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The quantum approximate optimization algorithm (QAOA) is a near-term combinatorial optimization algo-
rithm suitable for noisy quantum devices. However, little is known about performance guarantees for p > 2.
A recent work computing MaxCut performance guarantees for 3-regular graphs conjectures that any d-regular
graph evaluated at particular fixed angles has an approximation ratio greater than some worst-case guarantee. In
this work, we provide numerical evidence for this fixed angle conjecture for p < 12. We compute and provide
these angles via numerical optimization and tensor networks. These fixed angles serve for an optimization-free
version of QAOA and have universally good performance on any 3-regular graph. Heuristic evidence is presented
for the fixed angle conjecture on graph ensembles, which suggests that these fixed angles are “close” to global
optimum. Under the fixed angle conjecture, QAOA has a larger performance guarantee than the Goemans
Williamson algorithm on 3-regular graphs for p � 11.
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I. INTRODUCTION

Near-term quantum computers have the potential for ad-
vantage in the field of combinatorial optimization. Potentially,
an algorithm running on a small noisy quantum device may
soon exhibit quantum advantage by providing better ap-
proximate to combinatorial problems than the best classical
approximate solver [1]. One particular class of potential algo-
rithms are variational quantum algorithms (VQA) [2], which
use a hybrid quantum-classical loop to optimize ansatz wave
functions that encode solutions to combinatorial problems.

One particular ansatz choice for VQA is the quantum
approximate optimization algorithm (QAOA) [3], which is
generated using p rounds of unitaries alternating between
some “mixing” unitary and objective function unitary. The
ansatz is a function of 2p parameters {γ , β}, which are op-
timized through repeated query of a classical optimizer to a
digital quantum device.

While it is known that the QAOA converges to the ex-
act result for p → ∞ consistent with the adiabatic theorem
[3,4], less is known about the guaranteed performance of the
algorithm at low depth. In the original introduction of Farhi
et al. [3], the performance solving MaxCut was guaranteed
to be at least 0.693 for p = 1- and 3-regular graphs, and in a
later work [5], the performance was guaranteed to be at least
0.7559 for p = 2- and 3-regular MaxCut graphs. The same
work observed that worst-case graphs have no small cycles
and conjectured that the same holds for larger p.
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In this work, we provide performance guarantees under this
conjecture for regular MaxCut graphs for p � 11 and show
that for p � 11 the QAOA has a larger performance guarantee
on 3-regular graphs than the best general-purpose classical
solver.

Additionally, it has been observed that optimal QAOA an-
gles concentrate around typical values [6,7], suggesting that
QAOA may bypass the quantum-classical variational opti-
mization step or precompute the angles using a tensor network
quantum circuit simulator [8]. In this work, we make this ob-
servation even more simple by demonstrating that there exist
a set of fixed angles that are “universally good.” These fixed
angles, when evaluated on any regular graph of fixed edge
weights, will return approximation ratios larger than some
guarantee and very close to the exact maximal approximation
ratio. These fixed angles allow QAOA to completely bypass
any variational optimization step, potentially increasing exe-
cution times by a factor of 100–1000×.

In this work, we focus on the NP-complete combinatorial
optimization problem MaxCut [9]. Given a graph G of edges E
and vertices V , a MaxCut algorithm strives to find a bipartition
of vertices {A, V \A} such that a maximal number of edges E
have one vertex in each bipartition. In other words, a MaxCut
strives to “cut” the maximal number of edges via a bipartition.

A graph of N = |V | vertices and M = |E | edges can be
encoded into an objective function C over N qubits and M
clauses, as follows:
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FIG. 1. A sketch of how to compute QAOA expectation values. Given some graph G of edges and vertices (a), QAOA will only “see” local
structure within p steps of an edge. In this way, a graph can be decomposed into |E | subgraphs S (b), one for each edge, and expectation values
can be computed independently (d). One method of computing expectation values used in this work are tensor networks (c), which efficiently
decompose the local QAOA state into a tensor network for efficient computation.

The eigenstates of Ĉ are bipartitions, with eigenvalues
counting the number of cut edges. The partition is assigned
by measuring the ansatz state in the Z basis.

The QAOA strives to find optimal parameters which max-
imize the expectation value of the objective function with
respect to some ansatz state. The QAOA ansatz is defined as
a function of 2p variables {γ , β} over p rounds of repeated
unitaries,

|γ , β〉 = e−iβpB̂e−iγpĈ (· · · )e−iβ1B̂e−iγ1Ĉ |+〉, (2)

where the ellipsis represents the p actions of objective func-
tion Ĉ and mixing term B̂ = ∑

i σ̂
i
x. The initial state |+〉 is the

equally weighted superposition state and maximal eigenstate
of B̂.

