same, which is |G3| = |G3l | = |G3r |).
Duration of SATD+κ is tl = 15/v + 8π/|G3|2 to make sure that the
state in OC completely leaks to the waveguide.

terms

H ′
A(t ) = HA(t ) − i(γ1/2) |Al〉 〈Ar | − i(γ2/2) |Bl〉 〈Bl |

−i(γ3/2) |Dω〉 〈Dω| ,
H ′

con(t ) = Hcon(t ) − i(γ3/2) |Dω〉 〈Dω| ,
H ′

B(t ) = HB(t ) − i(γ1/2) |Ar〉 〈Ar | − i(γ2/2) |Br〉 〈Br | , (25)

where γ1, γ2, and γ3 are the decay rate of SR, NAMR, as well
as waveguide, respectively. Here, we assume that the loss of
the state is caused by the waveguide when there is interaction
between cavities and waveguide, so that the decay rate of

cavities is neglected. Therefore, the fidelity of the SATD + κ

process in Eq. (14) becomes

F ′
l (t ) = e−γ3t

∫ t

ti

dτ 2π [G3l (τ )]2|uC (τ )|2. (26)

Figure 3 depicts the infidelity (Infidelity = 1 − Fe) of the
double-STA scheme depending on the protocol speed v (v =
vl = vr) and the coupling strength of the OCs and the waveg-
uide. Here, the parameters are taken as γ1 = 10−3g0, γ2 =
10−4g0, and γ3 = 10−3g0 [39–42]. It can be clearly seen that
reaching a higher fidelity needs both a higher protocol speed
and a higher coupling strength of the OCs and the waveg-
uide. With v = 2.62g0 and |G3| = 0.5g0, the total fidelity is
97.39%.

IV. CONCLUSION

We propose a fast high-fidelity approach to transfer state
between distant optomechanical interfaces connecting by a
continuum waveguide (i.e., an optical fiber). The scheme in-
cludes two parts: the local part and the remote part. In the
local part, we use a SATD+κ approach so that the state in
the superconducting resonator (SR) will transfer to the optical
cavity (OC) and finally leak to the waveguide. In the remote
part, a population conversion process is firstly applied to con-
vert the state from the waveguide to the OC. Then a SATD
approach is used to transfer the state to the SR. Compared
with the STA-STIRAP scheme, our scheme reaches a higher
transfer fidelity with less time. We also apply the double-STA
method to simulate the transfer evolution of the system with
dissipation. In this case, a higher transfer fidelity needs higher
protocol speed and higher coupling strength. Although the
SATD+κ in our protocol is irreversible, the reverse trans-
fer process can be simply realized by inverting the pulse
sequence. In a word, our scheme provides a way for state
transfer on distant superconducting platforms and a way to
build a quantum network.
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