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Preparation of many-body ground states by time evolution with variational microscopic magnetic
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State preparation is of fundamental importance in quantum physics, which can be realized by constructing the
quantum circuit as a unitary that transforms the initial state to the target, or implementing a quantum control
protocol to evolve to the target state with a designed Hamiltonian. In this article, we study the latter on quantum
many-body systems by time evolution with fixed couplings and variational magnetic fields. Specifically, we
consider preparing the ground states of the Hamiltonians containing certain interactions that are missing in the
Hamiltonians for the time evolution. An optimization method is proposed to optimize the magnetic fields by “fine
graining” the discretization of time, in order to gain high precision and stability. The automatic differentiation
technique is utilized to obtain the gradients of the fields against the logarithmic fidelity. Our method is tested on
preparing the ground state of the Heisenberg chain with the time evolution by the XY and Ising interactions, and
its performance surpasses two baseline methods that use local and global optimization strategies, respectively.
Our work can be applied and generalized to other quantum models such as those defined on higher-dimensional
lattices. It enlightens to reduce the complexity of the required interactions for implementing quantum control or
other tasks in quantum information and computation by means of optimizing the magnetic fields.

DOI: 10.1103/PhysRevA.104.052413

I. INTRODUCTION

How to efficiently and accurately obtain the desired states
on quantum systems belongs to the fundamental topics in
the fields of condensed matter physics, quantum simulation,
quantum computation, and beyond. Taking the strongly cor-
related quantum systems as an example, a class of states
with nontrivial properties, such as quantum spin liquids with
possible topological orders [1–4], can be reached by finding
in nature or synthesizing the materials with the expected in-
teractions, such as the antiferromagnets on two-dimensional
lattices with geometrical frustration [5]. Usually, the target
state is the ground or low-lying excited state of the Hamil-
tonian, which thus can be reached by annealing [6].

With controllable parameters in the Hamiltonian, the state
of a quantum system can be driven to a specific target by evo-
lution (see an early work in Ref. [7] and a review in Ref. [8] as
examples). For instance, a molecule can be driven to the de-
sired state by designing a sequence of laser pulses optimized
according to the fitness values from certain measurements
on the state of the molecule [9,10]. The optimization of the
parameters of the time evolution can be formulated as optimal
control problems, which have been widely studied in, e.g.,
interacting spins and solids [11–14]. Typical approaches for
quantum control include solving the quantum brachistochrone
equations to obtain the evolution to a target state with minimal
time cost [15,16].

In recent years, machine learning (ML) has shed new light
on developing efficient protocols for state preparation and
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quantum control. One popular trend is to use reinforcement
learning, aiming for short, high-fidelity driving protocols or
something similar [17–25]. It has been proposed to adapt the
ML models, such as deep neural networks, to generate or
optimize the controlling parameters [26–29]. In particular, au-
tomatic differentiation, a widely applied numerical technique,
has been applied to construct large-scale quantum circuits for
state preparation [30], speed up the numerical simulations
of optimal quantum control [31], and to other topics such
as variational quantum eigensolvers [32] and tensor network
simulations [33,34].

In this article, we consider the preparation of the ground
states of quantum many-body systems by time evolution with
fixed but incomplete interactions and variational magnetic
fields. The idea is illustrated in Fig. 1. We assume that the
Hamiltonian for the time evolution does not contain all the
interaction terms in the Hamiltonian that gives the ground
state as our target. The fine-grained time optimization (FGTO)
algorithm is proposed by “fine graining” the discretization
of time, i.e., by gradually increasing the allowed maximal
frequency of the time-dependent magnetic fields. The negative
logarithmic fidelity is minimized by optimizing the fields with
a gradient descent. We utilize the automatic differentiation
technique to obtain the gradients of the fields. The flowchart
to illustrate the FGTO is given in Fig. 2.

