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Shadow tomography based on informationally complete positive operator-valued measure
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Recently introduced shadow tomography protocols use “classical shadows” of quantum states to predict many
target functions of an unknown quantum state. Unlike full quantum state tomography, shadow tomography does
not insist on accurate recovery of the density matrix for high rank mixed states. Yet, such a protocol makes
multiple accurate predictions with high confidence, based on a moderate number of quantum measurements.
One particular influential algorithm, proposed by Huang et al. [Huang, Kueng, and Preskill, Nat. Phys. 16, 1050
(2020)], requires additional circuits for performing certain random unitary transformations. In this paper, we
avoid these transformations but employ an arbitrary informationally complete positive operator-valued measure
and show that such a procedure can compute k-bit correlation functions for quantum states reliably. We also
show that, for this application, we do not need the median of means procedure of Huang et al. Finally, we
discuss the contrast between the computation of correlation functions and fidelity of reconstruction of low rank
density matrices.
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I. INTRODUCTION

Recent advances in quantum information processing of-
ten require characterizing quantum states prepared during
various stages of a procedure. As a result, the problem of
characterizing a quantum state, more specifically, a density
matrix, from measurements on an ensemble of identical states,
known as quantum state tomography, has seen a surge of
interest [1–3]. One of the key challenges is that, for n-qubit
quantum systems, the density matrix is of size 2n × 2n. As
the number of qubits become large, inferring the density
matrix from a limited number of measurements becomes
difficult.

Can we get by without fully characterizing the quantum
state, but by constructing an approximate classical description
that predicts many different functions of the state accurately?
Shadow tomography [4] precisely aims to do this, namely,
predict a power-law number of observations in number of
qubits, n, from O(n) copies of the density matrix ρ. This
idea was taken further by Huang et al. [2], who have con-
structed such a description of low sample complexity via
classical shadows (ρ̂), related to states without any entan-
glement in the appropriate basis, corresponding to each copy
of ρ.

Quantum measurement requires specifying a set of positive
operator-valued measures (POVMs) [5], which is a general-
ization of a complete set of projection operators. The work
by Huang et al. [2] involves measurements via projection
operators. Since projection operators are not informationally
complete (see Sec. II), Huang et al. employ a set of random
unitary transformations before taking measurements. In this
paper, we directly employ a complete or overcomplete POVM
system and perform shadow tomography. We also gain some
insight into how the choice of POVM affects the efficiency of
the method.

II. GENERALIZED MEASUREMENTS

A projective measurement is described by an observ-
able, A, a Hermitian operator on the state space of the
system being observed. The observable has a spectral de-
composition, A = ∑

a aPa, where Pa is the projector onto
the eigenspace of A with eigenvalue a. The possible out-
comes of the measurement corresponding to the eigenvalues,
a, of the observable and the outcome probability are p(a) =
〈ψ |Pa|ψ〉. Projection valued measures (PVMs) are a special
case of general measurements, where the measurement op-
erators are Hermitian and orthogonal projectors. A set of
POVMs [5] forms a generalization of PVMs. The index a in
the POVM element Ma refers to the measurement outcomes
that may occur in the experiment. The probability of the
measurement outcome is given by p(a) = tr(ρMa) and the

postmeasurement density matrix can be written as KaρK†
a

tr(KaρK†
a )

,
where {Ka} are the Kraus operators [5] corresponding to
the POVM, with K†

a Ka = Ma. The operators {Ma} form a
complete set of Hermitian non-negative operators. Namely,
they satisfy Hermiticity, Ma = M†

a ; positivity, 〈ψ |Ma|ψ〉 � 0,
for any vector |ψ〉; and completeness,

∑
a Ma = I. Such a

POVM could be thought of as a partition of unity by non-
negative operators.

Informational completeness

The density matrix, ρ, is a Hermitian and unit trace opera-
tor. If we have a d-dimensional system, ρ will be a complex
square matrix represented by d2 − 1 real parameters. The op-
erator space for this d-dimensional operator will be however
spanned by d2 linearly independent basis operators. Note that
PVMs only have d projection operators. They are capable
of providing only the diagonal elements of ρ in a particular
orthonormal basis, leaving out potential entanglement-related
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information from the off-diagonal elements. Thus, PVMs are
examples of POVMs that are informationally undercomplete.

If the number of outcomes k satisfies k � d2, and we can
form exactly d2 linearly independent operators by linearly
combining the set of POVMs, such POVMs will be called
informationally complete (IC). However, in the most common
terminology, informationally complete actually refers to the
minimally complete POVM (k = d2). If we proceed to re-
construct the density matrix for an informationally complete
POVM, we can expand ρ as

ρ =
d2−1∑
a=0

ξaMa. (1)

If k = d2 we have an informationally complete (minimally
complete) basis set. However, if we have k > d2 ⇒ it forms
an informationally overcomplete set [6]. IC POVMs have
been used for entanglement detection [7] and for individual
elements of the density matrix [8].

We start out by giving the example of a rather simple
overcomplete set in the single-qubit Hilbert space, MPauli-6.
The Pauli-6 POVM has six outcomes MPauli-6 = {M0 =
1
3 × |0〉〈0|0, M1 = 1

3 × |1〉〈1|1, M2 = 1
3 × |+〉〈+|+, M3 =

1
3 × |−〉〈−|−, M4 = 1

3 × |l〉〈l|l, M5 = 1
3 × |r〉〈r|r where

{|0〉, |1〉}, {|+〉, |−〉}, and {|r〉, |l〉} stand for the eigenbases
of the Pauli operators σ z, σ x, and σ y, respectively.
Experimentally, it can be implemented directly by first
randomly choosing x, y, or z, and then measuring the
respective Pauli operator, which justifies the 1/3 factor.
However, other probabilities will also be valid for this
example of an overcomplete POVM.