The QAOA is a hybrid algorithm, in the sense that it
includes both a quantum and a classical device. Through
repeated query to a small quantum device to evaluate ex-
pectation values FG

p (γ , β ) = 〈γ , β|Ĉ|γ , β〉, a classical device
optimizes the 2p angles {γ , β} to provide optimal MaxCut
solutions to a graph.

The performance of the algorithm is characterized by the
approximation ratio, which is the ratio between the optimized
value FG

p (γ , β ) and the MaxCut value,

CG
p = MAX:

γ ,β

FG
p (γ , β )

CG
max

. (3)

The approximation ratio ranges between 0 and 1, and CG
max

is the maximum possible number of edges cut for graph
G. A larger value indicates better performance, and a value
of 1 indicates the exact solution. Given a class of graphs
and fixed value p, this approximation ratio may be guaran-
teed to be above some performance guarantee. For 3-regular
graphs, C1 � 0.692 [3], and C2 � 0.7559 [5]. For p → ∞,
the approximation ratio converges to 1 in accordance with the
adiabatic theorem [3,4].

Critically important to the evaluation of the performance
is the fact that QAOA is a local algorithm [10–13]. Given
p steps, a vertex can only be correlated with other vertices
within a distance �p. This is because the QAOA has a “light
cone” of interaction, which is clear to see in the Heisenberg
picture see, for example, Ref. [5], Eq. (7). The expectation

value of the cost function is a sum of clauses,

FG
p (γ , β ) = 〈γ , β|Ĉ|γ , β〉
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where f 〈i j〉
p is an individual edge contribution to the total cost

function. The QAOA ansatz only correlates vertices within p
steps, so each clause f 〈i j〉

p may be computed on a subgraph
S〈i j〉

p that only includes the edges that are incident from ver-
tices at a distance p from the vertices i or j. The expectation
value thus can be calculated as a sum over M independent
subgraphs, as sketched in Figs. 1(a) and 1(b).

Due to this locality, QAOA cannot take advantage of graph
structures that are greater than 2p steps away [3]. Addition-
ally, QAOA cannot distinguish between graphs with cycles of
size >2p + 1, which suggests that worst-case graphs have no
small cycles. This intuition was made concrete in Ref. [5],
which proved that worst-case 3-regular graphs with the small-
est approximation ratio for p = 1 and 2 are bipartite with no
cycles �3 or 5, respectively. A bipartite graph has a MaxCut
value of M, cutting every edge. The only subgraph of a graph
with no small cycles is the tree subgraph, which has no cycles
(see Fig. 1). The optimized value of a worst-case graph G∗ is
then

FG∗
p (γ , β ) =

∑

〈i j〉∈G∗

f i j
p (γ , β ) = M f tree

p (γ , β ). (5)

Thus, the approximation ratio of a worst-case graph is sim-
ply the expectation value of the tree subgraph f tree

p (γ , β ). The
expectation value of the tree subgraph evaluated at optimal
parameters {γ , β}tree serves as the performance guarantee.
These worst-case graphs are exponentially rare but can be
found constructively [14].

Additionally, it was proven that any graph evaluated at
angles optimum to the tree subgraph have an approximation
ratio larger than the guarantee for p = 1 and 2. These facts
naturally lead to two conjectures for larger values of p [5].
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Large loop conjecture: The worst-case graphs for fixed p
are bipartite and have no cycles less than 2p + 2.

Fixed angle conjecture: Any graph evaluated at fixed an-
gles optimal to the tree subgraph will have an approximation
ratio larger than the guarantee.

These conjectures are proven True in [5] for p = 1 and
2 for 3-regular graphs. These fixed angles act as “universally
good” parameters with good, but not maximum, performance
on any 3-regular graph.

This work provides heuristic evidence of these conjectures
for larger p < 12. First, as outlined in Sec. II, we compute
expectation values of the tree subgraph f tree

p (γ , β ) for p < 12.
Due to the doubly exponential complexity of simulation (the
p = 11 tree subgraph has 8190 vertices, each corresponding
to a qubit), we use tensor methods [15] for efficient classical
simulation.

Next, we optimize the 2p variational parameters via a mod-
ified multistart gradient ascent algorithm [16] to find optimal
angles for worst-case graphs {γ , β}tree, which serve as fixed
angles to evaluate on any graph of the same regularity. The
optimal expectation values of the tree subgraph serve as a
performance guarantee assuming the large loop conjecture.

