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Quantum limit to subdiffraction incoherent optical imaging. II. A parametric-submodel approach
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In a previous paper [M. Tsang, Phys. Rev. A 99, 012305 (2019)], I proposed a quantum limit to the estimation
of object moments in subdiffraction incoherent optical imaging. In this sequel, I prove the quantum limit
rigorously by infinite-dimensional analysis. A key to the proof is the choice of an unfavorable parametric
submodel to give a bound for the semiparametric problem. By generalizing the quantum limit for a larger class
of moments, I also prove that the measurement method of spatial-mode demultiplexing with just one or two
modes is able to achieve the quantum limit. For comparison, I derive a classical bound for direct imaging using
the parametric-submodel approach, which suggests that direct imaging is substantially inferior.
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I. INTRODUCTION

No problem is more essential in optics than the resolution
limit of incoherent imaging [1]. Its importance to astronomy
[2], fluorescence microscopy [3], and countless other imag-
ing applications can hardly be overestimated. The fact that
diffraction and photon shot noise play dual roles in limiting
the ultimate resolution suggests that quantum information
theory sets the right foundation for the problem [4,5]. Never-
theless, the mathematics of quantum information is daunting,
its application to imaging more so, and progress has been
mostly limited to toy examples, in which only a few pa-
rameters or hypotheses about the object are assumed to be
unknown [4,5].

In recent years, the surprising results concerning two
point sources in Ref. [6] have triggered renewed interest in
the quantum-information perspective [5], as well as research
efforts towards more general cases [7–23]. In terms of com-
puting the quantum limits, some researchers have attacked
the case of a few point sources and many parameters with
numerical methods [17,18], but the harsh computational de-
mands mean that alternative approaches are necessary to deal
with more complex objects and high-dimensional parameter
spaces. In this regard, Refs. [7–14] have been able to make
progress by framing the problem as object-moment estima-
tion, while assuming little about the object distribution. The
prequel to this paper in particular proposes a quantum limit
to moment estimation in the form of a quantum Cramér-Rao
bound [12].

Two mathematical issues arise in the moment estimation
problem: the infinite dimensionality of the parameter space,
since an extended object may depend on infinitely many scalar
parameters, and the infinite dimensionality of the quantum
states, since an extended object may excite infinitely many
spatial modes. The prequel ignored these issues and relied on
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finite-dimensional arguments. The main goal of this paper is
to prove the quantum limit rigorously by infinite-dimensional
analysis [24–35].

The theory of quantum semiparametric estimation, recently
proposed in Ref. [36], is a key to the proof. Although the
parameter space is infinite dimensional, the theory enables
one to derive lower error bounds by considering parametric
submodels, each of which depends on just a scalar parameter
and is much easier to handle.

The second goal of this paper is to prove the quantum
optimality of a measurement method called spatial-mode de-
multiplexing (SPADE) [5,6] for unbiased moment estimation.
Previous works fixated on the estimation of simple moments
[in the form of

∫
xμP(dx) for an object distribution P and a

positive integer μ]. To estimate a simple moment without bias,
measurements of infinitely many spatial modes are needed
and it becomes difficult to even prove that an unbiased es-
timator exists [8–10,12]. In practice, of course, only a finite
number of modes can be measured [37,38], so the existing
results do not reflect well on the optimality of SPADE in
practice. This paper generalizes the quantum limit for a larger
class of moments so that, with just one or two modes, SPADE
can still achieve the quantum limit for the generalized mo-
ments it is naturally measuring. There does not seem to be any
compelling reason in practice to prefer a simple moment over
a generalized moment pretty close to it, so there is arguably
little loss of practical relevance and much to gain in the rigor
by generalizing the moments.

The final goal of this paper is to give a bound for general-
ized moment estimation with direct imaging, thus proving the
superiority of SPADE. While a similar result was proposed in
Refs. [8–10], it relies on a special assumption about the point-
spread function that is hard to check and has been verified only
for a Gaussian point-spread function. I attempt to relax the
assumption by appealing again to the parametric-submodel
approach. Although the result is still not as general as one
would like, it at least establishes conditions that are easier to
check and paves the way for further generalizations.
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FIG. 1. Schematic of an imaging system. See the text for the
definitions of the symbols.