Now, let us give an example of a minimally
complete POVM, the Pauli-4 POVM: MPauli−4 = {M0 =
1
3 × |0〉〈0|0, M1 = 1

3 × |+〉〈+|+, M2 = 1
3 × |l〉〈l|l, M3 =

1
3 × (|1〉〈1|1 + |−〉〈−|− + |r〉〈r|r)}. As a sanity check for the
completeness relation, one can see

∑
a Ma = 1/3(|0〉〈0|0 +

|1〉〈1|1 + |+〉〈+|+ + |−〉〈−|− + |l〉〈l|l + |r〉〈r|r) = I. The
experimental procedure will be similar to that of the Pauli-6
POVM, with an additional step where three different
outcomes of Pauli-6 are identified as the single element
of Pauli-4, M3. Thus, this set contains an element which is not
a rank-1 projector.

The third one is the tetrahedral POVM Mtetra = {Ma =
1
4 (I + sa · σ )}a∈{0,1,2,3}, the outcomes of which correspond to
subnormalized rank-1 projectors along the directions s0 =
(0, 0, 1), s1 = ( 2

√
2

3 , 0,− 1
3 ), s2 = (−

√
2

3 ,

√
2
3 ,− 1

3 ), and s3 =
(−

√
2

3 ,−
√

2
3 ,− 1

3 ) in the Bloch sphere. Since the tetrahe-
dron formed is regular, it forms an example of a symmetric
informationally complete POVM. The experimental imple-
mentation of M tetra relies on Neumark’s dilation theorem.
The theorem implies that Mtetra can be physically realized by
coupling the system qubit to an ancillary qubit and performing
a von Neumann measurement on the two qubits (see [1,9] for
explicit constructions).

III. CLASSICAL SHADOWS WITH POVMs

Aaronson introduced the idea of “pretty good tomography”
[10], with the focus on predicting many observations accu-
rately, based on N copies of the density matrix. This idea
parallels the “learnability” of quantum states in a probably ap-
proximately correct sense [11]. Proceeding along this line, he
later introduced the concept of shadow tomography [4], where
from N copies of the density matrix ρ, we want to predict L
different linear target functions tr(O1ρ), tr(O2ρ). . . . tr(OLρ)
up to an additive error less than ε.

Huang et al. [2] build their methods on the idea of shadow
tomography [4]. They repeatedly perform a measurement
procedure, i.e., apply a random unitary to rotate the state
(ρ �→ UρU †) and perform a computational-basis measure-
ment. Then, after the measurement, they apply the inverse of
U to the resulting computational basis state. This procedure
collapses ρ to a snapshot U †|b̂〉〈b̂|U , producing a quantum
channel M, which depends on the ensemble of (random)
unitary transformations.

If the collection of unitaries is defined to be tomographi-
cally complete, namely, if the condition, i.e., for each σ 	= ρ

there exist U ∈ U and b such that 〈b|UσU †|b〉 	= 〈b|UρU †|b〉,
is met, then M—viewed as a linear map—has a unique in-
verse M−1. Huang et al. [2] set

ρ̂ = M−1(U †|b̂〉〈b̂|U ) (classical shadow). (2)

Although the inverted channel M−1 is not physical (it
is not completely positive), one can still apply M−1 to the
(classically stored) measurement outcome U †|b̂〉〈b̂|U in a
completely classical postprocessing step. Even if an individual
sample of ρ̂ is not a density matrix, the expectation of ρ̂’s is
the original density matrix ρ. One can use this property to get
a good prediction of measurements performed on ρ.

If, instead of working with the computational basis mea-
surements, we decide to use an IC POVM (Sec. II), we can
avoid dealing with particular random unitary ensembles. The
only thing we need to make sure of is that the resulting
channel M is invertible.

A. POVMs for the the n-qubit system

From single qubit POVMs {Ma}, we introduce kn oper-
ators by taking tensor products and form POVMs for the
n-qubit system: M = {Ma1 ⊗ Ma2 ⊗ ... ⊗ Man}a1,...an

. The out-
comes of this measurements in this system are of the form
�a = (a1, a2, ....an). Now, we discuss how to form shadows
from such an observation.

B. A synthetic measurement channel

Here is our scheme for generating a pure state in re-
sponse to a measurement, a scheme that generalizes the
projective-measurement-induced collapse in Ref. [2]. Let
the POVM elements be diagonalized as follows: Ma =∑

i λ
a
i |i, a〉〈i, a|i, a. We have λa

i � 0, ∀i, a, since Ma  0. The
probability of outcome a is given as

p(a) = tr(ρMa). (3)

Each time we perform a measurement and get an outcome a,
we construct a pure output state |i, a〉〈i, a|i, a with probability
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p(i|a). We will discuss the exact form of p(i|a) shortly. This
process is a quantum channel. Although this is a synthetic
channel, we will refer to it as the measurement channel, in
analogy with the case where {Ma} are projections. Thus, the
measurement channel, for a single qubit, is given by

ρ̃ = M(ρ) =
∑

a

p(a)
∑

i

p(i|a)|i, a〉〈i, a|i, a. (4)

For simplicity, in our paper, we will take this probability
p(i|a) to be concentrated on the leading eigenvectors of Ma.
More precisely, if we have a set of orthogonal states associated
with the highest eigenvalue of Ma, we will choose among them
with equal probability. When the highest eigenvalue of each
Ma is nondegenerate, which is the case for the POVMs we
will use, we represent the leading eigenvector by |ψa〉. Here,
the measurement channel is just

ρ̃ = M(ρ) =
∑

a

tr(ρMa)|ψa〉〈ψa|ψa. (5)

This is one of many schemes that could be used. Our algo-
rithm works, as long as M remains invertible. For a discussion
of how the nature of the probability distribution p(i|a) affects
the performance of the method, see Appendix 3 for more
detail.

In the formalism developed in Ref. [2], the channel and
its inversion were related to the ensemble of (random) uni-
tary transformations (e.g., the Clifford unitary ensemble). The
condition of tomographical completeness depended on the
existence of a unitary transformation in the chosen ensemble
to distinguish different density matrices [2]. However, with
our reformulation of the measurement channel, we need to
use an informationally complete set of POVMs (e.g., Pauli-6,
see Sec. II).