Finally, as outlined in Sec. III, we provide a heuristic proof
of the fixed angle conjecture by evaluating the approximation
ratio on all 3-regular graphs with �16 vertices. Further, we
index the merits of these precomputed, fixed angles to speed
up and improve the variational optimization step of QAOA.
We conclude in Sec. III with some of the implications of
these fixed angle conjectures, including bounds for quantum
advantage on regular graphs.

II. METHODOLOGY

A. Simulations

A necessary step of QAOA is evaluating the expectation
value of the cost function. One option is to compute the value
on quantum hardware by sampling from the ansatz state |γ , β〉
and calculating the expectation value statistically. While in
principle this is the only method that will work for arbitrary
circuit parameters, it is possible to simulate expectation values
on a classical computer for some circuits even of extensive
size.

One simple alternate method is state-vector evolution,
which requires storing the 2N values of the wave function
in memory and evolving via sparse matrix exponentiation
methods. However, this method is infeasible for large system
sizes of �20 qubits due to the exponentially scaling memory
requirements.

For this work, we use the classical simulator QTensor
[17,18] which is based on tensor network contraction and
allows for simulation of a much larger number of qubits for a
limited set of wave functions. Instead of storing the full state
vector of the system and evolving it by applying matrix trans-
formations, the state is represented by a tensor network and
the gates with tensors that have input and output indices. The
tensor network constructed in this way can then be contracted
in an efficient manner to compute expectation values.

To compute the expectation value, we construct one tensor
network per term f 〈i j〉

p as defined in Eq. (4). The ultimate

result is then the sum over all contracted tensor networks.
As mentioned above, each tensor network can be constructed
using only a small subset of all gates in the quantum circuit.
The amount of resources required to contract a tensor network
depends heavily on subgraph structure.

While there may exist multiple approaches for determining
the best way to contract a tensor network, we use a contrac-
tion approach called bucket elimination [19], which contracts
indices of the tensor expression sequentially. At each step, we
choose some index j from the tensor expression and then sum
over a product of tensors that have j in their index. The size of
the intermediary tensor obtained as a result of this operation
is very sensitive to the order in which indices are contracted.
To find a good contraction ordering we use a line graph [20]
of the tensor network. A tree decomposition [21] of the line
graph corresponds to a contraction path that guarantees that
the number of indices in the largest intermediary tensor will be
equal to the width of the tree decomposition [15]. Figure 1(c)
shows the line graph of the tensor network that corresponds
to calculating edge contribution f 〈i j〉

p for the subgraph shown
in Fig. 1(b). In this way, it is possible to simulate QAOA to
a reasonable depth on hundreds or thousands of qubits. More
details of QTensor and tensor networks are in Refs. [18,22–
24]. We observe that the tree subgraph has a particularly sim-
ple and symmetric tensor structure, which allows for efficient
contraction for depths p ∼ 11 which would not be possible for
more general and generic subgraphs. This implies that while
it is efficient to compute QAOA on large graphs with loopless
subgraphs, it is more difficult to compute large-depth QAOA
on smaller graphs due to the more complicated loop structure
of each subgraph.

B. Angle optimization

A necessary step of QAOA is optimizing the expectation
value of the cost function with respect to the variational pa-
rameters γ , β. One common optimization method is gradient
ascent, which moves the parameter along the direction of the
steepest gradient. To compute gradients, we use automatic
differentiation provided by PyTorch and QTensor. To speed
optimization, we use the modified gradient descent algorithm
RMSprop [16], an established machine-learning algorithm.

The optimization surface has multiple local maxima, which
provide a challenge to gradient descent algorithms. For this
reason, we choose two initialization routines. The first rou-
tine is that of Refs. [4,25], which initializes parameters in
a counterdiabatic configuration. Starting with p = 2, larger
p + 1 are interpolated by deriving the underlying continuous
counterdiabatic schedule and matching angles. The gradient
ascent initialized from these angles finds a local optimum
with smooth angles, although there is no guarantee that these
smooth angles are a global optimum.