This paper is organized as follows. Section II introduces
a quantum model of incoherent optical imaging. Section III
introduces the quantum semiparametric estimation theory.
Section IV proposes a parametric submodel for the derivation
of the quantum limit. Section V presents the quantum limit.
Section VI proves that SPADE with one or two modes can
still achieve the quantum limit. Section VII gives a bound for
direct imaging. Section VIII discusses the conclusions. The
Appendixes contain the more technical proofs and remarks.

II. MODEL

Let H0 be a one-dimensional (1D) Hilbert space for the
vacuum, H a separable Hilbert space that models the spatial
modes of light, τ0 the vacuum state on H0, and τ a one-photon
state on H. Suppose that the state in each temporal mode can
be modeled as

ρ = (1 − ε)τ0 ⊕ ετ, (2.1)

where ⊕ denotes the direct sum and ε is the one-photon
probability per temporal mode. With M temporal modes, the
state is assumed to be the tensor power ρ⊗M and the expected
photon number in all modes is

N ≡ Mε. (2.2)

The validity of this rare-photon model with ε � 1 to describe
thermal light at optical frequencies was studied extensively in
Refs. [5,6,12]. Taking the limit ε → 0 while keeping N fixed
leads to a Poisson model [39] that agrees with semiclassical
optics [2], although it is not necessary to consider the Poisson
limit in the following.

Assume 1D imaging for simplicity. Let R be the set of
object-plane coordinates and � the Borel sigma algebra of R
[31]. For an object that emits spatially incoherent light and is
imaged with a diffraction-limited system, τ can be modeled
as [6,12]

τ (P) =
∫

e−ik̂x |ψ〉 〈ψ | eik̂xP(dx), (2.3)

where P : � → [0, 1] is a probability measure that models the
object distribution normalized by the total brightness, |ψ〉 ∈
H with 〈ψ |ψ〉 = 1 models the coherent point-spread function
of the imaging system, and k̂ is a self-adjoint operator on H for
the optical spatial frequency. I call any self-adjoint operator an
observable in the following. Figure 1 illustrates the imaging
system. To work with the probability space (R, �, P), it will
be useful to define an inner product, weighted by P, between

two real functions u, v : R → R as

〈u, v〉P ≡
∫

u(x)v(x)P(dx), (2.4)

the corresponding norm as

‖u‖P ≡
√

〈u, u〉P, (2.5)

and the resulting real Hilbert space as [31]

L2(P) ≡ {u : ‖u‖P < ∞}. (2.6)

I assume L2(P) to be separable in the following.
The k̂ and |ψ〉 lead to another probability space. Let the

spectral representation of k̂ be [29]

k̂ =
∫

kE (dk), (2.7)

where E is a projection-valued measure on (R, �). Define the
spatial-frequency measure with respect to k̂ and |ψ〉 as

Q(·) ≡ 〈ψ | E (·) |ψ〉 . (2.8)

For example, if k̂ is a continuous variable, then E (dk) =
|k〉 〈k| dk, with 〈k|k′〉 = δ(k − k′) in the Dirac notation, and
Q(dk) = | 〈k|ψ〉 |2dk, where 〈k|ψ〉 is the optical transfer
function of the imaging system.

In quantum information theory [40,41], it is often useful
to find a purification of τ in a larger Hilbert space H ⊗ H′
such that

τ = tr′�, � ≡ |�〉 〈�| , |�〉 ∈ H ⊗ H′, (2.9)

where tr′ denotes the partial trace over H′. A natural choice is
to take H′ = L2(P) using the representation

1 ∈ L2(P) ↔ |φ〉 ∈ H′, (2.10)

u(x) ∈ L2(P) ↔ u(x̂) |φ〉 ∈ H′, (2.11)

where x̂ is called the canonical multiplication operator, which
is self-adjoint [see [33], Exercise 12.7(iii)], and |φ〉 is called a
cyclic vector, satisfying 〈φ|φ〉 = 1 [29]. To adhere to physics
terminology, I call |φ〉 a purification of P. The purification of
τ then becomes

|�〉 = e−ik̂⊗x̂ |ψ〉 ⊗ |φ〉 . (2.12)

