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Certain aspects of some unitary quantum systems are well described by evolution via a non-Hermitian
effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Conversely, any non-Hermitian
Hamiltonian evolution can be accommodated in a corresponding unitary system + environment model via a
generalization of Wigner-Weisskopf theory. This demonstrates the physical relevance of novel features such as
exceptional points in quantum dynamics, and opens up avenues for studying many-body systems in the complex
plane of coupling constants. In the case of lattice field theory, sparsity lends these channels the promise of
efficient simulation on standardized quantum hardware. We thus consider quantum operations that correspond to
Suzuki-Lie-Trotter approximation of lattice field theories undergoing nonunitary time evolution, with potential
applicability to studies of spin or gauge models at finite chemical potential, with topological terms, to quantum
phase transitions—a range of models with sign problems. We develop non-Hermitian quantum circuits and
explore their promise on a benchmark, the quantum one-dimensional Ising model with complex longitudinal
magnetic field, showing that observables can probe the Lee-Yang edge singularity. The development of attractors
past critical points in the space of complex couplings indicates a potential for study on near-term noisy hardware.

DOI: 10.1103/PhysRevA.104.052420

I. INTRODUCTION

Nonunitary quantum dynamics of lattice field theories
are of interest because of their connection to quantum field
theories coupled to baths at finite temperature and/or finite
chemical potential, or with topological terms. See [1] for a
review of open quantum systems. It is also important in the
analysis of phase transitions, where the behavior of the Fisher
zeros, Lee-Yang zeros, and other features of the partition
function at complex values of the parameters give insight into
the nature of various thermal and quantum phase transitions
(see [2–10]). Such systems have been studied in the context of
quantum computing in [11–23]. Various algorithms for open
quantum systems have been studied in [24–35].

A class of nonunitary dynamics corresponding to non-
Hermitian Hamiltonian dynamics (Ĥ �= Ĥ†) generates a class
of models with sign problems, a pressing issue in both
condensed matter and high-energy particle physics. Non-
Hermitian quantum mechanics has been of great interest in
the past couple of decades (see [36–39]).

To give a specific example, of particular interest are quan-
tum simulations of general spin models. The lattice O(N )
nonlinear sigma models are discretized field theories exhibit-
ing phenomena like confinement, and asymptotic freedom,
which occur in gauge theories (see [40–44]). They exhibit
quantum phase transitions of various (or infinite) orders,
with condensation of topological excitations characterizing
the ground state. At finite chemical potential, less is known
about these models.

This is in part due to the fact that classical Monte Carlo
studies of such systems are rendered difficult by the sign
problem, which occurs because the effective Hamiltonians
are non-Hermitian. There are important known exceptions,

where reparametrizations of the theory admit description in
terms of new “dual” variables where the partition function is
manifestly real and positive, and can be sampled effectively
as well as be studied by other analytic methods (see [45–50]).
However, this may not be feasible or possible for all systems
(with lattice gauge theory in D > 2 an important example of
physical interest). Quantum computing offers the possibility
of directly addressing the sign problem; however, quantum
gates act in a unitary fashion on input quantum states, making
it unclear whether non-Hermitian Hamiltonian dynamics can
be efficiently simulated.

In this work, we describe quantum algorithms for the
real-time evolution of a quantum state according to the
Schrödinger equation with a non-Hermitian Hamiltonian.
This evolution (or an approximation thereof) is accomplished
after a Suzuki-Lie-Trotter (SLT) expansion of a unitary time-
evolution operator. These unitary time steps are augmented by
preparation of, and measurement on, ancillary qubits in order
to accomplish the desired nonunitary evolution.

Two algorithms that we present take advantage of the
fact that there are unitary system + environment models
(also known as unital quantum channels) that are “close”
to non-Hermitian time evolution. We construct a Trotterized
Lindbladian with a unitary portion corresponding to the Her-
mitian component of a non-Hermitian effective Hamiltonian,
a non-Hermitian evolution according to the anti-Hermitian
component, and additional “quantum jump” operations that
move the system away from evolution according to the
target non-Hermitian Hamiltonian. The algorithms are an
implementation of a damping channel. The Liouvillian that
corresponds to this nearest unital channel can potentially share
physical properties of the non-Hermitian Hamiltonian system
of interest, particularly when the non-Hermiticity is small.
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Second, we show it is possible to simulate a non-Hermitian
Hamiltonian without quantum jumps, but instead each Trotter
step is either a step forward or backward in time. “True”
evolution of the system according to a non-Hermitian Hamil-
tonian is always achieved; however, forward time evolution
is not guaranteed. Ancillary postselection determines not suc-
cess or failure, but rather whether a given Trotter step moved
the system backwards or forwards in time. At readout, an-
cillary measurement outcomes project onto a specific map
between simulation time and computational time.

In this paper, as a first application, we test these meth-
ods on the coarsest (Z2) discretization of the O(2) nonlinear
sigma model: a one-dimensional (1D) quantum Ising spin
chain in a transverse field. Non-Hermiticity is introduced
via an imaginary longitudinal magnetic field. The model has
been well studied (see Refs. [5–8]), both on and off the real
axis, which makes it an ideal benchmark to test discrete-
time, finite-volume quantum algorithms, and to construct and
measure observables which probe features of interest such
as phase transitions and scaling behavior in the approach to
nonunitary critical points. The Lee-Yang zeros correspond to
a nontrivial Jordan block for the lowest energy pair (by real
part) in the eigensystem of the non-Hermitian Hamiltonian.
This model also has a “true” sign problem, in that the tensor
formulation—or other “dual-variable” formulations—of the
theory does not eliminate complex phases, and is thus an
interesting case study for quantum computation of theories
with a sign problem.

We show in this paper that these algorithms have the ability
to detect the finite-size quantum analog of the Lee-Yang edge,
where the partition function vanishes due to the effective
non-Hermitian Hamiltonian losing an eigenvector. In quantum
simulation, this edge corresponds to a point past which the
time evolution develops a fixed point at large times due to the
effective ground-state energy developing an imaginary part.

Recently, a noisy intermediate-scale quantum (NISQ) al-
gorithm for imaginary time (purely anti-Hermitian) evolution
was designed in [18], which is efficient when correlation
lengths of the system are small. In the case of general non-
Hermitian Hamiltonian evolution, successful SLT evolution
can be accomplished by utilizing this quantum imaginary time
evolution (QITE) algorithm for terms in the Hamiltonian with
imaginary couplings, and standard algorithms for the unitary
part of the time step. Thus a simple extension of QITE is also
applicable for these non-Hermitian Hamiltonians. However,
this algorithm would suffer near points of interest such as
phase transitions where there is long-range order that we wish
to emphasize in this paper. We leave application of QITE
to open lattice field theories of this form for future work.
Throughout this paper, we have set h̄ = 1, and normalized all
quantities in plots to make them dimensionless.

This paper is organized as follows: In Sec. II, we give
an interpretation of arbitrary non-Hermitian Hamiltonians as
open quantum systems, analogous to effective models of
heavy particle decay. In Sec. III, we talk about modeling
non-Hermiticity in a system + environment setting utilizing
the formalism of quantum operations. In Sec. IV, we in-
troduce the algorithms for simulating general non-Hermitian
Hamiltonians on a quantum computer and write down the
corresponding quantum operations. In Sec. V, we talk about

methods to realize these quantum operations. In Sec. VI, we
apply our algorithms to the transverse field Ising model with
an imaginary longitudinal field, propose quantum circuits for
a small system, and present numerical results of observables
and compare with results from exact nonunitary evolution. We
conclude in Sec. VII.