To benchmark FGTO, we consider preparing the ground
state of the Heisenberg model by time evolution with XY
or Ising interactions in space- and time-dependent magnetic
fields. Note the Heisenberg model contains two-body inter-
actions along three spin directions, while the XY and Ising
models contain only interactions in one or two spin direc-
tions. The FGTO is compared with two baseline methods
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FIG. 1. The illustration of state preparation by time evolution
with variational magnetic fields. Here, we take the target state as
the ground state of the Heisenberg chain as an example. For a given
Hamiltonian, the ground state can be obtained in an annealing pro-
cess. We propose to tune the magnetic fields to evolve from a product
state to the target state, while the Hamiltonian for time evolution
contains less interaction terms (such as the XY or Ising interactions).
The magnetic fields are optimized using the automatic differentiation
technique that was originally developed in machine learning.

where local and brutal-force global optimizations of the mag-
netic fields are implemented, respectively. FGTO achieves
the highest preparation precision among these three methods.
Numerical results are provided to show how the precision
varies with the total evolution time and the fineness of the time
discretization.

II. GENERAL SCHEME OF TIME-EVOLUTION
STATE PREPARATION

We consider the preparation of the state |ψtar〉 by time
evolution of the Hamiltonian

Ĥ (t ) =
∑

m,n

Ĥmn +
∑

n

∑

α=x,y,z

hα
n (t )Ŝα

n , (1)

with Ŝα
n the spin operator on the nth site and hα

n (t ) the mag-
netic fields at time t . We take the two-body interaction terms in
the form of Ĥmn = ∑

α=x,y,z Jα Ŝα
mŜα

n . Here, the Hamiltonians

FIG. 2. The flowchart of fine-grained time optimization. The let-
ter K represents the total number of time slices in a time evolution.
We have T = Kτ , with T the total evolution time and τ the time
interval for each slice. The letter κ̃ represents the total number of
fine-grained steps. For the κth fine-graining step with κ = 0, . . . , κ̃ ,
we have K = 2κ . The letter k labels the time slice in a specific time
evolution and takes k = 1, . . . , K . The iteration shown in the upper
half of the figure is the optimization of magnetic fields for a fixed K .
The iteration shown by the lower half is to gradually fine grain time
by increasing K to 2K .

are assumed to contain only nearest-neighbor couplings and
the coupling constants (Jα) are assumed to be space and time
independent.

Our goal is to obtain optimal magnetic fields hα
n (t ) that

minimize the distance between the target state |ψtar〉 and the
evolved state,

|ψ (T )〉 = Û (T )|ψ0〉, (2)

with Û (T ) formally denoting the time-evolution operator de-
termined by Ĥ (t ), |ψ0〉 = |ψ (t = 0)〉 the initial state, and T
the total evolution time. The distance can be characterized by
negative logarithmic fidelity (NLF) per site as

F = − ln f , (3)

where f is the fidelity defined as

f = |〈ψtar|ψ (T )〉|. (4)

We require knowledge on the evolved state to evaluate F in the
optimization, which is in a similar case of adiabatic tracking
[35]. Essentially, our controlling scheme can be generalized
from fidelity to observables, so that the full wave function will
not be needed to optimize the evolution Hamiltonian.

In practice, we discretize the total time T to K identical
slices, and the evolved state can be approximated as

|ψ (T )〉 = e−iτ Ĥ (Kτ ) · · · e−iτ Ĥ (2τ )e−iτ Ĥ (τ )|ψ0〉

=
1∏

k=K

e−iτ Ĥ (kτ )|ψ0〉, (5)

with τ = T
K . It means during the time of (k − 1)τ � t < kτ ,

we assume that hα
n (t ) does not change and takes the value

hα
n (t ) = hα

n,k , which belongs to the generalizations of the
bang-bang protocols [36,37]. Without losing generality, we
take the initial state |ψ0〉 = ∏N

⊗n=1 |0n〉 with |0n〉 the spin-up
state of the nth spin.