Let the spectral representation of x̂ be

x̂ =
∫

xE ′(dx), (2.13)

where E ′ is a projection-valued measure on (R, �). Then

P(·) = 〈φ| E ′(·) |φ〉 . (2.14)

For example, if P can be expressed in terms of a density f (x)
with respect to the Lebesgue measure, then |φ〉 should satisfy,
in the Dirac notation, P(dx) = f (x)dx = 〈φ| E ′(dx) |φ〉 =
| 〈x|φ〉 |2dx. In other words, given an f , the purification should
have a wave function that satisfies | 〈x|φ〉 | = √

f (x).
The τ can be purified in other ways by applying isometries

on H′ to |�〉. Let U : H′ → H′′ be an isometry that satisfies
U †U = IH′ , IH′ being the identity operator on H′. Then an
alternative purification is

|
〉 = IH ⊗ U |�〉 , τ = tr′′
, 
 ≡ |
〉 〈
| . (2.15)
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A fruitful choice made in Ref. [12] is as follows.
Lemma 1. Consider the state given by Eq. (2.3). Assume

that the support of P [32], denoted by suppP, is infinite but
bounded, viz.,

#suppP = ∞, (2.16)

� ≡ sup
x∈suppP

|x| ∈ (0,∞). (2.17)

Assume also that k̂ is bounded. Then a purification in H ⊗ H′′
is given by

|
〉 =
∞∑

p=0

p∑
n=0

(−ik̂)p

p!
Lpn |ψ〉 ⊗ |n〉 , (2.18)

where {|n〉 : n ∈ N0} is an orthonormal sequence in H′′ and
L is the lower triangular matrix obtained by applying the
Cholesky factorization algorithm [42] to the Hankel matrix

Hpq ≡ 〈xp, xq〉P, p, q ∈ N0. (2.19)

The infinite series in Eq. (2.18) converges strongly (see [25],
Definition 3.3.9).

The proof is deferred to Appendix A.
The assumptions about P ensure that H and L are defined.

The bounded k̂ is a technical assumption to ensure the con-
vergence of results. Physically, the #suppP = ∞ assumption
means that the object consists of infinitely many point sources;
in other words, it is modeled as an extended object [2]. The
bounded support simply means that the object has a finite size,
while a bounded k̂ simply means that the imaging system has
a finite bandwidth.

III. SEMIPARAMETRIC ESTIMATION

Before proceeding further with the imaging problem,
I review the quantum semiparametric theory proposed in
Ref. [36], which is necessary to deal with the infinite-
dimensional parameter space of the problem.

Let the statistical model of quantum states on a Hilbert
space H be G ≡ {ρ(g) : g ∈ G}, where G is a possibly infinite-
dimensional parameter space, and let the parameter of interest
be a scalar β : G → R. Let ρ ∈ G be the true state. Define
an inner product, weighted by ρ, between two observables u
and v as

〈u, v〉ρ ≡ tr(u ◦ v)ρ, (3.1)

where u ◦ v ≡ (uv + vu)/2 defines the Jordan product. The
corresponding norm is

‖u‖ρ ≡ √〈u, u〉ρ. (3.2)

With respect to this inner product, define the real Hilbert space
L2(ρ) as the completion of the set B(H) of bounded observ-
ables [34,35]. Within L2(ρ), define a subspace of zero-mean
observables as

Z ≡ {u ∈ L2(ρ) : 〈IH, u〉ρ = 0}. (3.3)

Consider a 1D submodel, containing the true ρ, given by

{σ (θ ) : θ ∈ R ⊆ R, σ (θ0) = ρ} ⊆ G, (3.4)

where R is an open interval containing θ0. Let the overdot
denote the derivative with respect to the parameter that is
evaluated at the truth, such as

σ̇ ≡ ∂σ (θ )

∂θ

∣∣∣∣
θ=θ0

. (3.5)