In the example of a single qubit measured using the six pro-
jectors coming from the three Pauli matrices, i.e., the Pauli-6
POVM, the channel and its inverse can be explicitly com-
puted. Similar to the classical shadows built out of random
Pauli measurements [2], we get a depolarizing channel, i.e.,
a channel that contracts a pure state (lying on the surface of
the Bloch sphere) towards the “center” of the Bloch sphere,
namely, the maximally mixed state ρ = I2/2. The inverse (a
nonphysical map) can be computed, which can map a point
inside the Bloch ball to the outside.

C. Multiqubit system

For local measurements (not necessarily the depolarizing
channel), the inverse channel for the n-qubit system can be
written as

M−1
n =

n⊗
j=1

M−1
1 . (6)

We can now reformulate the shadows with our overcomplete
POVM set and its corresponding channel. For instance, when
we work with the Pauli-6 POVM, we will get

ρ̂ =
n⊗

j=1

M−1
1 (|ψa, j〉〈ψa, j |ψa, j ) (classical shadow), (7)

FIG. 1. The convex region in the figure is the set of admissible
density matrices. We schematically describe the process of forming
classical shadows from N copies of ρ. For the ith observation with
outcome a, the inverse of the channel, M−1, acts on the projectors
|ψa〉〈ψa| to construct the shadow ρ̂ i. The sample mean of the shadows
cast by ρ, i.e., 1

N

∑
i ρ̂

i, fluctuates around the true ρ and could
be outside the convex region. However, while measuring L k-local
observables [2] �O = (O1, . . . OL ), the convergence of the sample
averages �̂o(N ) to the true expected values can be guaranteed with
a number of samples O(log L). See Theorem 1.

where M−1
1 (X ) = 3X − tr(X )I (see Appendix 2). Note that

the 2n × 2n matrix ρ̂ need not be constructed explicitly. We
just need to store |ψa, j〉 for each qubit j.

Since the inverted channel M−1 is not physical (it is not
completely positive), the ρ̂ in Eq. (7) need not be physical.
In other words, there is no guarantee the output of the inverse
channel is positive semidefinite. See Fig. 1 for a schematic
description. We recover the true density matrix only in expec-
tation. However, if the shadow matrix is forced to be positive
semidefinite, we can see how the observations such as fidelity
change (see Sec. IV C).

D. Noisy shadow

Earlier, we defined our measurement channel, Eq. (5).
However, we can also let each of our qubits pass through a
previously characterized noise channel E1 and then take the
measurements [12]. The combined channel ME,1 is given by

ρ̃ = ME,1(ρ) =
∑

a

tr(E1(ρ)Ma)|ψa〉〈ψa|ψa. (8)

We used IC POVMs to ensure that the measurement channel
was invertible. As long as the action of the noise channel E1

itself is invertible, ME,1 is also invertible. We will work with
an n-qubit noise channel of the form En = ⊗n

j=1 E1. Thus,
we can still write the inverse of the new noisy measurement
channel for the n-qubit system in terms of the single-qubit
inverse shadow channel M−1

E,1:

M−1
E,n =

n⊗
j=1

M−1
E,1. (9)
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If we choose an amplitude damping channel with damping
parameter γ , one of the Kraus operator representations can be
given as

EAD(ρ) = K0ρK†
0 + K1ρK†

1 , (10)

where K0 = [1 0
0

√
(1 − γ )], K1 = [0

√
γ

0 0 ].

The inverse of the noisy shadow channel M−1
AD(X ) is given

in Eq. (A6). Its action on I and σx,y,z is given as M−1
AD(I) =

I − γ

1−γ
σz, M−1

AD(σx,y) = 3√
1−γ

σx,y, and M−1
AD(σz ) = 3

1−γ
σz.

See Appendix 2 for a general description on the inversion of
a noisy shadow channel. Here, we will construct the shadows
(noisy) with the following definition:

ρ̂ =
n⊗

j=1

M−1
AD(|ψa, j〉〈ψa, j |ψa, j ). (11)

E. Predicting linear functions with classical shadows

Using the statistical properties of a single shadow, we can
predict linear functions in the unknown state ρ as

o = tr(Oρ) = E[ô], where ô = tr(Oρ̂). (12)

In practice, using an array of shadows (i.e., N snapshots), we
can estimate the expectation o. Given an array of N indepen-
dent classical snapshots [each defined as in Eq. (7)],

S(ρ; N ) = {ρ̂ (1), ρ̂ (1), . . . , ρ̂ (N )}. (13)

The sample mean is ō = 1
N

∑N
j=1 tr(Oρ̂ ( j) ). This sample mean

will fluctuate around the true prediction, with E(ō) = o.

F. The algorithm and the guarantee of performance

We want to predict the expected value of multiple k-local
observables O1, . . . OL based on shadows using the two algo-
rithms below.

Algorithm 1: Generating Shadows with POVMs.

Input: IC POVM with k outcomes, ρ ∈ C2n

(N copies of the unknown density matrix)
1 Compute the measurement channel M1 and its inverse M−1

1

for the chosen IC POVM. (See Appendix 2);
2 for i = 1, . . . N do
3 Perform measurements using the POVM elements Ma to

get outcomes aji ∈ {1, . . . , k};
4 Construct shadows ρ̂i = ⊗n

j=1 M−1
1 (|ψa ji 〉〈ψa ji |ψa ji ) (See

Sec. III B and Appendix 3 for the general version)
5 end

Output: ρ̂1, ρ̂2 . . . ρ̂N

Algorithm 2: Predicting many properties using mean as an
estimate.

Input: A POVM set, N copies of unknown density matrix ρ, L
different k-local Pauli observables O1, O2, . . . OL and error
parameters ε, δ

1 Find bounds on the local observables B({O},M). (See
Appendix 4 for details).

2 Using Algorithm I, collect N � B({O},M) log( 2L
δ

)

2ε2 shadows.
3 Compute means ôi = 1

N

∑N
j=1 tr(Oiρ̂

( j) )
Output: ō1, ō2 . . . ōL

The existence of the bound is guaranteed by the following
theorem.