III. FINE-GRAINED TIME OPTIMIZATION

We use the gradient descent to update the magnetic fields
as

hα
n,k ← hα

n,k − η
∂F

∂hα
n,k

, (6)

where the gradients ∂F
∂hα

n,k
are obtained by the automatic

differentiation of PYTORCH [38], and η represents the learn-
ing rate controlled by the Adam optimizer [39]. F is also
called the loss function. However, our simulations show
that this optimization problem possesses many local minima.
Consequently, the results might be sensitive to the initial
values of hα

n,k . Therefore, the initialization strategy becomes
crucial.

We propose the fine-grained time optimization (FGTO)
algorithm (Fig. 2). To begin with, we set K = 1 in the first
iteration κ = 0, meaning we do not allow hα

n,k (κ = 0) (note
k = 1 and n = 1, . . . , N) to change in the whole evolution.
The initial magnetic fields are taken randomly. The opti-
mal values of hα

n,k (κ = 0) are reached by implementing the
gradient optimization using Eq. (6) for sufficiently many
times.
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After hα
n,k (κ = 0) converges, we “fine grain” the time dis-

cretization by increasing K to 2K for iteration of κ = 1. The
magnetic fields are initialized as hα

n,k (κ = 1) = hα
n,1(κ = 0)

for k = 1 and 2. For the iteration of κ > 1, we initialize the
magnetic fields according to those obtained in the (κ − 1)th
iteration as hα

n,2k′−1(κ ) = hα
n,2k′ (κ ) = hα

n,k′ (κ − 1), which are
subsequently updated by the gradient optimization.

To compare with, we also try another two optimization
algorithms as the baselines. The first is dubbed the sliced time
optimization (STO), where hα

n,k are optimized slice by slice
from k = 1 to K . The idea is to minimize the loss function for
every time slice, in the same spirit of the “greedy” algorithms.
In the optimization of the kth slice, hα

n,k′ for k′ < k are fixed as
the values obtained in the former iterations. The fields in the
kth time slice hα

n,k are optimized by minimizing the distance
between the target state and the evolved state at t = kτ . The
loss function is taken as Fk = − ln |〈ψtar|ψ (kτ )〉|.

The other method is called global time optimization
(GTO), where we just iteratively compute the loss of |ψ (T )〉
in Eq. (3), and update hα

n,k for all k = 1 to K simultaneously.
Compared with GTO, STO is a more economical method
since in each iteration, we only need to deal with the compu-
tational graphs of the automatic differentiation for the hα

n,k in a
single time slice. Since STO optimizes the magnetic fields by
locally considering the evolution in one time slice, it can be
trapped to some local minimum. Consequently, GTO shows
higher accuracy than STO. For FGTO, one can see that we
in fact use GTO to update hα

n,k with a smaller or (eventually)
equal number of time slices. Furthermore in FGTO, the fields
are properly initialized in the fine-grain process of time. For
GTO in comparison, we need to guess 3K values to initialize
the fields. Even though we use STO to initialize hα

n,k , the
results are still worse than those by FGTO, possibly because
STO already drives the optimization into a local minimum. In
all, FGTO better balances the efficiency and accuracy, and is
more stable by using a more reasonable strategy in initializa-
tion. See the pseudocodes and flowcharts of these algorithms
in the Supplemental Material [40].

Compared with the quantum control schemes with re-
inforcement learning (such as Refs. [17,18,20–25]), one
advantage of our scheme is its simplicity. As we directly
optimize the time-dependent magnetic fields by automatic
differentiation, we are not concerned that the results might be
affected by the choices of neural network (NN) with differ-
ent learning and generalization abilities. Meanwhile, training
and testing samples are not needed. An advantage of the
reinforcement-learning control schemes is that once the NN is
well trained, it can be used to solve a class of optimal control
problems. The range of problems that a trained NN can reli-
ably solve (without retraining by new samples) would depend
on its generalization power. Therefore, our proposal and the
reinforcement-learning schemes can complement each other
to solve specific problems in the field of quantum control.