To verify that the smooth angles are global optimum, we
also implemented a multistart routine [26], which executes
parallel optimization initialized from 1000 random points in
parameter space. With high probability, one of the random
initial points is in the same basin of attraction as the global
optimum, and so the routine returns the optimal angles. We
find for p�6 that the global optima returned by this method
return the same value as the smooth angles within numerical
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TABLE I. The fixed 3-regular {γ , β}tree QAOA angles optimal to the tree subgraph, in radians. Under the fixed angle conjecture, 3-regular
graphs evaluated at these angles will have an approximation ratio larger than the performance guarantee of column 2. Angles are normalized
to be consistent with Eq. (2). We find this conjecture to be True on all graphs with �16 vertices, as shown in Fig. 3. A JSON file with these
angles, plus fixed angles for regular graphs of larger degree, is provided as a supplement [27].
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p = 1 C1 ≥ 0.6925
γ 0.616
β 0.393

p = 2 C2 ≥ 0.7559
γ 0.488 0.898
β 0.555 0.293

p = 3 C3 ≥ 0.7924
γ 0.422 0.798 0.937
β 0.609 0.459 0.235

p = 4 C4 ≥ 0.8169
γ 0.409 0.781 0.988 1.156
β 0.600 0.434 0.297 0.159

p = 5 C5 ≥ 0.8364
γ 0.360 0.707 0.823 1.005 1.154
β 0.632 0.523 0.390 0.275 0.149

p = 6 C6 ≥ 0.8499
γ 0.331 0.645 0.731 0.837 1.009 1.126
β 0.636 0.534 0.463 0.360 0.259 0.139

p = 7 C7 ≥ 0.8598
γ 0.310 0.618 0.690 0.751 0.859 1.020 1.122
β 0.648 0.554 0.490 0.445 0.341 0.244 0.131

p = 8 C8 ≥ 0.8674
γ 0.295 0.587 0.654 0.708 0.765 0.864 1.026 1.116
β 0.649 0.555 0.500 0.469 0.420 0.319 0.231 0.123

p = 9 C9 ≥ 0.8735
γ 0.279 0.566 0.631 0.679 0.726 0.768 0.875 1.037 1.118
β 0.654 0.562 0.509 0.487 0.451 0.403 0.305 0.220 0.117

p = 10 C10 ≥ 0.8785
γ 0.267 0.545 0.610 0.656 0.696 0.729 0.774 0.882 1.044 1.115
β 0.656 0.563 0.514 0.496 0.469 0.436 0.388 0.291 0.211 0.112

p = 11 C11 ≥ 0.8828
γ 0.257 0.528 0.592 0.640 0.677 0.702 0.737 0.775 0.884 1.047 1.115
β 0.656 0.563 0.516 0.504 0.482 0.456 0.421 0.371 0.276 0.201 0.107

precision, indicating that the angles for p � 6 are global op-
tima. For p > 6, multistart always returned lower results than
the counterdiabatic-initialized angles.

III. RESULTS

Here we present the fixed angles {γ , β}tree as well as
the heuristic evidence of the fixed angle conjecture. Using
the methods of Sec. II, we compute optimal parameters
for the tree subgraph {γ , β}tree via a loop between the
QTensor tensor simulator and the classical optimization
routine.

Optimized angles for 3-regular graphs and p < 12 are
shown in Table I. We provide these data in a machine-
readable JSON format for regular graphs of degrees 3
to 10 as a supplement to this paper [27]. These an-

gles are also available to use in the QTensor package as
qtensor.tools.BETHE_QAOA_VALUES.

A. Guaranteed performance

Under the large loop conjecture, the expectation value of
the tree subgraph serves as a QAOA performance guarantee
for any regular graph of the same degree. By evaluating the
tree subgraph at these optimal angles, the performance guar-
antee for 3-regular graphs is shown in Table I and plotted
in Fig. 2 for regular graphs of degrees 3 to 10. For p � 11,
the performance guarantee is C11 � 0.8828. This threshold is
important, as it is larger than the performance guarantee of the
best general-purpose algorithm of Goemans and Williamson
(GW) [28] which has a performance guarantee of 0.8786.
Having larger performance guarantees than competing clas-
sical algorithms is one indicator of quantum advantage [1];
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FIG. 2. The performance guarantee for ν-regular graphs as a
function of p, assuming the large loop conjecture where worst-case
graphs are bipartite and have no small cycles. The guarantee appears
to grow as 1/

√
p and surpasses the guarantee of GW (orange dashed

line) for p � 11. The performance guarantee for larger connectivity
is smaller and goes as 1/

√
ν for fixed p, consistent with a mean-field

picture.

however, there is no advantage here. The GW algorithm is
general purpose and works on any graph of any connectivity
and edge weights, while these performance guarantees only
work for 3-regular graphs and fixed edge weights. There exist
better special-purpose implementations of GW for 3-regular
graphs with larger performance guarantees. For example,
Ref. [29] outlines a semidefinite programming solver similar
to GW-specialized to 3-regular graphs, with an approximation
ratio C > 0.9326. These fixed angles do not achieve advan-
tage over the “best” classical algorithms. However, this is still
an important step toward quantum advantage for QAOA.