Theorem 1. With N � B({O},M) log( 2L
δ

)
2ε2 samples of

ρ, we can predict L different linear target functions
tr(O1ρ), tr(O2ρ), . . . , tr(OLρ) up to additive error ε with
maximum failure probability δ.

The constant bound B({O},M) will depend on the mea-
surement channel M (which depends on the choice of POVM)
and on the operator set {O} = {O1, O2, .. , OL}. The important
thing is that B({O},M is bounded for so-called k-local oper-
ators, as defined in Ref. [2].

For instance, if we choose Pauli-6, the bound is given as
ô( j)

i ∈ [−3k, 3k], in which case B(k-local, Pauli-6) = 4 × 9k

(see Appendix 4). See Sec. III B for the algorithm, including
the construction of the measurement channel. In the Appendix
section on sample complexity (Appendix 4), the details of the
proof are provided.

IV. NUMERICAL RESULTS

For many quantum systems in condensed-matter physics,
one of the objects of interest is the two-point correlation
function. Two-point correlators could be efficiently esti-
mated using classical shadows based on the Pauli-6 POVM.
The predictions of two-point functions 〈σ Z

i σ Z
j 〉 for the

Greenberger-Horne-Zeilinger (GHZ) states with varying de-
gree of noise are shown in Fig. 2. For GHZ states, two-point
correlations between any two sites are equivalent.

We can write the action of the single-qubit depolarizing
noise [5] on an arbitrary ρ written in the Bloch sphere repre-
sentation:

ρ ′ = (
1 − 4

3 p
)
ρ + 4

3 pI. (14)

Applying this channel to every qubit, we generate a noisy
GHZ state [13] from a pure one. The expected two-point
correlations 〈σ Z

i σ Z
j 〉 vary as (1 − 4p/3)2 with the noise pa-

rameter p.
While predicting multiple 1, . . . , L, two-point, or k-point

correlations, we monitor the maximum possible error among
all the observables. This measure of error is expected to go
down with increasing number of samples. This scaling, as
seen in Fig. 3, gives us some idea of the appropriateness of
a POVM set for a particular task.
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FIG. 2. Prediction of two-point correlations, 〈σ z
0 σ z

n−2〉, for noisy
n-qubit GHZ target states using classical shadows for Pauli-6, with
one standard deviation band. The standard deviations are estimated
over ten independent runs, each of which involved N = 5000 sam-
ples. The theoretical error bound for this two-point correlation is
0.3115, for a failure probability δ = 0.1. This bound is much larger
than the observed error. See Appendix 4 for a discussion. The param-
eter p, representing the local depolarizing noise strength, is described
in Eq. (14).

(a)

(b)

FIG. 3. Maximum error in two-point correlators. (a) Scaling of
maximum error among all two-point correlations in a 30 qubit pure
GHZ state, plotted against different numbers of samples for different
choices of POVMs: Pauli-6, Pauli-4, and tetrahedral. (b) Scaling of
maximum error for all spin-down states with Pauli-4 and Pauli-6
POVM. Pauli-4 ensures a much better scaling. See Appendix 4 for
details.

FIG. 4. Two-point functions 〈σ z
0 σ z

i 〉 for ground states of the an-
tiferromagnetic one-dimensional (1D) transverse field Ising model
using Pauli-6 POVM based shadows and the true value, as computed
using matrix product states. The correlations are plotted against the
lattice separation. The lattice size is 30 and the number of samples
used is 5000. (a) Critical (J = h = 1) antiferromagnetic 1D TFIM,
showing signatures of power-law correlation. (b) Ordered state (J >

h, J = 1, h = 0.5), where correlation saturates with increasing lat-
tice separation. (c) The paramagnetic state (J < h, J = 1, h = 0.5),
displaying exponential decay of the correlations.

A. One-dimensional transverse field Ising model

We take the antiferromagnetic [J > 0 in Eq. (15)] trans-
verse field Ising model in one dimension:

H = J
∑
〈i j〉

σ z
i σ z

j + h
∑

i

σ x. (15)

The quantum critical point at h/J = 1 will be exhibited
by the power-law decay of the correlations. See Fig. 4 for
results in the three regimes: critical, ordered, and param-
agnetic. The exact numerical correlations are plotted using
the matrix product representations of the ground states [14].
in Refs. [1,15], POVM-based measurements, followed by a
neural-network-centric approach for constructing the ground
state and computing the resulting two-point correlations, were
presented for the same system.

B. One-dimensional disordered Heisenberg model

The Hamiltonian for the one-dimensional (1D) disordered
Heisenberg model is given by

Ĥ = −1

2

N∑
j=1

(
Jx

j σ
x
j σ

x
j+1 + Jy

j σ
y
j σ

y
j+1 + Jz

j σ
z
j σ

z
j+1 + hσ z

j

)
.

(16)

The properties of spin- 1
2 antiferromagnetic chains with vari-

ous types of random exchange coupling have been studied in
an exact decimation renormalization-group (strong-disorder)
scheme, some of which involve generalization or modifica-
tions of the scheme introduced by Dasgupta and Ma [16]. The
numerical studies done by Bhatt and Lee [17] indicate that the
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FIG. 5. Two-point functions 〈σ z
i σ z

j 〉 for ground states of a disor-
dered 1D Heisenberg spin chain with length 10 and open boundary
conditions. (a) Exact diagonalization results. (b) Results from using
Pauli-6 POVM based shadows using 5000 samples.

system could be in a random-singlet phase. In such a phase,
each spin is paired with another spin that may be far away
on the lattice. We perform exact diagonalization, obtain the
ground state, and then compute two-point quantum correla-
tions. The two-dimensional plot of the correlation matrix will
also inform us about the locations of the singlet formations in
the chain. We can also reconstruct these behaviors of a ground
state corresponding to one particular disorder realization of
the XXZ Heisenberg model Eq. (16) (Jx = Jy = 2Jz, h = 0)
with sufficient number of shadows. See Fig. 5, where the
singlet formations are indicated by the schematics drawn on
the axes of the matrix visualization plots and the results from
the two methods are compared.