II. NON-HERMITIAN HAMILTONIANS

Effective descriptions of quantum many-body systems
coupled to a bath can, in certain cases, be described or ap-
proximated in terms of effective (and often non-Hermitian)
Hamiltonians. A common, simple example of non-Hermiticity
elucidated by Feshbach [15], and initially applied to nuclear
physics, is that of spontaneous decay of massive resonances,
where a small discrete subsystem of at-rest massive particles
is weakly coupled to a infinitely sized system of light particles
with a continuous range of momenta. Phase-space suppression
ensures that information flow is overwhelmingly “one way”
from the massive system to the light one.

When supplemented with a superselection rule, there is
a sense, which we review here, in which tracing out the
light particle bath yields evolution via the Schrödinger equa-
tion with an effective non-Hermitian Hamiltonian. Dispersive
terms in this Hamiltonian account for the decay process.

Such evolution is not norm preserving (trace preserving
in the density matrix formalism), so to make sense of it, we
must extend the system, as we now review. In the case of a
simple single-particle decay, there is a unitary system + envi-
ronment model that completes a non-Hermitian Hamiltonian
model with Ĥ = −i�1 (� being the width of the particle),
and time evolution operator e−�t . This evolution operator acts
on the otherwise trivial 1D Hilbert space spanned by the
massive noninteracting particle state, |M〉. By supplementing
the one-dimensional single-particle Hilbert space acted on by
Ĥ with a “deexcited” vacuum state (the state of no massive
particle), the trivial space is promoted to a more physical
qubit where measurement yields one of two possible results:
“particle there” or “particle gone.” The operation is the usual
amplitude-damping channel modeling the loss of energy via
some array of possibly unspecified decay processes.

In the extended Hilbert space, with all decay products
traced out, an initial density matrix ρ0 = |M〉〈M|, where the
particle is there with certainty, evolves in time t to ρt =
e−�t |M〉〈M| + (1 − e−�t )|0〉〈0|, a mixed state with statistics
pthere = e−�t , and pgone = 1 − e−�t , which obviously pre-
serves the trace condition.

One can also consider more complicated systems with ad-
ditional massive particles that may interact among each other
nontrivially, e.g., with oscillations such as those exhibited by
the K0-K̄0 system (see Ref. [14]). Such effective Hamiltonians
have Hermitian components accommodating oscillation, and
anti-Hermitian parts modeling decay.

In essence, we “make sense” of these simpler non-
Hermitian Hamiltonians via an enlargement of the Hilbert
space that accommodates a unital quantum channel. A se-
questered block of a block-diagonal density matrix then
evolves according to a time-evolution operator that is the
solution of the Schrödinger equation with that non-Hermitian
Hamiltonian.
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This idea can be generalized to any non-Hermitian Hamil-
tonian, and we will emphasize that in the case of field theory,
with its axiom of local interactions (and the associated spar-
sity in the corresponding Hamiltonian), such theories may be
amenable to simulation on quantum hardware.

To make sense of an arbitrary non-Hermitian Hamilto-
nian, consider Ĥ0 = Ĝ0 + iK̂0, with Ĝ0 and K̂0 Hermitian. A
sensible (dispersive) model has no eigenvalues with positive
imaginary part. If Ĥ0 has eigenvalues in the upper half of the
complex plane, this can be corrected by subtracting an overall
imaginary shift in the Hamiltonian.

In fact, we will be more conservative, and shift the vacuum
energy to ensure that −K̂0 is a positive-semidefinite operator:
Ĥ0 → Ĥ0 − i max(eigenvalues(K̂0))1. This shift creates no
change to the relative eigenspectrum of states or their char-
acterization. It only adds an overall universal decay rate. The
positivity of −K̂0 is required so that small time steps according
to non-Hermitian Ĥ0 can be represented by a unitary system
+ environment model.1

Minimally, to accommodate the system decay associated
with the shifted Hamiltonian in a unitary quantum channel,
the N-dimensional Hilbert space acted on by Ĥ0 must be
increased in size by at least one additional basis vector, which
we call the “empty” state. We now consider a new Hamilto-
nian acting on the larger space:

Ĥ = Ĝ + iK̂ ≡
(

Ĥ0 0

0 0

)
. (1)

We consider density matrices of the form

ρ =
(

ρ
Sys
N×N 0

0 1 − TrρSys
N×N

)
. (2)

Our goal now is to construct a Lindblad formulation2 of the
problem on the new (N + 1)-dimensional Hilbert space that
does not spoil the superselection rule forbidding superposi-
tions of the system state with the empty state.

We then aim for an evolution of ρ in the (N + 1)-
dimensional space which follows

dρ

dt
= −i[Ĝ, ρ] − {K̂, ρ} +

∑
i

2L̂iρL̂†
i , (3)

and where the “quantum jump” terms in the sum do not
pollute the upper N × N block of the density matrix. Trace
preservation requires that K̂ = ∑

i L̂†
i L̂i. In K̂0’s eigenbasis,

with the imaginary energy shift, we have

K̂0 = −diag(�1, . . . , �N ), (4)

1Some non-Hermitian Hamiltonians have only real eigenvalues
(see [36]). This subtraction could possibly be unnecessary in these
special cases. Since these systems can be shown to be related to
Hermitian but generally nonlocal Hamiltonians [51], they may be
intrinsically difficult to simulate without the subtraction we perform.

2A pedagogical treatment of open quantum systems that includes
Lindblad evolution and the formalism of quantum operations used
here can be found in, for example, Chap. 8 of [52].

where the �i are positive decay constants. Our requirements
are met with N Lindblad operators given by

L̂i =
(

0N×N �0N

[
√

−K̂0 ]i 0

)
, (5)

where [
√

−K̂0 ]i is the ith row of
√

−K̂0. For a small discrete
time step, a Trotterized advancement corresponds to an (N +
1)-element Kraus operator set:

Ê0 =
(

e−iδt Ĝ0 eδt K̂0 0

0 1

)
,

Êi =
(

0N×N �0N

[
√

1N − e2δt K̂0 ]i 0

)
, (6)

where [
√

1N − e2δt K̂0 ]i is the ith row of
√

1N − e2δt K̂0 . The
quantum operation described by this set of Kraus operators
correctly advances the system by one time step, up to O(δt2)
terms. Keeping with the particle-decay analogy, there are N
“flavors” of massive particles interacting with one another
in the top left block of ρ. The Kraus operators Êi, with i =
1, . . . , N , correspond to these different “flavors” decaying.

Over evolution time, the system of interest is decaying into
the empty state while undergoing non-Hermitian evolution.
Statistics at late times will tend to be dominated by the empty
measurement, with failure of the simulation to yield informa-
tion about the system of interest.

Novel properties of the non-Hermitian lattice system, as a
rule of thumb, would be expected to be manifest at time scales
inverse to the anti-Hermitian Hamiltonian term’s magnitude.
However, failure probabilities are expected to approach unity
at time scales inverse to the system volume multiplied by
the anti-Hermitian coupling strengths. This is the usual price
of fitting non-Hermitian evolution into completely positive
maps: naive implementation comes at the cost of the growing
probability of a “garbage” outcome.

For any algorithm that simulates a non-Hermitian Hamilto-
nian via a trace-preserving quantum operation, the probability
of success for a single Trotter step depends on the way we
normalize the desired evolution so as to fit it into a trace-
preserving quantum operation. As we have emphasized, −K̂0

must minimally be positive definite, and thus probability for a
successful time step on an initial density matrix ρ without an
undesired quantum jump is bounded:

ps � Tr(Ê0ρÊ†
0 ) = Tr(eδt K̂ρeδt K̂ ). (7)

Realistically, K̂ will not in general be diagonal in the lattice
basis, and we will not know its spectrum. Instead, for a lattice
model, we will have K̂ as a sum of locally acting operators,
K̂ = ∑

k̂I , that we implement as individual anti-Hermitian
“gates,” and for which we do know the spectra. In a simulation
we must enforce positivity of each −k̂I . This will overcom-
pensate in general, and in a typical simulation the bound in
Eq. (7) will not be saturated.