There also exist powerful heuristic solvers [30,31], which
do not provide any guaranteed performance, but are designed
to perform as well on typical graphs. For example, we use
the Gurobi algorithm [30] to exactly solve 3-regular graphs of
sizes up to 256, which corresponds to an approximation ratio
of 1. Nevertheless, there is still a chance that for a particular
graph a heuristic solver will perform extremely poorly. Since
the fixed angle QAOA provides guaranteed performance, we
focus on comparing it with classical algorithms that also pro-
vide such guarantees.

We observe that the performance guarantee as a function
of p appears to grow slower as p increases. However, for large
p, the performance guarantee must converge to a finite value
�0.9351 due to indistinguishability [12]. For any girth g, there
exist 3r graphs that have a cut fraction of at most 0.9351 [32].
Such graphs have high girth and so is constructed only of
the tree subgraph. The approximation ratio is bounded from
above by 1 and so the value fp � 0.9351. This suggests that
guaranteed advantage may never occur, as the best classical
algorithms have a guarantee of 0.9326.

We also find that the performance guarantees for a larger
degree are smaller (Fig. 2) and scale as 1/

√
ν consistent with

a mean-field picture. This result suggests that, contrary to
common lore [11], low connectivity graphs may have better
performance than high connectivity graphs, at least in terms
of performance guarantees.

FIG. 3. Approximation ratio for an ensemble of all 4681 3-
regular graphs with �16 vertices. For each graph and depth, QAOA
is evaluated at the angles shown in Table I, then divided by the
optimal MaxCut value for the graph. The shaded region shows the ab-
solute range between the worst and the best approximation ratios of
the ensemble. The bottom line shows the guarantee for any 3-regular
graphs. This plot is numerical evidence of the fixed angle conjecture,
which states that the approximation ratio for any 3-regular graph
evaluated at fixed angles is larger than the guarantee.

B. Heuristic performance

In Sec. III A, we provide strict performance guarantees for
regular graphs, which for p > 2 only assume the large loop
conjecture. However, QAOA is usually considered a heuristic
algorithm, where performance is surveyed over an ensemble
of graphs. While the guaranteed performance of QAOA may
be small, the worst-case bipartite graphs with no small cycles
are extremely atypical. The approximation ratio of any partic-
ular typical graph may be much larger than the guarantee.

Here we provide heuristic evidence for the fixed angle
conjecture, which posits that any graph evaluated at these
fixed angles have an approximation ratio larger than the guar-
antee. Further, we will show that typical performance does
not saturate performance guarantees and is competitive with
the GW algorithm even at fixed angles.

As an ensemble, we choose all 3-regular graphs with �16
vertices. There are 4681 such graphs [33,34]. For each graph,
we evaluate the expectation value FG

p (γ , β ) at the fixed angles
of Table I. Note that because the optimization step is bypassed,
the QAOA execution is very fast (<1 sec), as it requires only
one query to the quantum simulator. Using an exhaustive
search we find the exact MaxCut value CG

max to compute the
approximation ratio CG

p . Data for this ensemble of graphs are
shown in Fig. 3. It is clear that the minimum approximation
ratio, representing the worst case over the ensemble, is always
greater than the performance guarantee. This is heuristic evi-
dence of the fixed angle conjecture: There are no graphs with
�16 vertices evaluated at these fixed angles, which are below
the worst-case guarantee. To prove the fixed angle conjecture
False, one needs simply to provide a 3-regular graph whose
approximation ratio is less than the guarantee.

Although rare, the worst-case in the ensemble may still
saturate the performance guarantee if the graph is bipartite
with no cycles �2p + 1, as can be seen for p = 1 and 2.
The smallest worst-case graph is a “cage” [35]. The smallest
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FIG. 4. Performance ratio as defined in Eq. (6) vs the classical
GW algorithm for the ensemble of all 4681 3-regular graphs with
�16 vertices. For each graph and depth, QAOA is evaluated at the
angles shown in Table I, then divided by the average approximation
ratio of solutions given by GW for the graph. The shaded region
shows the absolute range between the worst and the best performance
ratios of the ensemble. The dashed orange line corresponds to parity
between GW and QAOA. For p � 6, QAOA with fixed angles has
an average case advantage over the classical GW algorithm. Bot-
tom lines plot the average performance ratio over an ensemble of
32 graphs with N vertices, indicating a reduced but increasing with
p performance as a function of N .

worst-case p = 2 graph has 14 vertices, while the smallest
worst-case graph for p = 3 has 30 vertices. Such worst-case
graphs must be at least exponentially large in p to fit the
exponentially large tree subgraph; a p = 11 graph must have
at least 8190 vertices and more to satisfy the condition of
having no small cycles and bipartite. A minimal cage graph
is a Moore graph [36].