C. Exploring quantum fidelity

In our approach to construct shadows using local POVMs,
we ensure prediction of local observables. However, we can
also explore nonlocal observables such as fidelity. Using the
sample mean as an estimator, we can construct a hypothesis
state (σ ):

σ = 1

N

N∑
i

ρ̂. (17)

When our target state is pure, say |ψ〉〈ψ |ψ , and we have
a physical density matrix σ̂ , we can express quantum fidelity
between the two states as a linear prediction of an observable
O = |ψ〉〈ψ |ψ . In other words, the quantum fidelity can be
written as

F = tr(σ̂O) = 〈ψ |σ̂ |ψ〉.
On the other hand, the measure tr(σO) is equivalent to

fidelity, only when σ is a physical density matrix, i.e., when
σ  0. That property is likely to hold only when the number
of samples is large. We expect tr(σO) to fluctuate around its
mean value 1, as seen in Fig. 6, even when the typical σ is
not a physical state, meaning it is not positive semidefinite.
Also, the fluctuation around this mean keeps on growing expo-
nentially with the number of qubits (see Fig. 6). This growth
cannot be dealt with even by the median of means (MoM)
procedure [2] within the shadow formalism. Numerical com-
putations using MoM also show no advantage over sample
means here.

FIG. 6. Quantum fidelity predicted for the pure GHZ state us-
ing the sample mean of shadows constructed on 104 samples. The
shaded regions are the standard deviation over ten independent runs.
The inset shows the scaling of the variance of fidelity which grows
exponentially with number of qubits.

Hence, we need a procedure to find the “closest” physical
state to σ . The trace condition tr(σ̂ ) = 1 ensures that, once
σ̂ � 0, some of the eigenvalues will be greater than 1 to
compensate for the negative eigenvalues. Thus, we cannot
just throw away the negative eigenvalues, as would be done
for projecting a Hermitian matrix to the space of positive
semidefinite matrices.

We define the the convex set of physical states to be C =
{ρ|ρ  0, tr(ρ) = 1}. Our nonlinear projection to C is


C (σ ) = arg min
ρ∈C

tr[(ρ − σ )2]. (18)

We achieve this by diagonalizing σ , projecting the eigen-
values λi of σ onto a canonical simplex � = {(λp

1, . . . , λ
p
D) |

λ
p
i � 0,

∑D
i=1 λ

p
i = 1}, using the recipe from [18], while leav-

ing the eigenvectors untouched. Here, D = 2n where n is the
total number of qubits. The projected state is a biased estima-
tor. We can hope that the price paid by accepting some bias
comes with the benefit of reduced variance. This expectation
seems to be born out in Fig. 7. However, as the number of
qubits increases, the bias itself reduces fidelity. To compensate
for this effect, we need larger sample sizes (N). Figure 7
shows all these trends.

V. DISCUSSIONS

We provide an approach to predict expectations of local
observables without having to apply random unitary transfor-
mations, which sometimes require complex circuits of their
own and can become a practical bottleneck. We show that this
can rather be done using an IC POVM. For illustrations, we
show faithful reconstruction properties of low-energy states
coming from different many-body Hamiltonians relevant to
near-term applications of quantum devices. When we have ad-
ditional information about the possible noisy channels we also
adapt the shadow channel as a composition of the noise chan-
nel and the measurement channel. The invertibility becomes
straightforward in the proposed framework. We also comment
on why the mean as an estimator is sufficient throughout our
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FIG. 7. Quantum fidelity of the projected shadows (onto the
physical positive definite space) with the noiseless GHZ state. As we
increase the number of samples, from 103 to 104, the quantum fidelity
improves. The shaded regions indicate one-standard-deviation bands,
estimated over ten independent runs.

discussion. And as long as we are dealing with local ob-
servables, we can provide efficient sample complexity using
Hoeffding’s inequality directly.

We provide instances where the choice of POVM impacts
the sample complexity for predicting two-point correlators
in certain quantum states for fixed maximum error. We note
that the different POVMs work better for different states. It
is an exciting endeavor to understand which sets of POVM
would be ideal for different classes of quantum states and
observables.

Although an exploration, we attempt to reconstruct fidelity
using the locally built shadows and show that we cannot
benefit from median of means as an estimator, since vari-
ance of fidelity becomes exponential in number of qubits.
Additionally, when presented with few samples we raise the
issue of unphysical, i.e., not positive semidefinite, ρ̂ and then
provide a projection technique, similar to [19,20], to estimate
fidelity. Unfortunately, the estimator no longer remains un-
biased. Addressing this issue would require methods to deal
with nonlocal observables.

We did not provide an effective analog of the global Clif-
ford unitary transformation-based method in Ref. [2]. There
has been work which provides description of global alter-
natives using stabilizer states [20]. Whether there can be a
scheme based on such states that is competitive with the
classical shadows method [2] remains to be seen.

The use of generalized measurement to unambiguously
discriminate nonorthogonal states with lower failure prob-
ability is well known [5,21,22]. Efficient prediction of
expectations of local observables combined with the general-
ized measurement scheme to obtain the shadows can be used
as an optimal framework in the discrimination of nonorthogo-
nal states. It is a promising future direction of exploration.
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APPENDIX

1. A simple measurement channel

We can take the simple rank-1 Pauli-6 POVMs to see the
action of a measurement channel:

ρ̃ = M(ρ) =
∑

a

tr

(
1

2
(I + r · σ )Ma

)
|ψa〉〈ψa|ψa, (A1)

where we use the Bloch representation ρ = 1
2 (I + r · σ ).

The contribution of the first two POVM elements of Pauli-6
only gets contribution from I and rzσz, generating

tr
(

1
2 (I + rzσz )M0

)|0〉〈0|0 + tr
(

1
2 (I + rzσz )M1

)|1〉〈1|1.