We next move on to study the construction of simulations
that target non-Hermitian Hamiltonian evolution on lattice
models.
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III. MODELING ANTI-HERMITICITY

Our algorithms are general; however, in view of simplic-
ity of exposition and also our intention to study lattice field
theories with local interactions, we need only put focus on
non-Hermitian Hamiltonian terms which are single site or
involve interactions between nearest-neighbor degrees of free-
dom. In this section, we describe a family of Kraus operator
decompositions of an arbitrary nonunitary time step, limits of
which correspond to our “random walk through time” algo-
rithm with probabilistic time evolution, and damping circuits
with straightforward time evolution which minimize failure
probability.

A. Single-qubit anti-Hermiticity

If the anti-Hermitian part of the Hamiltonian acts only
locally on lattice degrees of freedom, the Trotterized transfer
matrix can be separated into a unitary part encompassed in
Ĝ and a nonunitary part from K̂ which acts only on local
system sites. We focus on finding a single-qubit quantum
operation that approximates a time step according to such
an anti-Hermitian Hamiltonian. It can, in fact, be shown that
any Trotterized multiqubit non-Hermitian evolution can be de-
composed into unitaries and single-qubit nonunitary quantum
operations, as we explain further in Sec. III B.

Tracing out the entire system with the exception of a single
qubit gives a reduced density matrix for the ith lattice site, ρi.
The portion of the Trotter step that solves Eq. (3) correspond-
ing to anti-Hermitian evolution is

ρi → eδt k̂iρie
δt k̂i , (8)

where k̂i here is the portion of K̂ acting at site i. This takes
a form similar to a single-element non-trace-preserving quan-
tum operation, with Kraus operator Ê i

0 = eδt k̂i . As emphasized
in Sec. II, requiring positivity of −k̂i guarantees that Ê i †

0 Ê i
0 �

1, as required by unitarity. Without loss of generality, one can
always apply a unitary transformation to rotate the single-
qubit anti-Hermitian evolution to point along the z axis. We
thus consider the specific case k̂i = �(σ̂z − s1̂), so that we
have

Ê i
0 =

(
e(1−s)δt� 0

0 e−(1+s)δt�

)
, (9)

where � is a coupling strength, and we require s � 1.
In the following section, we offer a few simple construc-

tions of Kraus operator sets that can be incorporated as
quantum channels in a circuit-based implementation of non-
Hermitian quantum dynamics. Each has its advantages and
disadvantages relative to each other. First, we show that in or-
der to implement two-qubit nonunitary gates, it is sufficient to
have the capability to implement one-qubit nonunitary gates.

B. Decomposing two-qubit gates

The aim in this section is to decompose a general N-qubit
operator into a single-qubit nonunitary operation, and N-qubit
unitaries. We will first show this for the two-qubit case and
then generalize. This is valuable since many lattice field the-
ory interactions are nonlinear, and their quantum-computation

encodings will necessarily be reduced to single- and two-qubit
gates, which may themselves be nonunitary. Being able to
reduce two-qubit nonunitary gates, for instance into two-qubit
unitary operations, and a single-qubit nonunitary operation
allows the implementation of more complicated systems that
possess two-qubit gates.

Consider an arbitrary two-qubit Trotterized evolution oper-
ation of the form

M̂2 = e−iδt Ĥ2 , where Ĥ2 = Ĝ2 + iK̂2. (10)

Using the Trotter expansion, we can write it as a unitary piece
and a nonunitary piece:

M̂2 ≈ M̂UM̂NU = e−i δt Ĝ2 eδt K̂2 . (11)

The unitary piece can in principle be implemented on a quan-
tum computer. Now, consider the Pauli decomposition of K̂2.
Since K̂2 is Hermitian, the coefficients ai j of the decomposi-
tion will be real:

M̂NU = exp δt
∑
i, j

ai j (σ̂i ⊗ σ̂ j ) (12)

≈
∏
i, j

M̂i j
NU =

∏
i, j

exp δt ai j (σ̂i ⊗ σ̂ j ), (13)

where the Trotter expansion has been used in the second
equality, and i, j = 0, 1, 2, 3, with σ̂0 ≡ 12. Since M̂i j

NU is
Hermitian ∀ (i, j), it admits a spectral decomposition with
orthonormal eigenvectors:

M̂i j
NU = Û i j�̂i j (Û i j )†, (14)

where Û i j is the unitary matrix comprised of the eigenvectors
of M̂i j

NU ordered in the decreasing order of the eigenvalues; �̂i j

is a diagonal matrix with the eigenvalues in decreasing order.
One can show that

�̂i j =
{

exp δt a00 12 ⊗ 12, (i, j) = (0, 0)

exp δt ai j σ̂3 ⊗ 12, (i, j) �= (0, 0).
(15)

Using this, we can write

M̂NU = �̂00 ×
∏

(i, j) �=
(0, 0)

Û i j (exp δt ai j σ̂3 ⊗ 12)(Û i j )†. (16)

This is the required decomposition. The Û i j’s are two-qubit
unitaries (entanglers), and the operations in the middle are
single-qubit operations, one of which is always the identity.

This decomposition is easily generalized to nonunitary op-
erations acting on N qubits:

M̂{ki}
NU = Û {ki}�̂{ki}(Û {ki})†, (17)

where the set {ki} is a label for the Pauli basis for a 2N -
dimensional Hilbert space. The (ordered) eigenvalue matrix
is then

�̂{ki} =
{

exp δt a{0} 12 ⊗ 12N , ki = 0 ∀ i

exp δt a{ki} σ̂3 ⊗ 12N , ∃ i : ki �= 0,
(18)
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FIG. 1. Block circuit of a general Trotterized two-qubit operation
in terms of single-qubit nonunitaries (implemented by ϒ), and two-
qubit unitary entanglers, U i j’s.

which yields

M̂NU = �̂{0} ∏
{ki} �=
{0}

Û {ki}( exp δt a{ki} σ̂3 ⊗ 12N

)
(Û {ki})†.

(19)

Here, the Û ki ’s are N-qubit unitary operators. Even in this
general case, the nonunitarity can be moved to be on just
a single qubit. Note that these N-qubit entanglers need not
be efficiently implementable, generally. A block circuit of
the two-qubit case is shown in Fig. 1, where ϒ is a unitary
implementation of the quantum operations we describe in
Sec. IV to implement single-qubit nonunitary evolution using
a single ancillary qubit. MZ is a measurement of the spin in
the σ̂z basis, and X ≡ σ̂x.

IV. EXPLICIT QUANTUM CHANNELS
FOR THE SINGLE-QUBIT CASE

In this section, we will elaborate on the specific quantum
channels based on the ideas from the previous sections. These
are channels obtained by embedding the non-Hermitian sys-
tem into a bigger, unital channel using ancillary qubits. Then,
the undesired evolution can be minimized through postselec-
tion on the measurements of the ancillary qubits. The first
two approaches below take the system away from the desired
evolution in the eventuality of a wrong measurement on the
ancillary qubit. The last one solves this problem at the expense
of accumulating Trotter error.

The three channels described here are considered to be
implemented uninterrupted for the desired amount of evo-
lution time. This is how the numerical results in Sec. VI
were calculated. However, the channels could just as well
be supplemented with tomography of the quantum state to
“checkpoint” evolution along the way. In this way all three
approaches are able to reproduce the desired evolution up to
controllable errors.