While quantum advantage in terms of performance guar-
antees occurs for p � 11, it is also interesting to check
performance in comparison to competing classical algorithms.
If the quality of the solution returned by a quantum algo-
rithm is larger than that returned by the competing classical
algorithm for a particular graph, then the quantum algorithm
has advantage over the particular classical algorithm for the
particular graph. This condition is parameterized by the per-
formance ratio

BG
p (γ , β ) = FG

p (γ , β ) /
〈
CG

cl

〉
, (6)

where 〈CG
cl 〉 is the average number of cut edges returned by

the classical algorithm, if the algorithm is nondeterministic. If
BG

p > 1, the quantum algorithm has advantage for the particu-
lar graph G, as it will return solutions that are better on average
than the classical algorithm. If 〈BG

p 〉 > 1, where 〈∗〉 indicates
the average over some graph ensemble {G}, then the algorithm
has an average case advantage over the graph ensemble. The
performance ratio is bounded from below by the performance
guarantee of the quantum algorithm and bounded from above
by the inverse performance guarantee of the classical algo-
rithm.

We evaluate the performance ratio over the same ensemble
of all 3-regular graphs with �16 vertices in Fig. 4. The QAOA
expectation value is evaluated at the fixed angles {γ , β}tree,

FIG. 5. Approximation ratio as a function of N and p. Each
point is the average over an ensemble of 32 3-regular graphs of N
vertices. The shaded region shows the absolute range between the
worst and the best approximation ratios of the ensemble. Average ap-
proximation ratios appear to slowly converge to some N-independent
value, as expected, and no graph violates the fixed angle conjecture
(dashed).

and the classical expectation value is evaluated using 100
queries of the GW algorithm [37]. For all p evaluated, there
exist graphs in the ensemble that do not have advantage (lower
edge of the shaded region). However, for p � 2 there exist
graphs in the ensemble that do have advantage (upper edge of
the shaded region); the only graph with advantage for p = 2
is the 10 vertex Peterson graph, which is the smallest graph of
girth 5. For p � 6, the QAOA at fixed angles has an average
case advantage over the ensemble of all graphs with �16
vertices.

While Fig. 4 suggests an average case advantage for p � 6,
there is the caveat that it may be a result of a particular choice
of small graphs in the ensemble. To strengthen the evidence of
fixed angle QAOA outperforming the classical GW algorithm,
we next evaluate the performance on larger graphs.

C. Heuristic performance for larger N

While these heuristic results are strong evidence of the
fixed angle conjecture and an optimization-free QAOA, the
argument is weakened by the fact that the ensemble is only
over small graphs. Here we strengthen the argument by evalu-
ating the approximation ratio at fixed angles over an ensemble
of graphs of increasing sizes N ∈ { 8, . . . , 256 }. While state-
vector evolution is infeasible for such exponentially large
Hilbert spaces, tensor network computation of expectation
values is still feasible, at least for p � 4. The size of subgraphs
is exponential with p and so the calculations are unfeasible for
larger p. Similarly, while brute enumeration of all solutions
is infeasible to compute the exact MaxCut value, we use the
industry-standard solver GUROBI [30] to find MaxCut values.
The solver still requires exponential time, but with a reduced
prefactor, enabling computation of exact MaxCut values for a
256 vertex graph in �20 sec.

Results for the approximation ratio of this ensemble are
shown in Fig. 5. For each size N , we choose 32 graphs as
a random subset of all 3-regular graphs with N vertices. For
each graph, we evaluate the expectation value FG

p (γ , β ) at the
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TABLE II. Comparing the approximation ratio of graphs evaluated at global optima vs fixed angles. Ensemble is all 4681 3-regular graphs
with �16 vertices. Rows 1 and 2 index the average approximation ratio of the ensemble, evaluated at fixed angles (1) vs globally optimal angles
(2). The average improvement of evaluating at optimal angles is, on average, very small, as indexed by row 3. Row 4 indexes the number of
graphs for which a gradient ascent initialized at the fixed angles finds some global optima for the graph. Row 5 is the average Euclidean
difference between the fixed angle and the gradient ascent optimized angles. For p = 1, this warm start finds the optima for every graph and
for p = 2 finds the optima for an overwhelming majority. These results indicate that these angles are very good for a majority of graphs, and
serve as a good initial guess for optimizers.