Using M0 = 1
3 × |0〉〈0|0 and M1 = 1

3 × |1〉〈1|1 this expres-
sion becomes 1

6I + 1
3 rzσz Following similar steps for pairs

M2, M3 and M4, M5, we get that

M(ρ) = M
(

1
2 (I + r · σ )

) = 1
2

(
I + 1

3 r · σ
)
,

making M a depolarizing channel.

2. Inverse of the measurement channel

Given any single-qubit channel, the inverse can be eas-
ily computed using the Bloch-sphere representation. We can
write any two-dimensional (single-qubit) quantum operation
(X ) as X = (x0I + �r.�σ ). Any arbitrary trace-preserving quan-
tum operation is given as E (X ) = (x0I + �r ′.�σ ). The map

�r E−→ �r ′ is equivalent to

�r ′ = T �r + x0�c, Tα,β = 1
2 tr(σαE (σβ )). (A2)

The component of displacement (�c) is given as cα =
1
2 tr(σαE (I)). Also, {α, β} ∈ {1, 2, 3}. The affine map between
the Bloch sphere and itself is given by T , and its meaning is
understood better by doing a singular value decomposition,
i.e., T = O1DO′

2 where O1 and O2 are orthogonal matrices.
The singular values capture the deformation of the Bloch
sphere about its principal axes. A superoperator T̂4×4 can be
defined as

T̂

[
x0

�r
]

=
[

x0

�r ′

]
, T̂4×4 =

[
1 0
�c T3×3

]
. (A3)

Computing the inverse of the channel is equivalent to writing
(x0, �r) from (x0, �r ′), i.e., computing T̂ −1.

In the main text, the Pauli measurement channel (E = M1)
turns out to be a depolarizing channel, and its inverse that acts
on the local qubit is given as

M−1
1 (X ) = 3X − tr(X )I.

We take a more general example following our definition
of a measurement channel:

ρ̃ = M(ρ) =
∑

a

tr(ρMa)|ψa〉〈ψa|ψa.

If a particular POVM element is not rank 1, |ψa〉 can be taken
as the eigenvector corresponding to the highest eigenvalue
of Ma. For Pauli-4, except for M3 = 1

3 (|1〉〈1|1 + |−〉〈−|− +
|r〉〈r|r) = I, all other elements are rank 1. Since M3 is rank
2, when the outcome is 3, we take the eigenvector |t〉 cor-
responding to eigenvalue 1

2 (1 + 1√
3

) instead of the other
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corresponding to 1
2 (1 − 1√

3
). Rewriting Eq. (A2), we get

ρ̃ = M1(ρ) = tr(ρM0)|0〉〈0|0 + tr(ρM1)|+〉〈+|+
+ tr(ρM2)|l〉〈l|l + tr(ρM3)|t〉〈t |t . (A4)

The inverse of the channel can be written as

M−1
1 (X ) = 6X −

(
xs√

3
− x0(

√
3 − 1)

)( ∑
i

σα

)
− 5x0I,

x0 = tr(X )

2
, xs = 3

(
tr
(
X

( ∑
α σα

)) + (
√

3 − 1)x0
)

√
3 + 1

.

(A5)

When we are working with a known noise channel E , the in-
verse is given as T̂ −1

ME
= T̂ −1

E T̂ −1
M . If we choose an amplitude

damping channel with a damping parameter γ , the inverse can
be given as

M−1
E (X ) = 3

(
1 − 1

2 tr(Xσz )
)

√
(1 − γ )

X + 3tr(σzX )

2(1 − γ )
X

+
(

1

2
− 3

2
√

(1 − γ )

)
tr(X )I + γ tr(X )

2(γ − 1)
σz.

(A6)

3. More general schemes for the measurement channel

In Sec. III B, we provided a specific scheme for outputting
vectors for measurement outcomes a, coming from our set of
POVMs({Ma}). The probability of the outcome a is given as

p(a) = tr(ρMa). (A7)

For a more general scheme, each time we perform a mea-
surement and get an outcome a, the state “collapses” to
|i, a〉〈i, a|i, a with probability

p(i|a) = f
(
λa

i

)∑
j f

(
λa

j

) . (A8)

We choose f : R+ → R+ to be a monotonic function which
is defined over the eigenvalues of the POVM elements (R+
since Ma  0), i.e., Ma = ∑

i λ
a
i |i, a〉〈i, a|i, a, ∀i, λa

i � 0.
The function is nonzero for at least one value of λa

i for each
a, so that the denominator of the expression in Eq. (A8) is
nonzero.

As before, the measurement channel can be defined as

ρ̃ = M(ρ) =
∑

a

p(a)
∑

i

p(i|a)|i, a〉〈i, a|i, a. (A9)

One such function is f (λ) = λm. To be more precise, we
should think of

p(i|a) = lim
η→0+

(
λa

i + η
)m∑

j

(
λa

j + η
)m (A10)

to take care of the case where some λa
i ’s are zero. In the large

positive m limit, this particular choice is interesting since it is
closer to the projective measurement case, while making sure
we have an invertible map. This results in choosing the leading
eigenvector.

However, choosing the eigenvector corresponding to the
lowest eigenvector will also keep M invertible. This corre-
sponds to f (λ) = λm and taking m to be negative but with
a large absolute value. In fact, our computation, using the
lowest eigenvector, is as effective for shadow tomography
as choosing the leading eigenvector (data not shown). The
troublesome case is m = 0, where the information about the
original measurements gets lost and all eigenvectors are cho-
sen with equal probability.

To understand this phenomenon, we need to characterize
the statistical properties of our estimates. Let X be a matrix-
valued random variable. It takes the value M−1

1 (|i, a〉〈i, a|)
with probability tr(ρMa)p(i|a), as explained above. We know
that X̄ = E[X ] = ρ. Let O be an observable. We define the
corresponding estimated observable value to be tr(XO), which
is a random variable. Its expectation is the answer we are after:

E[tr(XO)] = tr(X̄O) = tr(ρO).