A. System in decline

The first channel we discuss is modeled on and inspired
by the operation corresponding to particle decay in [14].
Implementation requires that we, at minimum, extend the
single-qubit system to a qutrit, although, for purposes of uti-
lization on standard hardware, we will instead exhibit here a

realization via extension by an additional qubit. We refer to
this new qubit as the “compensatory” system. This qubit adds
additional states for probability of the system qubit to move
into, and so “compensates” the “decay” experienced by the
system qubit. To write the Kraus operators, first we will rotate
into the z axis and normalize as mentioned in Sec. III A; then
let us write down the two matrices

	̂1 =
(

1 0

0
√

1 − γ

)
, 	̂2 =

(
0

√
γ

0 0

)
(20)

with γ = 1 − e−4δt�. Now, a set of two Kraus operators acting
on this four-dimensional Hilbert space is given by

ÊSD
0 =

(
	̂1 0

0 1

)
, ÊSD

1 =
( 0 0

	̂2 0

)
. (21)

To simulate the non-Hermitian system, we impose a superse-
lection rule and, on initialization, only consider states which
populate the 2 × 2 blocks lying on the diagonal of the two-
qubit density matrix, with the 2 × 2 block in the upper left
(the 0 state of the compensatory qubit) representing the sys-
tem that will evolve according to the effective non-Hermitian
Hamiltonian.

With the Kraus operators in Eq. (21) this quantum op-
eration is an amplitude-damping channel in which a decay
of the system’s 1 state, represented by Ê0, is compensated
for by population of the 1 state of the compensatory qubit
via Ê1. To begin describing the evolution, we write down
a density matrix for the system and compensatory qubit in
block-diagonal form, ρ0 = |0〉〈0| ⊗ ρ

sys
0 + |1〉〈1| ⊗ ρG

0 . The
state ρG is a “garbage state” that contains minimal information
about the system that we intend to simulate. Here, while we
use the notation ρsys (ρG), these blocks are not themselves
individual density matrices. Evolving the system an amount
of time, δt , we find

ρ0 → ρδt = |0〉〈0| ⊗ ρ
sys
δt + |1〉〈1| ⊗ ρG

δt

= |0〉〈0| ⊗ 	̂1ρ
sys
0 	̂

†
1

+ |1〉〈1| ⊗ (
ρG

0 + 	̂2ρ
sys
0 	̂

†
2

)
. (22)

On any given time step, the probability, psys, for measuring
the compensatory qubit in the 0 state after a single step of
evolution is given using the maximal case of Eq. (7) by

psys = Tr
(
P̂0ρδt P̂0

) = Tr(	̂1ρsys	̂
†
1), (23)

where P̂0 is the projector onto the 0 state of the compensatory
qubit. In order to actually implement the quantum operation
described by Eq. (21), a minimal additional third qubit must
be introduced for a unitary operation as an ancillary environ-
ment, which, when traced out, yields the above Kraus operator
set. With this operation, the upper 2 × 2 block will evolve,
up to normalization, precisely as desired up to computational
error in the laboratory, and finite-time Trotter error.

This is, however, at the expense of depletion of the system
of interest into the “garbage” state that eventually and in-
evitably (without tuning) dominates the density matrix, given
enough iterations of the nonunitary portion of the time step.
Longer system-evolution times are associated with greater
expense in performing tomography that yields information
about the state of the target system.
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We should note that in some (or many) cases, our damping
channel will be overly conservative. Probabilities of success
may be arranged to be higher with more careful construction
of the operation. This is due to the fact that the origi-
nal non-Hermitian Hamiltonian may have either purely real
eigenvalues due to symmetry arguments [36], or eigenvalues
with a positive imaginary part that are overcompensated for in
our pursuit of ensuring unital quantum channels to simulate
local interactions. Of course we will not typically know in
advance the spectrum of these Hamiltonians (that being the
purpose of their simulation), and playing it safe is likely to be
best practice.

B. Damping channels

We can also realize the non-Hermitian dynamics without
extending the system space with a compensatory qubit, but
rather use an ancillary qubit to elevate the nonunitary opera-
tion to a unitary one.

The simplest way to implement the nonunitary dynamics
may be a phase-damping quantum channel, with measurement
performed on a single ancillary qubit in the computational
basis. In the framework at the end of Sec. II, and the begin-
ning of Sec. III A, this case corresponds to minimizing s, and
having only a single additional Kraus operator complete the
set. Minimizing s provides the single-step optimal probability
of obtaining evolution via ÊDC

0 rather than the other Kraus
element. It can be arranged so that a “0” outcome of ancillary
measurement corresponds to the desired ÊDC

0 evolution, and
“1” is associated with an undesired ÊDC

1 evolution. In this
case,

ÊDC
0 =

(
1 0

0
√

1 − γ

)
and ÊDC

1 =
(

0 0

0
√

γ

)
, (24)

with γ = 1 − e−4�δt . Implementation of the channel is via a
controlled y rotation, Ry(φ), where the system qubit acts as the
control, the ancilla qubit as the target, and φ = 2 sin−1(

√
γ ).

For the phase-damping circuit, a “1” measurement is ir-
recoverable, destroying any entanglement built up between
the ith qubit and the rest of the system, putting the ith qubit in
the pure state ρ1

i = |1〉〈1|. These 1 measurements correspond
to the inevitable quantum jumps associated with a probabilis-
tic algorithm.

A low probability to measure the 1 state in the ancil-
lary qubit ensures errors are local and sparse. Long-range or
global properties of the system of interest may survive this
approximation to non-Hermitian Hamiltonian dynamics. We
study this numerically in Sec. VI by comparing observables
in the 1D Ising model at imaginary longitudinal field calcu-
lated using the phase-damping gate implementation to those
calculated exactly.

We note that one could just as easily consider any right-
acting unitary rotation of ÊDC

1 , such as ÊDC
1 σ̂x (which in this

case would give an amplitude-damping channel).

C. Random walk through time

In contrast to the previous two approaches where a mea-
surement of “1” on the ancillary qubit results in a complete
loss of entanglement between the qubit and the rest of the

system, in this section, we present an algorithm where an
unsuccessful measurement on the ancilla(s) means that the
system has evolved in the wrong direction in time by a fraction
of the time step, δt . Let Âi and B̂ j be a set of N and M Kraus
operators that define the trace-preserving quantum operation
given by

R(ρ) =
N∑

i=1

ÂiρÂ†
i +

M∑
j=1

B̂ jρB̂†
j , (25)

with

Âi = √
αi exp −iĜδti exp K̂δti,

B̂ j = √
β j exp iĜδt ′

j exp −K̂δt ′
j . (26)

Here, Âi does a forward time step by δti, and B̂ j does a
backward time step by δt ′

j . Note that δti, δt ′
j � δt ; the equality

is when N = M = 1.
We demonstrate here a calculation which gives the op-

timal number of Kraus operators. Under the assumption
that δti, δt ′

j � 1, the trace-preserving condition (
∑

i Â†
i Âi +∑

j B̂†
j B̂ j = 1) gives the following:∑

i

αiδti −
∑

j

β jδt ′
j = 0,

∑
i

αi +
∑

j

β j = 1. (27)

The probabilities for the operators Â and B̂ are given by

ai = Tr(ÂiρÂ†
i ) = αi + 2αiδtiTr(K̂ρ) + O

(
δt2

i

)
,

b j = Tr(B̂ jρB̂†
j ) = β j − 2β jδt ′

jTr(K̂ρ) + O
(
δt ′ 2

j

)
. (28)

Using these, the average “distance” in time a single action of
the quantum operation in Eq. (25) would take the system is