IV. NUMERICAL RESULTS

To show the validity of state preparation by time evolu-
tion, we choose the target state |ψtar〉 as the ground state of
the one-dimensional (1D) Heisenberg model (HM) with the

FIG. 3. The fidelity f in Eq. (4) vs the number of time slices
K . The target state is the ground state of the Heisenberg model and
the evolution Hamiltonian is taken as the XY model. We employ the
FGTO method, and take the number of spins N = 10 and the total
evolution time T = 0.5, 1, 2, 3, and 5.

Hamiltonian

ĤHM =
N−1∑

n=1

∑

α=x,y,z

Ŝα
n Ŝα

n+1, (7)

where we take the number of spins N = 10 as an example.
Its ground state is a spin liquid with no magnetic ordering.
For the Hamiltonian to implement time evolution, we choose
the XY model and quantum Ising model (QIM) as examples,
which read

ĤXY (t ) =
N−1∑

n=1

∑

α=x,y

Ŝα
n Ŝα

n+1 +
N∑

n=1

∑

α=x,y,z

hα
n (t )Ŝα

n , (8)

ĤQIM(t ) =
N−1∑

n=1

Ŝz
nŜz

n+1 +
N∑

n=1

∑

α=x,y,z

hα
n (t )Ŝα

n . (9)

Our aim is to see by tuning the magnetic fields, how accurately
the time evolution by ĤXY (t ) or ĤQIM(t ) can prepare the
ground state of ĤHM, with the fact that some coupling terms
in ĤHM are missing in ĤXY (t ) or ĤQIM(t ).

Figure 3 demonstrates f [Eq. (4)] by increasing the number
of time slices K . For K = 1 (i.e., T = τ ), meaning the mag-
netic fields are not allowed to vary with time, we have a small
f (with F � 3). By increasing K , we allow the magnetic fields
to change more frequently. The fidelity f increases quickly
with K and approximately converges at about K = 32. Note
the target state |ψtar〉 and the initial state |ψ (0)〉 are almost or-
thogonal to each other with the NLF F � 60. This is partially
because the fidelity usually decreases exponentially with the
number of qubits N and we take N � 1.

In Fig. 4, we show f versus the total evolution time T by
fixing K = 16 using STO, GTO, and FGTO. By taking a small
T , say T � 0.75 (still with fixed K = 16), the fidelity in-
creases to f � 0.567 using FGTO. By increasing T , meaning
the system will be evolved for a longer time in each time slice,
f further increases to f � 0.217, 0.618, and 0.926 using STO,
GTO, and FGTO, respectively, for T = 6. FGTO obtains the
highest fidelity among these three methods. In other words,
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FIG. 4. The lines with symbols show the fidelity f in Eq. (4) vs
the total evolution time T for the STO, GTO, and FGTO methods.
The target state is the ground state of the Heisenberg model and the
evolution Hamiltonian is taken as the XY model. The lines without
symbols show f at the evolving time t [see Eq. (10)] varying from
t = 0 to t = 6. We fix the number of spins N = 10 and the total
number of time slices K = 16 as an example.

FGTO permits the evolution to the target state in the shortest
time, in order to reach the same fidelity.

The lines without symbols illustrate how the state is
evolved by showing the fidelity f between the target state and
the evolved state at different time t , which is defined as

f (t ) =
∣∣∣∣∣〈ψtar|

1∏

k=t/τ

e−iτ Ĥ (kτ )|0〉
∣∣∣∣∣. (10)

The magnetic fields in the evolution Hamiltonian are taken
as those optimized by the STO, GTO, or FGTO with T = 6.
It is an interesting observation that by FGTO, f (t ) does not
monotonously increase with t . A slight and smooth decrease
of f (t ) appears for about t = 3. In contrast, the f (t ) obtained
by GTO or STO in general increases monotonously with t .
Meanwhile, f (t ) achieved by FGTO starts to increase rapidly
for t > 5 approximately. For GTO and STO in comparison,
f (t ) starts to increase for about t > 1. For FGTO, the non-
monotony and long-time evolution before a rapid increase of
f (t ) might indicate the escape from the local minimum, which
results in a higher f compared with that obtained by the STO
and GTO algorithms.