Assume that the submodel is regular, as defined by the condi-
tions that σ (θ ) is differentiable at the truth (such that σ̇ is
trace class [34]) and |truσ̇ | � C‖u‖ρ for all u ∈ B(H) and
some constant C. Then the bounded linear functional truσ̇

of u is continuous with respect to the norm ‖u‖ρ (see [25],
Theorem 1.5.7) and can be extended uniquely to be defined
on L2(ρ) (see [25], Theorem 1.5.10). By the Riesz representa-
tion theorem (see [25], Theorem 3.7.7), there exists a unique
Sσ ∈ L2(ρ), called the score, such that

truσ̇ = 〈u, Sσ 〉ρ ∀ u ∈ L2(ρ). (3.6)

This abstract definition of the score is due to Holevo [34,35].
To put it another way, suppose that an observable Ŝσ , called
a symmetric logarithmic derivative, is a solution to the
Lyapunov equation

σ̇ = Ŝσ ◦ ρ (3.7)

and ‖Ŝσ ‖ρ < ∞. Then truσ̇ = 〈u, Ŝσ 〉ρ for all u ∈ B(H) by
Eq. (2.8.88) in Ref. [34] and Ŝσ must be in the equivalence
class of Sσ by the uniqueness of Sσ . In other words, a regular
submodel is defined by having finite Helstrom information
‖Ŝσ ‖2

ρ = ‖Sσ ‖2
ρ . Nevertheless, it is unimportant to make the

distinction between the element and its observables in the
following.

Let S be the set of all regular 1D submodels of G. Let {S}
be the tangent set, defined as the set of the scores of all such
submodels, viz.,

{S} ≡ {Sσ : σ ∈ S} ⊆ Z, (3.8)

and let the tangent space T be the closed linear span of the
tangent set, viz.,

T ≡ span{S} ⊆ Z. (3.9)

Define also the set of influence observables with respect
to β as

D ≡ {δ ∈ Z : 〈δ, Sσ 〉ρ = β̇σ ∀ σ ∈ S}, (3.10)

where β̇σ is obtained by expressing β as a function of θ for
the submodel {σ (θ )} and taking the derivative. Let E be the
positive-operator-valued measure that models a measurement.
The mean-square error of an unbiased estimator β̌ at the truth
becomes

E ≡
∫

[β̌(λ) − β]2trE (dλ)ρ. (3.11)

If D is not empty, the generalized Helstrom bound on E for
any measurement and any unbiased estimator is given by

E � H̃ = ‖δeff‖2
ρ, (3.12)

where δeff is the efficient influence given by the orthogonal
projection of any δ ∈ D into T , defined by

δeff ≡ �(δ|T ) ∀ δ ∈ D. (3.13)
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FIG. 2. Geometric picture of the family of states G as a manifold,
the true state ρ as a point, a 1D submodel σ (θ ) as a line, its score Sσ

as a tangent vector, T as the tangent space, and the efficient influence
δeff as another vector, which is the gradient of β in T .

The result of the projection is unique, as D is the affine
subspace δeff + T ⊥, where T ⊥ is the orthocomplement of
T in Z . Figure 2 illustrates the essential concepts from the
geometric perspective. As discussed in Ref. [36], the tangent
space for the imaging problem turns out to be nontrivial and
a closed-form solution for the generalized Helstrom bound is
difficult to obtain, so I resort to looser bounds in the following.
A useful lemma, generalizing the classical Lemma 25.19 in
Ref. [43] and a similar result for the finite-dimensional quan-
tum case in Ref. [44], is as follows.

Lemma 2. Let

H̃ = sup
u∈span{S}

H(u), (3.14)

H(u) ≡ ‖�(δ|span u)‖2
ρ ∀ δ ∈ D, (3.15)

where spanu is the Hilbert space spanned by one element u.
If u �= 0,

H(u) = 〈δ, u〉2
ρ

‖u‖2
ρ

. (3.16)

The proof is deferred to Appendix B.
If the element u in span{S} is the score of a 1D submodel,

as is often the case, H(u) is the Helstrom bound and 〈δ, u〉ρ =
β̇ with respect to the submodel. Lemma 2 then implies that
one may consider only 1D submodels in the evaluation or
bounding of H̃. To obtain a tight lower bound on H̃ via H(u),
the submodel should be made as unfavorable to the estimation
as possible.