〈t〉 =
∑

i

ai δti −
∑

j

b j δt ′
j = 0, (29)

where Eq. (27) was used in the second equality. This indeed is
expected since this is a random-walk algorithm. The quantity
of interest is the root-mean-squared distance in time:

√
〈t2〉 =

(∑
i

ai δt2
i +

∑
j

b j δt ′ 2
j

)1/2

=
(∑

i

αiδt2
i +

∑
j

β jδt ′ 2
j

+2Tr(K̂ρ)

(∑
i

αiδt3
i −

∑
j

β jδt ′ 3
j

))1/2

� δt

(∑
i

αi +
∑

j

β j

+2Tr(K̂ρ)

(∑
i

αiδti −
∑

j

β jδt ′
j

))1/2

. (30)
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Finally, using Eq. (27), we have√
〈t2〉 � δt . (31)

This can be maximized using just a single ancillary qubit
using the following Kraus operators:

Ê±(δt ) = 1√
2

exp(∓iĜδt ) exp(±K̂ δt ), (32)

which has the statistics of a coin that has a state-dependant
O(δt ) bias. This channel evolves correctly up to O(δt2). The
drawback of this evolution is that, due to the nature of a ran-
dom walk, many more Trotter steps are required than ∼1/δt
in order to evolve the system the desired amount of time. This
results in an accumulation of Trotter error. Using this method
a judicious choice of postselection must be done: for instance,
if we take too many steps in the backwards direction, it would
be better to start the simulation over.

V. CIRCUIT REALIZATION

In this section we give explicit forms of the unitary evolu-
tion operators for each of the algorithms discussed in Sec. IV.
These are expressed in terms of known fundamental gates, and
Kraus operators.

A. System-in-decline realization

The algorithm described in Sec. IV A is best interpreted
as a system and “compensatory” environment. The Kraus
operators for this algorithm [Eq. (21)] contain in them how the
probability moves between system and environment during
evolution. The actual implementation of these Kraus opera-
tors is quite ambiguous, and so one needs to find a unitary
(which is done with an additional ancillary qubit) that applies
these Kraus operators correctly. We found that a unitary that
accomplishes this is given by

Û SD = 1
2

(
(1 + σ̂z ) ⊗ ÊSD

0 + (σ̂x − iσ̂y) ⊗ ÊSD
1 − (σ̂x + iσ̂y)

⊗ ÊSD†
1 + (1 − σ̂z ) ⊗ (SWAP)ÊSD

0 (SWAP)
)
, (33)

where SWAP is the standard two-qubit SWAP gate. Here, the
first operator in the tensor product acts on the ancillary qubit,
while the second operator acts on the system-compensatory
environment qubits. Note that the unitary in Eq. (33) corre-
sponds to the single-qubit quantum channel written down in
Eq. (21), which explicitly gives

Û SD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0
√

1 − γ 0 0 0 0 −√
γ 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0
√

γ 0 0 0 0
√

1 − γ 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)

FIG. 2. Gate implementation of the unitary in Eq. (34) for
the system-in-decline algorithm for a single-qubit Trotterized
anti-Hermitian evolution. Here, ϕ = 2 sin−1

√
1 − e−4δt�, and the

subscripts a and c denote the ancillary and compensatory qubits,
respectively.

The gate implementation of this unitary is shown in Fig. 2.
Acting with this unitary implements the evolution shown
in Eq. (22). To see this, consider the combined system-
compensatory environment qubit density matrix of the form

ρ = |0〉c〈0|c ⊗ ρsys + |1〉c〈1|c ⊗ ρG, (35)

where ρG is a garbage state. The total density matrix upon
preparing the ancillary qubit in the 1 state is

ρtot = |0〉a〈0|a ⊗ ρ, (36)

where the subscripts a and c correspond to the ancillary and
the compensatory environment qubits, respectively. Evolving
by Û SD yields

Û SDρtot Û SD† = 1
2

(
(1 + σ̂z ) ⊗ ÊSD

0 ρÊSD†
0 + (σ̂x − iσ̂y)

⊗ ÊSD
1 ρÊSD†

0 − (σ̂x + iσ̂y) ⊗ ÊSD
0 ρÊSD†

1

+ (1 − σ̂z ) ⊗ ÊSD
1 ρÊSD†

1

)
. (37)

Tracing out the ancillary qubit gives the desired evolution in
Eq. (22).

B. Damping-channel realization

In this section we give an explicit representation for the
Kraus operators in the case of the damping circuit, and show
their application on an arbitrary quantum state. In Sec. III, we
have considered how to implement non-Hermitian operations
on a single qubit, and how to extend it to two qubits. It turned
out that only the technology for single-qubit nonunitary gates
is necessary, since nonunitary two-qubit gates can be written
in terms of two-qubit unitaries, and a single-qubit nonunitary
operation. Then, it reduces to a problem of implementation of
the two-qubit unitary entanglers. However, to actually imple-
ment the nonunitary operations described in Sec. III A, one
must enlarge the space and perform a unitary operation. There
are several equivalent ways to implement the quantum oper-
ations described in Sec. III A. Here, we include an additional
ancillary qubit in order to construct a unitary on a larger space.
A unitary that is convenient to utilize is

Û DC = 1 ⊗ ÊDC
0 − i σ̂y ⊗ ÊDC

1 , (38)

where the first operators in the tensor products act on the
ancillary qubit, and the second on the system qubit. Acting on
the total state ρtot = |0〉〈0| ⊗ ρ, for example, with Û DC yields
the state

Û DCρtotÛ
DC† = |0〉〈0| ⊗ ÊDC

0 ρÊDC†
0 + |1〉〈1| ⊗ ÊDC

1 ρÊDC†
1 ,

(39)
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which upon postselection on the ancillary qubit yields the
desired evolution according to Ê0. Using the representations
from Eq. (24), and Eq. (38), we can write the unitary corre-
sponding to the damping gate as

Û DC =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0
√

1 − γ 0
√

γ

0 0 1 0

0 −√
γ 0

√
1 − γ

⎞
⎟⎟⎟⎟⎠. (40)

Looking at the above matrix, this is nothing more than a
controlled y rotation, with the system qubit as the control.
Now consider an arbitrary single-qubit state,

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (41)

We couple this state to an ancillary qubit,

|ψ〉 → |0〉 ⊗ |ψ〉 = |0〉|ψ〉, (42)

to act on with Û DC. The action of Û DC is given by

Û DC|0〉|ψ〉 = cos
θ

2
|00〉 +

√
1 − γ eiϕ sin

θ

2
|01〉

−√
γ eiϕ sin

θ

2
|11〉

= |0〉ÊDC
0 |ψ〉 − |1〉ÊDC

1 |ψ〉. (43)

At this point, a measurement is performed on the ancillary
qubit, and it is clear if it is found in the 0 state, the final state,
|ψ f 〉, up to normalization is

|ψ f 〉 = cos
θ

2
|00〉 +

√
1 − γ eiφ sin

θ

2
|01〉, (44)

which is the successful implementation of ÊDC
0 .

Now, consider an arbitrary single-qubit operator, M̂1. M̂1

admits a singular value decomposition,

M̂1 = Û λ̂V̂ †, (45)

where both V̂ and Û are unitary, and λ̂ is a diagonal ma-
trix with positive entries, and let us assume, without loss of
generality, that the entries are sorted from largest to smallest:
λ1 � λ2. If we normalize by λ1, the matrix λ̂ is identical to
ÊDC

0 from Eq. (24), with λ2/λ1 ≡ √
1 − γ . Then to implement

the matrix M̂1, one applies the matrix (1 ⊗ Û )Û DC(1 ⊗ V̂ †)
to the state |0〉|ψ〉. In this way, any single-qubit matrix which
is invertible can be implemented.