We would be interested in sampling fluctuations of this
quantity. The key metric to assess is the variance

Var[tr(XO)] = Var[tr((X − X̄ )O)]

= E[(tr((X − X̄ )O))2] since X̄ = E[X ].

Now, using the Cauchy-Schwarz inequality, applied to Hermi-
tian matrices, we can bound this variance as follows:

Var[tr((X − X̄ )O)] � E
[ ||X − X̄ ||2F

] ||O||2F ,

where the Frobenius norm ||.||F is defined as ||A||F =√
tr(AA†).
In absence of any prior information on the observable O,

we can still bound the variance by simply looking at the
statistics of X − X̄ . The role of function f can be better under-
stood by monitoring the quantity E[||X − X̄ ||2F ]. Of course,
this expectation depends upon the density matrix ρ. We need
to further take an average over an ensemble of ρ’s, to not
depend on the peculiarity of one particular state. We will call
this ρ ensemble averaged expectation, EρE[ ||X − X̄ ||2F ], the
average Frobenius norm square.

In particular, for a single qubit, we choose this ensemble
of ρ’s to consist of the six matrices { 1

2 (I ± σi )|i = 1, 2, 3}
with equal probability. Using the Pauli-4 POVM, the average
Frobenius norm square of the difference between a single
snapshot and the average, i.e., ρ, is plotted in Fig. 8 against
various choices of the parameter m, which defines the function
f (λ) = λm. Note that E[||X − X̄ ||2F ] = 7.085 is the lowest
value of the bound, attained for the eigenvector corresponding
to both the highest and the lowest eigenvalues.

It is in fact possible to perform shadow tomography for
other m choices as well, at the cost of bigger sampling noise
(data not shown). However, making no preferred choice, i.e.,
choosing i given a with equal probability, will lead to a non-
invertible measurement channel. In other words, the channel
M, thought of as a linear operator, develops a zero eigenvalue
at m = 0. When m is nonzero but small, this eigenvalue is
small as well. The variance bound is affected by eigenvalues
of M−1, and the small eigenvalue leads to large variances.
This behavior can be seen in Fig. 8, where the variance in-
creases rapidly near m = 0.
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FIG. 8. The average Frobenius norm square of the difference be-
tween a single snapshot and ρ, EρE[||X − X̄ ||2F ], against m [various
choices of the function f (λ) = λm].

4. Sample complexity

a. Variance of the estimate for a single observable

Given an array of N independent, classical snapshots [each
defined as Eq. (7)],

S(ρ; N ) = {ρ̂ (1), ρ̂ (1), . . . , ρ̂ (N )}. (A11)

The sample mean is ô = 1
N

∑N
j=1 tr(Oρ̂ ( j) ). The bound on

probability of deviation of the sample mean is given by
Chebyshev’s inequality:

Pr(|ô − E[ô]| � ε) � Var[ô]

ε2
(A12)

where E[ô] = tr(Oρ) where ρ is the true density matrix. Fluc-
tuations of ô around this desired expectation are controlled by
the variance. Var[ô] = 1

N Var[tr(Oρ̂ ( j) )] = Var[o( j)]
N . However,

since the classical shadows are unit trace by construction, the
variance depends only on the traceless part of the observ-
able, i.e., O0 = O − tr(O)

2n I. The minimum number of samples
needed to assure a maximum failure probability (δ) using
Eq. (A12) is

N � Var[o( j)]

ε2δ
. (A13)

b. Dependence on POVM

Given a measurement channel and an observable, we can
bound the variance of its estimator, using familiar maneuvers
with superoperators [2]:

Var[o( j)] = E((o( j) )2) − (E(o( j) ))2 � E((o( j) )2)

=
∑

a1,.,an

Pr(a1..an)〈a1, ., an|
[
M−1

n

]†
(O0)|a1, ., an〉2

where Pr(a1, .., an) = tr(ρMa1 ⊗ Ma1 .. ⊗ Man ).

We broadly define a k-local Pauli observable as an operator
which acts nontrivially only on k qubits. Traceless k local
operators can be expressed as linear combinations of tensor
products of identity matrices and k or less Pauli matrices.
Hence, we need to focus only on the special class of k-local
operators.

Let Pi be a traceless operator acting on the ith qubit. We can
choose it to be any one of the three Pauli matrices {σ1, σ2, σ3}.
We focus on tensor products like O0 = P1 ⊗ P2 ⊗ .. ⊗ Pk ⊗
I⊗(n−k), where, without loss of generality, we assume that the
operator acts nontrivially on only the first k qubits.

For the Pauli-6 POVM, the inverse of the measurement
channel is a self-adjoint map, and thus one can verify its action
as [

M−1
1

]†
(σα ) = M−1

1 (σα ) = 3σα,

where σα denotes a Pauli matrix and [M−1
1 ]†(I) = M−1

1 (I) =
I. Given a k-local observable, we can further compute the
bound on variance:

Var[o( j)] �
∑

a1,.,an

Pr(a1..an)
k∏

i=1

〈ai|3Pi|ai〉2

=
∑

a1,.,an

tr(ρMa1 ⊗ Ma2 .. ⊗ Man )
k∏

i=1

〈ai|3Pi|ai〉2

= tr

⎡
⎣ρ

∑
a1,.,an

(
Ma1 ⊗ Ma1 .. ⊗ Man

k∏
i=1

〈ai|3Pi|ai〉
)2

⎤
⎦

= tr

⎡
⎢⎢⎢⎢⎣ρ

k⊗
i=1

∑
ai

Mai〈ai|3Pi|ai〉2

︸ ︷︷ ︸
3I

⊗
I⊗(n−k)

⎤
⎥⎥⎥⎥⎦ = 3k .