QAOA depth p p = 1 p = 2
Average approximation ratio evaluated at fixed angles 0.7754 0.8499
Average approximation ratio evaluated at optimal angles 0.7764 0.8522
Average difference between fixed and optimal AR 0.001016 0.002288
Global optima found from fixed angles 4681 / 4681 (100.00%) 4655 / 4681 (99.445%)
Euclidian distance between fixed and optimized 0.0175 0.0410

fixed angles of Table I using QTensor. For smaller N , the
approximation ratio is larger and, as N grows, converges to
some size-independent typical value. For all p and N chosen,
the approximation ratio of each graph in the ensemble is larger
than the guarantee, which further strengthens the fixed angle
conjecture. Similarly, results for the performance ratio of this
ensemble are shown in Fig. 4. For larger graphs, the perfor-
mance decreases but may converge to some size-independent
value. This is consistent with the fact that the GW algorithm
also has consistent performance across a range of graph sizes.
Due to this decrease in performance, average-case advantage
for large graphs may occur for slightly larger p, although the
crossover is yet to be determined.

The decrease in approximation ratio as function of N is
expected. For p = 1, the QAOA is only sensitive to graph
structure within three steps and ultimately only “sees” cycles
of size 3 in the graph. The fraction of edges which participates
in a cycle of size 3 is asymptotically zero for N → ∞ [38]
and so for large N , the only subgraph of a typical graph is the
tree subgraph and is close to worst case. Such a typical graph
would saturate the performance guarantee if it was bipartite;
however, bipartite graphs are atypical [39]. Thus, the average
approximation ratio for large N is the performance guarantee
divided by the average fraction of MaxCut edges cut, which
we observe to converge to 0.91 as N grows [40]. A similar
argument holds for larger p, except with a sensitivity to larger
cycles. The fraction of edges that participate in a cycle of a
fixed size approaches zero with N → ∞, with logarithmically
slower convergence for large cycles [38]. Consequentially,
the average approximation ratios also converge to asymptotic
values although logarithmically slower for larger p.

D. Fixed angles vs global optima

While the fixed angle conjecture states that fixed angles
will have good performance, as the approximation ratio must
be above a reasonably large guarantee, it is interesting to
compare fixed angles to global maxima. How close are these
fixed angles to optimal angles?

To investigate the relative performance of these fixed an-
gles vs global maxima, we compute their global optima for
the ensemble of all 3-regular graphs with N � 16 and p � 2.
These optima are found via the same multistart gradient ascent
procedure of Section II.

Heuristic results comparing the approximation ratios of the
global maxima vs fixed angles are shown in Table II. On
average (rows 1–3), the difference in the approximation ratio
between global optimum and that evaluated at fixed angles is
less than 0.003, at least over all small graphs. These values
indicate that the fixed angles are extremely close to optimal.
This suggests that using these fixed angles can allow QAOA
to bypass the variational optimization step by simply evalu-
ating a regular graph at these precomputed angles and get an
approximation ratio which is almost the same as the global
optimum.

That these precomputed angles are very close to optimal
is not a priori obvious. However, this phenomenon has been
heuristically observed before as the transfer of parameters
[6–8], which observes that optimal parameters for one graph
are good for other graphs in the same class. These fixed
angle results are potentially an underlying explanation for this
observation: Optimal angles for an ensemble of graphs may
concentrate in a small region of parameter space around these
fixed angles.

This conjecture about parameter concentration can be
heuristically checked by checking if the fixed angles are close
to global optima. Note that this task is nontrivial: Both optimal
angles and fixed angles are degenerate (see, for example,
Ref. [5], Table 1), which excludes evaluating closeness by
Euclidean distance between particular optima. Instead, we use
the fixed angles as a warm start for the gradient ascent vari-
ational optimization procedure. If the fixed angles are in the
same basin of attraction as a global optimum, the optimization
returns the global optima and the fixed angles are “close.”
The probability that this occurs is indexed in Table II. For
a vast majority of graphs in the small ensemble, the warm
start gradient ascent optimization finds the global maximum
(row 4). Additionally, the gradient ascent procedure changes
the parameters very little. As shown in row 5, the Euclidean
distance between the optimized angles and the initial point
is usually very small (in units of π ). These results suggest
that using these fixed angles as an initial guess may speed up
the optimization, and that optimization does not give a lot of
improvement.