Figure 5 shows how the fidelity f between the target and
evolved states changes with the number of spins N . We use
FGTO to optimize the magnetic fields, and fix the total time
T = 6 and the number of time slices K = 16. We also try to
use another loss that is defined as

F ′ = 1 − f . (11)

The resulting fidelities f are shown by the blue circles in
Fig. 5. These two loss functions F and F ′ show similar perfor-
mance. As expected, f decreases as N increases. Our results
suggest an exponential scaling relation between f and N as

f � 1 − μeνN . (12)

In our example where the target is the ground state of the
Heisenberg chain and the evolution Hamiltonian possesses

FIG. 5. The fidelity f in Eq. (4) optimized by FGTO vs the
number of spins N . The data shown by the red squares are obtained
using F [Eq. (3)] as the loss function, and those by the blue circles
use F ′ [Eq. (11)] as the loss. Our results imply the exponential de-
crease of f against N as f = 1 − 0.0018e0.32N . The target state is the
ground state of the Heisenberg chain, and the evolution Hamiltonian
possesses the XY interactions. We take the total time T = 6 and
K = 16 time slices for evolution.

the XY interactions, we have μ � 1.8 × 10−3 and ν � 0.32.
These values of μ and ν suggest that accurate preparations
can be done at least for N ∼ O(1). As to the exponential
scaling behavior, it might be due to the fact that the fidelity
between two states in general decreases exponentially with
the number of spins. However, the universality of Eq. (12) is
to be investigated further in other systems.

To demonstrate how the evolved state approaches the target
state with the optimization in FGTO, Fig. 6 gives the fidelity
f at different optimization epochs. Specifically, we start with
a K = 1 time slice. The magnetic fields are optimized for 200
epochs and afterward we fine grain the time discretization by
increasing K to 2K . In total, we implement 1000 epochs and

FIG. 6. The fidelity f in Eq. (4) vs the optimization epoch. We
take the target state as the ground state of the Heisenberg model,
and test the Ising, XY , and Heisenberg models as the evolution
Hamiltonians. We fix the total evolution time T = 4.5 and increase
the number of time slices from K = 1 to 16 as the optimization
proceeds. We take the number of spins as N = 10. See details in the
main text.
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FIG. 7. The space-and-time “landscapes” of the magnetic fields
in the (a) x, (b) y, and (c) z directions for preparing the ground state
of the Heisenberg chain by time evolution with XY interactions. We
have t = kτ that denotes the time in the evolution and use n to denote
the position in the chain. The colors illustrate the strength of the
magnetic fields. See details in the main text.

eventually have K = 16 time slices. The total evolution time
is fixed to be T = 4.5.

Our results show that not just the XY model but also
the Ising model with only the interactions along the spin-z
direction can be used as the evolution Hamiltonian to prepare
the ground state of the Heisenberg model. We speculate that
any Hamiltonian that can entangle the whole system by time
evolution could be used as the evolution Hamiltonian for state
preparation. As the magnetic fields correspond to single-body
operators and cannot produce any entanglement, the coupling
terms (two-body in our examples) with fixed strength entangle
the system, and the magnetic fields drive the entangled state
to the target. By introducing more interaction terms in the
evolution Hamiltonian, such as the Heisenberg model that
contains the interactions along all three spin directions, one
could obtain higher precision with the same total evolution
time and number of time slices. We expect higher precision by
using the evolution Hamiltonian that can entangle the system
in a higher speed, such as those with proper longer-range or
multibody interactions.

Figure 7 demonstrates the space-and-time landscapes of
the magnetic fields in three directions, obtained by the FGTO
methods. We take the XY model as the evolution Hamiltonian
and the ground state of the Heisenberg model as the target.
The color of the block at the nth column and the kth row
illustrates the strength of the magnetic field on the nth spin
within the kth time slice. We take the total evolution time
as T = 4.5 and the total number of time slices K = 16. The
initial product state will be evolved to the target by imposing
the magnetic fields according to this figure.