IV. UNFAVORABLE PARAMETRIC SUBMODEL

For the imaging problem, let

G = {
[ρ(P)]⊗M : P ∈ P

}
, (4.1)

P = all probability measures on (R, �), (4.2)

where ρ(P) is given by Eqs. (2.1)–(2.3). Equation (4.2) im-
plies that no knowledge about the object is assumed, other
than the fact that it is spatially incoherent and the expected
total photon number N is known. If N is unknown, a submodel
with a fixed N still gives a valid lower bound on H̃, by

FIG. 3. Here τ is a map from a set of input probability measures
to a set of output quantum states and τ∗ is the pushforward of each
score from the input tangent space to the output tangent space.

Lemma 2. Let the parameter of interest be the linear functional

β(P) =
∫

b(x)P(dx) (4.3)

for a given real function b(x). If b(x) is a monomial, viz.,

b(x) = xμ, μ ∈ N1, (4.4)

I call the β a simple moment, as considered in previous works
[8–14]. If β is not necessarily simple, I call it a generalized
moment.

Let P0 ∈ P be the true measure and consider the submodel

Pθ (u) =
∫

u
gθ (x)P0(dx), u ∈ �, (4.5)

gθ (x) ≡ 1 + tanh[θS(x)]∫ {1 + tanh[θS(x)]}P0(dx)
, (4.6)

θ ∈ (−c, c), 0 < c < ∞, (4.7)

where the Radon-Nikodym derivative gθ (x) given by Eq. (4.6)
is chosen for its convenient properties [45] (see also Lemma 8
in Appendix D) and S(x) is assumed to be a function in L2(P0)
with zero mean at the truth, viz.,∫

S(x)P0(dx) = 〈1, S〉P0 = 0. (4.8)

Each Pθ is a valid probability measure and {Pθ : θ ∈ (−c, c)}
also contains the true P0 at θ = 0, so {Pθ } is a valid submodel
for the purpose of Lemma 2.

It is straightforward to show that S(x) is the classical score
of the submodel {Pθ }. The quantum score of the correspond-
ing submodel {τ (Pθ ) : θ ∈ (−c, c)} for each photon is the
pushforward of S by the map τ ,1 denoted by τ∗S, to borrow
the terminology from differential geometry [46]. Figure 3
illustrates the concept from the geometric perspective. For-
mally, the observables in the equivalence class of τ∗S obey the
Lyapunov equation

(τ∗S) ◦ τ (P0) = τ̇ = τ (Ṗ) = τ (SP0) (4.9)

=
∫

e−ik̂x |ψ〉 〈ψ | eik̂xS(x)P0(dx). (4.10)

1The τ∗ is called the score operator in the classical statistics litera-
ture [43,45], but that term would cause confusion with the quantum
operators so I do not use it.
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The Helstrom bound for the M-temporal-mode submodel
{[ρ(Pθ )]⊗M : θ ∈ (−c, c)} becomes

H = β̇2

N‖τ∗S‖2
τ (P0 )

, (4.11)

β̇ =
∫

b(x)S(x)P0(dx) = 〈b, S〉P0 . (4.12)

By Lemma 2, Eq. (4.11) is a lower bound on the generalized
Helstrom bound H̃ for the semiparametric problem. The pre-
quel to this paper assumes a 1D model with θ = β being a
simple moment of order μ while all the other moments are
fixed [12]. It justifies the quantum bound by appealing to the
inequalities E � (J−1)μμ � 1/Jμμ � 1/Kμμ for the Fisher
information matrix J and the Helstrom information matrix
K . However, it is unclear whether such a model is a valid
submodel and whether the inequalities are justified for the
infinite-dimensional semiparametric model. Reference [11],
a related work that studies the classical Fisher information
for the same moment estimation problem, shares the same
issues. Here I am able to alleviate these doubts by explicitly
constructing a valid submodel and appealing to Lemma 2.