By considering the state using the single-site reduced den-
sity matrix, ρi, in standard (r, θ, ϕ) Bloch-ball coordinates,
the probability of successful implementation, ps, is the prob-
ability associated with obtaining 0 on a measurement of the
ancillary qubit, as given by Eq. (7):

ps = Tr
(
ÊDC

0 ρiÊ
DC†
0

) = 1 − γ

2
(1 − r cos θ ), (46)

which is identical to the probability of success in the system-
in-decline algorithm, since ÊDC

0 and 	̂1 are the same. We note
that this is independent of implementation or completion of
ÊDC

0 to a complete measurement protocol, and bounded from
below: ps � 1 − γ ≈ 1 − 4δt�. Using this lower bound, we

can compute the probability of success after Nt applications
of the operation. If we set δt = t/Nt ,

pNt
s � (1 − 4�t/Nt )

Nt , (47)

which, for large Nt , approaches e−4�t . Then, the probability of
success after Nt applications is bounded from below by e−4�t .

This bound for success identifies a line of constant relia-
bility for the circuit. We see that if �t = c with c small the
circuit has a relatively high probability of success after many
uses. That is, the circuit works well along the line starting
with � large which is run for small times, and ending with �

small but run for long times. Notice the success of the circuit
is independent of the underlying physics of the model. The
probability of success is the same regardless of correlation
length, or phase symmetries, and is merely controlled by the
quantity �t .

The extension of the above to two-qubit gates is a straight-
forward generalization of the single-qubit case, however
unnecessary; as we have already seen in Sec. III B, one only
needs the technology for single-qubit nonunitary gates to
implement two-qubit nonunitary gates when the gate is a
by-product of Trotterization.

C. Random-walk realization

The steps in Sec. IV C show that by including a single
additional qubit, we achieve the best possible evolution using
the random-walk method. For a general Hamiltonian, Ĥ =
Ĝ + iK̂ , we would like to be able to identify a Hamiltonian
which corresponds to the enlarged unitary evolution. This
would allow for a more straightforward gate interpretation. In
this section we derive it explicitly.

Consider the full, enlarged, unitary, time-evolution oper-
ator, separated into the original unitary evolution from the
Hermitian part of the Hamiltonian, Ĝ, and the nonunitary
evolution from the non-Hermitian part, K̂ ,

Û RW ≈ Ŵ T̂ , (48)

where Ŵ and T̂ are the time-evolution operators for Ĝ and K̂ ,
respectively. Explicitly,

Ŵ = 1
2 (1 + σ̂z ) ⊗ e−iĜδt + 1

2 (1 − σ̂z ) ⊗ eiĜδt (49)

and

T̂ = 1√
2
1 ⊗ eK̂δt − 1√

2
iσ̂y ⊗ e−K̂δt . (50)

First we consider T̂ , and expand to order O(δt ), and collect
terms with Ĝ and K̂ ,

T̂ � 1√
2

[(1 − iσ̂y) ⊗ 1 + δt (1 + iσ̂y) ⊗ K̂]

= 1√
2

((1 − iσ̂y) ⊗ 1)[1 ⊗ 1 + δt

2
(1 + iσ̂y)2 ⊗ K̂]

= 1√
2

((1 − iσ̂y) ⊗ 1)[1 ⊗ 1 + iδt σ̂y ⊗ K̂]

� 1√
2

((1 − iσ̂y) ⊗ 1)eiδt σ̂y⊗K̂ + O(δt2), (51)
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where we have worked up to linear order in δt and restored
the corrections explicitly in the last step. This is a unitary
time-evolution operator, where the non-Hermitian part of the
original Hamiltonian is now coupled to the ancillary qubit
through a σ̂y interaction.

Second, the unitary part, Ŵ , is similar. Expanding to linear
order in δt and collecting similar terms,

Ŵ = 1
2 (1 + σ̂z ) ⊗ e−iĜδt + 1

2 (1 − σ̂z ) ⊗ eiĜδt

� (1 ⊗ 1) − iδt (σ̂z ⊗ Ĝ)

� e−iδt σ̂z⊗Ĝ + O(δt2). (52)

Then, the Hermitian part of Ĥ can be simulated with an
expanded Hamiltonian where the Hermitian part is coupled
to the ancillary qubit through a σ̂z interaction. These forms
allow Hamiltonian simulation regardless of the form of Ĝ
and K̂ . If a qubit formulation for Ĝ and K̂ can be found,
those qubit interaction terms can be expanded to include a σ̂z

and σ̂y interaction, respectively, in order to simulate the full
Hamiltonian using the random-walk method.

VI. THE TRANSVERSE ISING MODEL WITH AN
IMAGINARY LONGITUDINAL FIELD

To put these above algorithms into practice, and test the re-
alizations proposed above, we consider a simple lattice model
whose Hamiltonian is non-Hermitian: the one-dimensional
quantum Ising model with a real transverse field and a purely
imaginary longitudinal field,3

ĤIsing = −
∑
〈i j〉

σ̂ z
i σ̂ z

j − hx

λ

∑
i

σ̂ x
i + i

�

λ

∑
i

σ̂ z
i . (53)

We rescale all the couplings by the nearest-neighbor coupling,
and omit it in the following; i.e., we set λ = 1.

Brute force classical Monte Carlo simulations on the dis-
cretized imaginary time (Euclidean) partition function (the
2D classical Ising model with an imaginary external field)
exhibits a sign problem and disastrous numerical convergence
due to the imaginary field. Due to its relative simplicity,
however, the model admits study with analytic methods, and
much is known about the structure of the phase diagram (see
Refs. [5–8]). The model is thus an ideal benchmark scenario
for testing real-time evolution algorithms.

With the longitudinal field set to zero and at large volume,
the model exhibits a second-order quantum phase transition at
hx = 1, where the system switches from a disordered phase to
an ordered (magnetized) one. In a dual description, the tran-
sition occurs due to the condensation of topological “kink”
excitations. The critical point is associated with a conformal
field theory where ungapped kink-antikink bound pairs me-
diate long-range order, and the entropy of the ground state
diverges along with the correlation length in the thermody-
namic limit.

3This can also be understood, in discrete time evolution, as the
nontrivial part of the transfer matrix for the two-dimensional (2D)
Euclidean classical Ising model with an imaginary external field.

FIG. 3. The exceptional line (θ, hx )c for different system sizes.
In the infinite-volume limit, the exceptional line deviates from the
� = 0 line at hx = 1. The top line corresponds to a system size of
2, and the bottom one corresponds to a system size of 10, with
an increment of 2 for the other lines, in comparison to the one
immediately above.

The non-Hermitian extension of the model with imaginary
longitudinal field offers another viewpoint on the phase tran-
sition. For hx > 1, there is an “exceptional line,” defined by
±�c(hx ) along which the ground state [defined here as the
eigenvector(s) with smallest real part], merges with the first
excited state. This is not a typical degeneracy or level crossing,
but rather one at which the non-Hermitian Hamiltonian can be
diagonalized only up to a Jordan-block form. Thus, the system
“loses” an eigenvector along this line. This corresponds to a
zero in the generating functional for correlation functions (the
vacuum-to-vacuum transition amplitude).

For |�| > �c(hx ), the ground state is degenerate in its real
part, but is separated into a pair of states with energies that are
complex-conjugate paired. At large volume, the exceptional
line converges toward the � = 0 line at hx = 1, the location
of the quantum phase transition for the original Hermitian
system. In Fig. 3, we show the exceptional line for different
system sizes. This is the quantum analog of the Lee-Yang
edge—zeros which lie densely on a circle (as a function of
eiβ�) in the statistical partition function in the large-volume
limit. Above the critical hx, the zeros lie outside of a wedge
enclosing the real axis. As hx is reduced towards the critical
point, the wedge closes, and the zeros cluster densely in the
immediate vicinity of the real axis. In the thermodynamic
limit, the partition function in the hx-� plane develops a
branch singularity along the hx axis.