The observation of gradient ascent achieving little extends
to larger p. To show this, we analyze a subensemble of 200
random graphs drawn from the ensemble of 3-regular graphs
with 16 vertices. We find that the average improvement be-
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tween fixed angles and the gradient ascent warm started from
fixed angles is 0.008233 for p = 11 (e.g., extending row 3 of
Table II) and less for smaller p. This implies that for regular
graphs, the improvement is typically so marginal (<10−2) that
a warm start optimization procedure may not be necessary.
However, it may be an interesting use of these fixed angles to
warm start optimization for other classes of problems, such as
weighted or general connectivity MaxCut graphs, or general
QUBO problems.

The fact that fixed angles are so close to global optima,
at least for small p and graphs, suggests that we can com-
pletely bypass the variational optimization step of QAOA for
MaxCut on regular graphs. Instead of having a variational
optimization step, one may pre-compute a fixed circuit with
the objective function set by the graph and fixed angles from
Table I chosen for a particular connectivity and p. In par-
ticular, this may yield a significant speedup in computation:
Optimization requires many repetitions of querying various
points in parameter space to compute low-noise expecta-
tion values of the objective function. In opposition, using
fixed angles may yield close to optimal bitstrings even if
the quantum device is only queried a few times [8], which
may be a factor of 100–1000× speedup and enable real-time
solutions.

IV. CONCLUSION

In this work, we provide numerical evidence for the fixed
angle conjecture of Ref. [5], which states that any graph eval-
uated at fixed angles will have an approximation ratio larger
than the guarantee. This conjecture has the interesting impli-
cation that, for regular graphs of fixed degree and constant
edge weight, there is a set of angles that are “universally good”
for any graph in that they may not be global optima but still
guarantee good performance.

This evidence was provided by numerical simulation of
large graphs using tensor networks for p < 12. Through sim-
ulation of worst-case graphs, which under the large loop
conjecture have no small cycles, we compute the fixed angles
that serve as the universally good parameters for any regular
graph of connectivity <12 and constant edge weight. The
expectation value of these graphs serves as a performance
guarantee for the QAOA and are provided, along with angles,
in Table I and as a supplemental JSON file [27].

For p � 11, the performance guarantee for QAOA on
3-regular graphs is larger than the guarantee of the GW
algorithm, the best general-purpose MaxCut solver with a
performance guarantee. This is a major step toward quantum
advantage [1]. However, there exist algorithms that are more
focused and provide better performance than GW, both guar-
anteed and heuristic.

As numerical evidence of the fixed angle conjecture, we
evaluate the approximation ratio at fixed angles for all 3-
regular graphs with �16 vertices. We observe that no instance
violates the performance guarantee, which proves that the
fixed angle conjecture is True on all small graphs with �16
vertices and provides heuristic evidence that the conjecture is
True for all 3-regular graphs.

Additionally, we observe that the fixed angles are usu-
ally very close to global optima, with the typical difference
between the fixed angle approximation ratio and the global
approximation ratio being <0.003 for p = 2, and ∼0.08 for
p = 11. This result is above and beyond the fixed angle con-
jecture and removes the need for variational optimization by
providing universal precomputed angles of Table I. Similarly,
we observe with high likelihood that the fixed angles are
usually “close” to global optima in that they are in the same
basin of attraction. This may explain the previously observed
phenomena of transfer of parameters [6–8], where good an-
gles for one graph are good for others, because most graphs
optimal angles are “close” to these fixed angles.

It is a curious fact that the optimal fixed angles look
smooth, e.g., counterdiabatic [4,41]. In conjunction with the
observation that global optima are very close to these fixed
angles, it suggests that for a vast majority of graphs, smooth
angles (under symmetry transformations in the parameter
space of degenerate optima) may be optimal. This raises an
interesting question: When are globally optimal angles adia-
batic and smooth vs non-adiabatic and nonsmooth?

In conclusion, we show that there is extra structure in
the optimization landscape among ensembles of graphs, with
fixed angles in parameter space being universally good among
graphs. These fixed angles may allow QAOA implementations
to bypass the optimization step and simply query one set of
angles, speeding computation by potentially orders of magni-
tude. However, these results are limited in scope: The graphs
must be d-regular, with fixed weights of +1 on every edge.
An interesting future direction may be to evaluate fixed angle
conjectures on more general graphs or problems.

While there are limits on graph degree and p for which
we are able to classically optimize the γ , β parameters, these
results enable a single-shot QAOA on specific graphs. The
power of QAOA may then reside only in the sampling capa-
bilities of the quantum device.
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