Note that multiplying S by any nonzero constant does not
change H, as τ∗S and 〈b, S〉P0 are both linear with respect to S,
so there is no loss of generality if S is normalized to

‖S‖P0 = 1. (4.13)

To make the submodel bound H a tight lower bound on the
semiparametric H̃, there are two heuristic considerations in the
choice of S: (i) The τ map should shrink its norm as much as
possible and (ii) β̇ = 〈b, S〉P0 �= 0. Since τ models the imag-
ing process with a bandwidth limit, physical intuition suggests
that picking a highly oscillatory function for S may lead to
significant norm shrinkage. A convenient choice in this regard
is an orthonormal polynomial an(x) specified by Lemma 4 in
Appendix A, defined here with respect to the true measure P0.
It is already normalized and each an(x) is more oscillatory
for higher n, as each an(x) has n zeros within the support
of P0 [47].

For the second consideration, suppose that β is a simple
moment with respect to the b(x) given by Eq. (4.4). Then the
highest n for which 〈an, b〉P0 �= 0 is n = μ by Lemma 4 in
Appendix A. Thus, a promising choice is

S(x) = aμ(x). (4.14)

V. PURIFICATION BOUNDS

A closed-form solution for the Helstrom information of the
mixed-state submodel remains difficult to obtain. A standard
technique in quantum metrology is to bound it using a pu-
rified model and the monotonicity of Helstrom information
[40,41,48].

Lemma 3. Let {ωθ : θ ∈ R ⊆ R} be a regular model of
states on H ⊗ H′ and {τθ = tr′ωθ : θ ∈ R} be the model on
H generated by the partial trace. Then {τθ } is also regular and

‖tr′
∗S‖2

tr′ω � ‖S‖2
ω, (5.1)

where S is the score of {ωθ } at the true ω and tr′
∗S is the score

of {τθ } at tr′ω.

The monotonicity is well established for finite-dimensional
states [40] and commonly assumed in the physics literature
even for infinite-dimensional states [41,48]. As I am unable
to find a rigorous proof for the general case in the literature, I
present one in Appendix C for completeness.

For the submodel {τ (Pθ )} in Sec. IV, the natural purifica-
tion given by Eq. (2.12) can be written as

τ (Pθ ) = tr′�θ, (5.2)

|�θ 〉 = e−ik̂⊗x̂ |ψ〉 ⊗
√

gθ (x̂) |φ0〉 , (5.3)

where |φ0〉 is a purification of P0. The score of {�θ : θ ∈
(−c, c)} is then Ŝ = S(x̂) and Lemma 3 gives

‖τ∗S‖2
τ (P0 ) = ‖tr′

∗Ŝ‖2
tr′�0

� ‖Ŝ‖2
�0

= ‖S‖2
P0

= 1, (5.4)

which is a loose bound that does not depend on |ψ〉 of the
imaging system. I therefore turn to the alternative purification
in Lemma 1. Each Pθ given by Eq. (4.5) satisfies the condition
of infinite and bounded support for Lemma 1 as long as the
true P0 satisfies it, as each Pθ is dominated by P0 and the gθ (x)
in Eq. (4.6) is strictly positive. I can then use Lemma 1 to write

τ (Pθ ) = tr′′
θ, (5.5)

|
θ 〉 =
∞∑

p=0

p∑
n=0

(−ik̂)p

p!
Lpn(θ ) |ψ〉 ⊗ |n〉 , (5.6)

where the parameter dependence comes from the Cholesky
factor L(θ ) of the Hankel matrix

Hpq(θ ) = 〈xp, xq〉Pθ
=
∫

xp+qPθ (dx). (5.7)

Note that the isometry used to generate this purification de-
pends on P and therefore θ for the submodel, so the resulting
Helstrom information may differ from that using the original
purification.