To further test our method, we optimize the magnetic fields
to realize a target gate Ĝtar. The loss function is defined as
the difference between the time-evolution gate Û (T ) and the
target as

FG = |Û (T ) − Ĝtar|. (13)

We choose Ĝtar as a two-qubit gate [SWAP,
√

SWAP, or
controlled-NOT (CNOT)] as the minimal time t∗ to obtain it by

FIG. 8. The difference between the time-evolution gate and the
target gate with different evolution times T . The SWAP,

√
SWAP, and

CNOT gates are taken as the target as examples. The minimal time t∗

given by the analytical solution for realizing each gate is indicated
by the vertical dashed lines.

quantum control can be analytically given [41–43]. GTO is
used considering we do not encounter the problems of local
minima in these cases. As shown in Fig. 8, the difference
becomes close to zero at the minimal time given by the analyt-
ical solution. The converged difference scales as the learning
rate ∼O(η) due to the optimization fluctuations. These results
shows that the optimal controls are reached by our scheme.

V. DISCUSSIONS AND PERSPECTIVE

In this work, we consider the preparation of the ground
states of quantum many-body systems by time evolution with
fixed spin couplings and tunable magnetic fields. We focus
on the cases where the Hamiltonian for the controlled time
evolution contains less interaction terms than the Hamiltonian
that gives the ground state as the target. The fine-grained
time optimization (FGTO) algorithm is proposed to gain high
efficiency and stability. We test our proposal by preparing the
ground state of the Heisenberg model with the time evolu-
tion by only the XY or Ising interactions. FGTO achieves
high fidelity compared with two baseline methods using local
and global optimization strategies, respectively. Our work can
be readily generalized to the preparation of not just many-
body ground states, but also the states constructed by hand
for the purposes of realizing nontrivial physical properties
or implementing the tasks of quantum communication and
computation.

From a theoretical perspective, it is interesting and im-
portant to study the completeness. Usually, it is difficult to
adjust or control the interaction terms in quantum many-body
systems. There exist considerable experiments on the lattice
models of spin-1/2’s on the artificial platforms by quantum
simulation, such as cold atoms [44–46] and superconducting
circuits [47–50]. However, the interactions appearing in the
materials or simulators at hand might suffer strict restrictions
on, e.g., the interaction form or range. Our work implies
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a certain generality of using restricted interactions for state
preparation, or helps to reduce the complexity of the evolution
Hamiltonian. It is an open and important issue to investi-
gate and characterize the set of classes reachable by time
evolution with the given interactions. In our cases, the Hamil-
tonians for evolution are imposed with several restrictions.
Only certain fixed two-body terms (interactions) and varia-
tional coefficients of the single-body terms (magnetic fields)
are contained in the Hamiltonians. All operators are Pauli op-
erators, i.e., the SU(2) group, which is a very small part among
the generators of all possible unitary operators in the Hilbert
space. The two-body terms only allow nearest-neighbor in-
teractions in a 1D chain. It is interesting to investigate how
different restrictions would affect the range of accessible
target states and possibly the scaling between f and N
[as Eq. (12)].

By modifying the loss function, our work can be used to
prepare the states the possess certain desired physical proper-
ties such as those with high entanglement [51–54]. Our idea
can also be generalized with non-Hermitian time evolution

[55], and applied to study the inhomogeneous Kibble-Zurek
mechanism in many-body systems, including the annealing
processes and phase transitions affected by spatial inhomo-
geneity [56–61]. More properties of the preparation scheme,
such as sensitivity to magnetic fields at different times, can
be probed by employing the Sobol-indices-based methods
[62,63]. It is also an interesting topic to probe the time cor-
relations with the expansion of the high-dimensional model
representation [64].
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