The zeros in the classical partition function map to the
line of exceptional points associated with the non-Hermitian
Hamiltonian. They also correspond to a nonunitary critical
point in the model; a conformal field theory (CFT) with cen-
tral charge c = −22/5 (see Refs. [8,10]). The merger (and
annihilation) of the exceptional points coincides with the
usual 2D Ising CFT.

Despite its nonunitarity, aspects of the complexified Ising
model described above admit quantum simulation on a unitary
machine. The techniques described in Sec. IV can be applied,
and aspects of the structure of the nonunitary lattice theory
can be probed. In part, the success of the methods can be
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FIG. 4. Fidelity between the state of the system and the ground
state (� = hx = 0.5) for five initial configurations of the system: all
in the 0 state (top line), all in the 1 state (second from the top), all in
the +X state (third from the top), every qubit in a random pure state
(fourth from the top), and the maximally entangled state (bottom
line).

traced to the nonunitary features of the model—in particular
the effective ground-state energies becoming complex.

The imaginary part of the ground-state energy past the
exceptional line leads to the domination (from arbitrary initial
configuration) of the ground state in the long-time limit of
system evolution. We give an example of this with four system
sites in Fig. 4, where we plot the fidelity, as defined in Eq. (57)
of the state of the system and the ground state as a function of
time for different initial configurations. This is insensitive to
quantum noise that may be associated with the algorithm itself
(as in Sec. IV B) or, if sufficiently quiet, from environmental
noise as well. This makes our algorithms viable for ground-
state preparation past the Lee-Yang edge. The authors are
hopeful that this will create new inroads not only for studying
nonunitary models, but also for learning about their real-value
limits. In other words, exploration of the behavior of complex
structure of the partition function can herald typical real-space
quantum phase transitions in fully unitary theories.

In the next sections, we describe explicit application of the
algorithms in Secs. IV and V to the imaginary longitudinal

field Ising model in Eq. (53), constructing gate sequence pro-
tocols that are generalizable in principle to arbitrary volume.
We simulate Trotter evolution and show how observables such
as Rényi entropies can distinguish the exceptional line in
the hx-� plane. The Rényi entropies are good observables
because they are sensitive to the interesting physics of the
Lee-Yang edge. Moreover, it is not hard to measure them
experimentally (see Refs. [53–55]). The measurements rely
on interfering identical copies of the system with each other
(through applications of the SWAP gate). In this way the nth-
order Rényi entropy is probed through measurements of the
parities of subsystems of one of the copies. The second-order
Rényi entropy is the simplest, requiring only two copies.

A. Quantum circuit: System in decline

The anti-Hermitian part of the Ising model with an imag-
inary longitudinal field described by the Hamiltonian in
Eq. (53) can be implemented straightforwardly using the uni-
tary in Eq. (33). The Kraus operators for this model are

ÊSD
0 =

⎛
⎜⎜⎝

1 0 0 0
0

√
1 − γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

ÊSD
1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0

√
γ 0 0

0 0 0 0

⎞
⎟⎟⎠, (54)

with γ = 1 − e−4δt�. The circuit for a single time step for
this model is shown in Fig. 5 for two system qubits with one
ancillary qubit and one compensatory qubit for each of them.

Because the probability of success for this circuit is iden-
tical to that of the damping channel circuit we leave the
numerical results to that section (see Sec. VI B). Moreover,
while the physical setup is perhaps more intuitive, the gate
structure is more complicated than in the damping circuit case,
and so for ease of numerical simulation we only study the
damping channel circuit.

FIG. 5. A single Trotter step for a two-spin Ising system with an imaginary longitudinal field using the system-in-decline channel (see
Sec. V A). Here, ϕ = 2 sin−1

√
1 − e−4δt�. The quantum channel is implemented using one ancillary qubit (denoted a) and one compensatory

qubit (denoted c). The compensatory qubits are projected onto the 0 state after the desired amount of evolution.
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FIG. 6. A single Trotter step for a four-spin Ising system with an imaginary longitudinal field. Here ϕ = 2 sin−1
√

1 − e−4δt�. In this circuit
a measurement is defined as Mz which will return either zero or one. Subsequently the state is flipped depending on the result.

B. Quantum circuit: Phase-damping-circuit implementation

The Ising model with a real transverse field and a purely
imaginary longitudinal field can be implemented almost
immediately using the phase-damping circuit discussed in
Sec. IV B. In this case, the Kraus operator Ê0 corresponds to

ÊSD
0 =

(
1 0

0 e−2δt�

)
. (55)

The actual circuit for a single time step is shown in Fig. 6
for four physical spins, supplemented by four ancillary qubits
which are used to implement the nonunitary gates.

A comparison between the method and the exact evolution
for six spins can be seen in Fig. 7 in the ordered phase. In the
absence of errors it is clear that the circuit, and the method,
reproduce the original dynamics almost perfectly. Another
example, this time in the disordered phase, can be seen in
Fig. 8.

FIG. 7. A comparison between the exact nonunitary evolution of
six spins using the Ising Hamiltonian from Eq. (53), and that using a
Trotterized circuit like the one shown in Fig. 6. The time is in units
of the nearest-neighbor coupling, with a Trotter step size δt = 0.1.
Here 〈σ x〉 is the expectation value of the σ x term in Eq. (53) (orange
triangles), similarly for 〈σ z〉 (green circles). S2 is the second-order
Rényi entropy using a bipartite split (blue crosses). Here hx = 0.5
and � = 0.1, placing these data in the ordered phase.

In the two previously mentioned figures, the phase-
damping circuit was implemented with zero probability of
measuring the ancillary qubits in the “ruined” state. This is the
ideal case. However, it is important to see how the algorithm
can perform in the realistic case when the |1〉 state for the
ancillary qubit is measured with a nonzero probability. To
make this comparison, we calculated the second-order Rényi
entropy,

S2(t ) = − ln(Tr[ρ2(t )]), (56)

as a function of evolution time. Here ρ(t ) is the reduced
density matrix for an even bipartite split of the system at time
t . We calculate this quantity in the hx-� plane. In Fig. 9 we
see this calculation and a comparison between three things:
on the left, evolution of the system using the circuit in Fig. 6,
performing a measurement on the 350th time step of size
δt = 0.01, and choosing the iteration with the least number
of “1” measurements on the ancilla for each data point, out of

FIG. 8. A comparison between the exact nonunitary evolution of
six spins using the Ising Hamiltonian from Eq. (53), and that using a
Trotterized circuit like the one shown in Fig. 6. The time is in units
of the nearest-neighbor coupling, with a Trotter step size δt = 0.1.
Here 〈σ x〉 is the expectation value of the σ x term in Eq. (53) (orange
triangles), similarly for 〈σ z〉 (green circles). S2 is the second-order
Rényi entropy using a bipartite split (blue crosses). Here hx = 2 and
� = 0.1, placing these data in the disordered phase.
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FIG. 9. The second-order Rényi entropy, S2, calculated on an Ns = 4 lattice in the hx-� plane. Here the Trotter step size was δt = 0.01 and
S2 was measured on the 350th step. Left: The exact evolution. Middle: The calculation using the phase-damping method, selecting the best out
of 350 runs for each point in parameter space. Right: The fidelity between the exact evolution and the algorithm.