Now, we take up the Pauli-4 POVM. One can verify the action
of [M−1

1 ]† as[
M−1

1

]†
(Pα ) = (2 −

√
3)I + (3 +

√
3)Pα −

∑
β 	=α

(3 −
√

3)Pβ,

where Pα denotes a Pauli matrix. Using the fact that M−1
1 is a

trace-preserving map, one can say its adjoint has to be unital,
i.e., [M−1

1 ]†(I) = I. Given a k-local Pauli observable, one can
again compute the bound on variance:

Var[o( j)]

�
∑

a1,.,an

Pr(a1..an)
k∏

i=1

〈ai|
[
M−1

1

]†
(Pi )|ai〉2

=
∑

a1,.,an

tr(ρMa1 ⊗ Ma2 .. ⊗ Man )
k∏

i=1

〈ai|
[
M−1

1

]†
(Pi )|ai〉2

= tr

[
ρ

∑
a1,.,an

(Ma1 ⊗ Ma1 .. ⊗ Man

k∏
i=1

〈ai|
[
M−1

1

]†
(Pi )|ai〉2

]

= tr

⎡
⎢⎢⎢⎢⎣ρ

k⊗
i=1

∑
ai

Mai〈ai|
[
M−1

1

]†
(Pi )|ai〉2

︸ ︷︷ ︸
5I+4Pi

⊗
I⊗(n−k)

⎤
⎥⎥⎥⎥⎦

= tr

[
ρ

k⊗
i=1

(5I + 4Pi )
⊗

I⊗(n−k)

]
.
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Clearly, the above bound on variance is dependent on
the state ρ, unlike the bound we obtained using the Pauli-6
POVM. Since ρ is a density matrix and the operator 5I + 4Pi

is a positive semi-definite operator, one gets the minimum
value for the bound when ρ is of the form

ρ =
(

k⊗
i=1

|pi〉〈pi|
)⊗

ρ̃n−k, (A14)

where |pi〉〈pi| is the projector into the eigenvector correspond-
ing to the lowest eigenvalue of the operator 5I + 4Pi, and
ρ̃n−k is a valid density matrix in the Hilbert space of n − k
qubits on which the k-local Pauli observable acts trivially.
For the above ρ, it is simple to verify that the value of the
variance bound is 1 (independent of k). Thus, for example, if
the unknown state ρ is the all spin-down state, then the Pauli-4
POVM works better than the Pauli-6 POVM in predicting two-
point correlators 〈σ Z

i σ Z
j 〉, since the variance is higher in the

latter.

c. Improved bound using Hoeffding’s inequality

Furthermore, we can use Hoeffding’s inequality to provide
theoretical bounds when we are dealing with the k-local Pauli
observable, since we are working with bounded random vari-
ables. If ô = 1

N

∑N
j=1 tr(Oρ̂ ( j) ), ô( j) ∈ [a, b] for all j, where

−∞ < a � b � ∞, we can write

Pr(|ô − E[ô]| � ε) � 2e( −2Nε2

(b−a)2
)
. (A15)

The minimum number of samples needed to assure a maxi-
mum failure probability (δ) is

N � ln

(
2

δ

)
(b − a)2

2ε2
. (A16)

B({O},M) = (b − a)2 depends on the locality of the observ-
able and the maximum eigenvalue λmax of the inverse channel
acting on the observable. The bound on random variable ô( j)

can be found as the range of the Rayleigh quotient of the
inverse of the measurement channel, acting on the observable
over all possible states. For instance, if we choose Pauli-6,
the bounds can be shown to lie within ô( j) ∈ [−3k, 3k] in
which case B(k-local, Pauli-6) = 4 × 9k . Using the action of
[M−1]†, one can verify that the value of the random variable
tr([M−1]†(Pi )|ai〉〈ai|) belongs to the set {5,−1} for any Pauli
matrix Pi when |ai〉〈ai|) is the inferred state for Pauli-4. Thus,
the random variable ô is contained in the range {−5k, 5k}
which is exponential on the locality rather than the number
of qubits.

d. Guarantee of performance for multiple observables

We have L different k-local Pauli observables
ô1, . . . , ôi, . . . , ôL with the sample mean corresponding

to the observable i defined as ôi = 1
N

∑N
j=1 tr(Oiρ̂

( j) ).

If ôi = 1
N

∑N
j=1 tr(Oiρ̂

( j) ), ô( j)
i ∈ [a, b] for all j, where

−∞ < a � b < ∞, we can combine the union bound with
Hoeffding’s inequality to write

Pr

(
max

1 � i � L
|ôi − E[ôi]| � ε

)
� 2Le( −2Nε2

(b−a)2
)
. (A17)

The minimum number of samples needed to assure a maxi-
mum failure probability (δ) among all the observables using
Eq. (A17) is

N � ln

(
2L

δ

)
(b − a)2

2ε2
. (A18)

The scaling is logarithmic in the number of observables L,
instead of the linear behavior we get using Chebyshev’s in-
equality. We do not need to use MoM procedure [2], which
would have been necessary if we were dealing with estimator
distributions with long tails (unlike the bounded estimates for
k-local Pauli observables).

For example, in the numerical experiment corresponding
to Fig. 2, we used these inequalities to estimate the error in
prediction. Substituting L = 1 in Eq. (A18), the theoretical
estimate for the error in prediction using N = 5000 sam-
ples and allowing a maximum failure probability δ = 0.1 is
0.3115. Since we are predicting two-point correlators using
the Pauli-6 POVM, the bound B = (b − a)2 = 4 × 92.

5. Numerical computations

The computation for GHZ states has been carried out using
matrix product state (MPS) representations for noiseless states
and matrix product operator (MPO) representations for the
noisy states. The details on the simulation of mixed states
using MPOs have been shown in Refs. [1,23]. The datasets
corresponding to the ground states of spin Hamiltonians such
as the transverse field Ising model have been generated us-
ing the density-matrix renormalization group (DMRG). The
library used is mpnum (a matrix product representation li-
brary for PYTHON) [24]. Given a particular spin model, with
the Hamiltonian expressed as a MPO, the DMRG algorithm
attempts to find the optimal MPS with the lowest energy.
However, for the visualization of correlations in the disor-
dered 1D Heisenberg spin chain, the computations are made
without using the DMRG framework. This is because the
number of sites was low for this particular numerical exper-
iment.
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