350 runs; in the middle, the calculation of S2 using the exact
nonunitary evolution in the hx-� plane; and on the right, the
fidelity,

F (ρ, σ ) = Tr
√

ρ1/2σρ1/2, (57)

between the density matrices obtained using the damping
algorithm, and the one from exact evolution. The fidelity
above is symmetric in ρ and σ . The black line denotes the
exceptional line where the ground state and first excited state
merge.

We can see that the algorithm reproduces the features of
the exact evolution very well when � is small generally, and
when hx � �. Overall, we see that the fidelity is good over a
modest range of the couplings, even in the presence of many
1 measurements on the ancillary qubit.

C. Quantum circuit: Random walk through time

Here we discuss how to apply the random-walk algorithm
to the transverse Ising model in an imaginary longitudinal
field. Using the procedure from Sec. V C, we can expand
the Hilbert space, and create a larger, Hermitian Hamilto-
nian from the non-Hermitian Hamiltonian in Eq. (53). The
new Hermitian Hamiltonian has three terms corresponding to
a three-spin interaction and two, two-spin interactions. The
three-body interaction is the enlarged nearest-neighbor inter-

action in the original Ising model with the new ancillary qubit,

ĤN.N = −σ̂ z
anc

∑
〈i j〉

σ̂ z
i σ̂ z

j . (58)

An example of this interaction in a circuit is shown in the third
image in Fig. 10.

The second term is a Z-X interaction which comes from the
transverse field in the original Ising model. This interaction is
between the ancillary qubit and a spin qubit,

ĤT = −hxσ̂
z
anc

∑
i

σ̂ x
i . (59)

An excerpt of a circuit showing this part of the Hamiltonian
can be seen in the second image in Fig. 10. The final term
is very similar: a Y -Z spin-spin interaction coming from the
longitudinal field,

ĤL = �σ̂ y
anc

∑
i

σ̂ z
i . (60)

A figure showing the quantum circuit implementation of this
interaction can be seen in the first image in Fig. 10.

Using the above circuits, we can simulate (in an error-free
way) the random-walk algorithm on a classical computer. This
allows us to assess the effect of the Trotter decomposition,
and the repeated retracing of the system steps as it moves ran-
domly forward and backward in time. In practice, to simulate
the random outcomes of measurement on the ancillary qubit,

FIG. 10. Gate implementation for the random-time-walk Ising model in Eq. (53) with two system qubits and one ancillary qubit. V
diagonalizes the σy Pauli matrix, and H is the standard Hadamard gate. The three circuits correspond, respectively, to the longitudinal field,
the transverse field, and the nearest-neighbor interactions.
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FIG. 11. An example of how the system evolves in physical time
versus the number of Trotter steps actually taken in the computation.
On the y axis we plot the difference between the number of forward
steps and the number of backward steps, while on the x axis we show
the number of Trotter steps taken. This evolution is for a four-spin
system with hx = 1.5, � = 0.5, and δt = 0.001.

we compute the reduced density matrix for that single qubit
by tracing out the actual system, and reading the probabilities
for measuring zero or one. We then project the system accord-
ingly into one of the two states, reprepare the ancillary qubit,
and repeat the procedure.

In Fig. 11 we show an example of typical evolution for the
system. In this case we have placed a “mirror” at Nactual

t = 0,
such that if the system would evolve into negative times we
simply reprepare the entire system in the initial state and begin
again. On the y axis is the number of physical times steps
taken, while the x axis is the number of actual Trotter steps
taken in the computation. We see it takes a great many steps to
move significantly forward in physical time. Of course this
is clear from the very nature of the random-walk algorithm,
and the probabilities can be seen in Fig. 12. It is clear while
there is an inherent asymmetry in the probabilities, they are
approximately 50% up to O(δt ).

FIG. 12. Histograms showing the probabilities for measuring
zero or one over an example run of 1 × 105 steps. We see a slight
bias towards measuring the zero state; however, this is only at O(δt ).
These probabilities are for a four-spin system with hx = 1.5, � =
0.5, and δt = 0.001.

FIG. 13. A comparison between the (error-free) measurement of
the average spin in the x and z directions (blue crosses) and the exact
expectation value of the same quantities sampled at the same physical
time (orange line) (see Fig. 11). These measurements are for a four-
spin system with hx = 1.5, � = 0.5, and δt = 0.001.

Nevertheless, the algorithm maintains quantitative agree-
ment with the exact evolution. An example of measured
observables—the average spin along the x and z directions–
can be seen in Fig. 13. Here, we have plotted the error-free
measurements (blue crosses) one can expect in the computa-
tion as a function of the actual number of Trotter steps that will
be taken in the computation, along with the exact spin value
(orange line) at that moment in physical time (see Fig. 11).
We plot the actual error associated with these observables in
Fig. 14.

VII. CONCLUSION

We have presented three algorithms to simulate non-
Hermitian Hamiltonian evolution on quantum computers
using unital channels in conjunction with postselection. Both
the system-in-decline and the damping-channel algorithms
have the maximal approach in terms of probability of suc-
cess of a single Trotter step to simulating the non-Hermitian

FIG. 14. The error between the measured values and the exact
values from Fig. 13. We find reasonable quantitative agreement
over a large number of Trotter steps; however, this is observable
dependent.
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Hamiltonian of interest. The additional quantum jumps in
these algorithms take one away from the desired evolution,
but if the imaginary coupling in the model is small or large
relative to the real couplings, the approximate Hamiltonian
that is simulated can possess similar characteristics.

For the random-walk algorithm, each time step takes
the system forward or backward in time according to the
non-Hermitian Hamiltonian evolution. Because of the larger
number of steps necessary to move forward in physical time,
at least an order one factor of error is accumulated throughout
the simulation when the number of times steps is �1/δt ,
and strict postselection is necessary. Nevertheless, for small
physical times the results are in good agreement with exact
calculations.

Using these algorithms we have studied a specific model,
the one-dimensional Ising model with a real transverse field
and a purely imaginary longitudinal field. We found these
algorithms are able to accurately reproduce global spin ob-
servables (e.g., magnetization), as well as the second-order
Rényi entropy in the hx-� plane where the Lee-Yang edge
occurs. We found the algorithms worked exceptionally well
in the region of small non-Hermiticity where the imaginary
coupling term is just a perturbation. We also found good
agreement at large imaginary coupling relative to the real
couplings, since the real exponential pulls the system back
quickly to the desired ground state. Finally, small physical
times were simulated with excellent agreement since few
errors have the opportunity to happen, and in that case the
algorithm is exact up to Trotterization error. For larger values
of the imaginary coupling where � ∼ hx (along with longer
simulation times), a more extensive postselection process is
required. These conditions make these algorithms excellent
candidates for near-term quantum computing.

The above demonstrates that these algorithms can be used
to simulate non-Hermitian systems on near-term devices,
and in fact calculations are already under way for the Ising

model studied here [56]. In addition, these algorithms al-
low for simulations in imaginary time (Euclidean time, or
purely imaginary couplings) on quantum computing hard-
ware. Simulations at long Euclidean times force the system
into its ground state, and so these algorithms could be useful
for ground-state studies, or studies of slightly excited states.
Furthermore, the algorithms provide simple means to imple-
ment any nonunitary single- or two-qubit gate; however, the
probability for success depends on the distance of the normal-
ized eigenvalues from unity which generally could be quite
large.

An interesting question to consider for future directions
is the possibility to utilize the inherent noise in NISQ-era
machines to study open quantum systems. This possesses
some challenges—since some noise is unique to particular
machines, it is not the same for each qubit, and is not constant
in time—among others. However, the availability of “free”
noisy quantum systems to study is tempting, and deserves
further thought.
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