Let S
 be the score of {
θ : θ ∈ (−c, c)}. Then, by
Lemma 3,

‖τ∗S‖2
τ (P0 ) = ‖tr′′

∗S
‖2
tr′′
0

� ‖S
‖2

0

. (5.8)

Figure 4 illustrates the concepts introduced thus far from
the geometric perspective. While a closed-form solution for
‖S
‖2


0
is still intractable, its scaling with the true object size

� defined by Eq. (2.17) in the asymptotic limit � → 0 can
be proved. Without loss of generality, � can be measured in
dimensionless “Airy units” relative to an effective bandwidth
of the imaging system. Then � � 1 defines the regime of sub-
diffraction objects. In the following, the asymptotic notation
of O(u(�)) [order at most u(�)], o(u(�)) [order smaller than
u(�)], �(u(�)) [order at least u(�)], and �[u(�)] [order
exactly u(�)] will be used [49,50].

Theorem 1. Assume the semiparametric model given by
Eqs. (2.1)–(2.3), (4.1), and (4.2). Assume that k̂ is bounded.
Assume further that P0 is in the Szegő class [51], viz., P0 has
a density f0(x) with respect to the Lebesgue measure on a
compact interval [c1, c2], c1 < c2, such that∫ c2

c1

ln f0(x)√
(c2 − x)(x − c1)

dx > −∞. (5.9)
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FIG. 4. Geometric picture that summarizes all the purifications,
parametric submodels, scores, and maps that are involved in the proof
of Theorem 1. With the maps τ , tr′, and tr′′ all leading to the same
model {τ (Pθ )}, the final score can be expressed as the pushforwards
τ∗S = tr′

∗Ŝ = tr′′
∗S
.

For the parameter of interest given by Eq. (4.3) and

b(x) = xμ + o(�μ), μ ∈ N1, (5.10)

the generalized Helstrom bound is

H̃ = �(�2�μ/2�)

N
. (5.11)

The proof is deferred to Appendix D.
While Theorem 1 appears to be identical to the main

result in Ref. [12], the rigor has been much improved
here. Most notably, (i) Lemma 2 ensures that the 1D sub-
model bound is valid for an infinite-dimensional model,
avoiding the use of the questionable parametric model and
matrix algebra in Refs. [11,12], (ii) Lemma 3 ensures that
the monotonicity of the Helstrom information remains true
for infinite-dimensional states, and (iii) the conditions for
Theorem 1 have been rigorously established, avoiding the
questionable algebra of possibly unbounded operators in
Ref. [12].

The important physical implication of Theorem 1 is that the
mean-square error E of any unbiased estimator must decrease
with � more slowly than the signal

β2 = O(�2μ), (5.12)

so the signal-to-noise ratio is

β2

E
= NO(�2�μ/2�) (5.13)

and the moments of smaller subdiffraction objects are harder
to estimate, especially for higher orders.

Notice that Eq. (5.10) generalizes the theorem for a larger
class of parameters, beyond the simple moments considered
in previous works [8–12]. I call a moment associated with
Eq. (5.10) a generalized moment of order μ. The theorem
shows that, regardless of the o(�μ) terms, the quantum limits
for generalized moments of the same order have the same
leading-order term. This fact will be useful in the proof of
the optimality of SPADE in Sec. VI.

The formalism here may also be able to deal with a β(P)
that is nonlinear with respect to P, such as the entropy, in
which case b(x) should be replaced by a gradient of β(P) in
the L2(P0) space, although this case is outside the scope of
the paper.

VI. SPATIAL-MODE DEMULTIPLEXING WITH ONE
OR TWO MODES

Suppose that the spatial-frequency measure Q, defined in
Eq. (2.8) with respect to k̂ and |ψ〉 of the imaging system,
has an infinite and bounded support. Then the orthonormal
sequence

{|ψn〉 ≡ (−i)nãn(k̂) |ψ〉 : n ∈ N0}, (6.1)

defined in terms of the orthonormal polynomials {ãn} for the
measure Q (as per Lemma 4 in Appendix A), can be used
to construct measurements of the light. The set is called the
point-spread-function-adapted (PAD) modes [9,52], general-
izing the Hermite-Gaussian modes for a Gaussian Q.

It is interesting to note that the orthonormal polynomials
{an} for P play central roles in previous sections, enabling the
purification given by Lemma 1 (as shown in Appendix A) and
also providing the score for the submodel used in Theorem 1.
Following similar steps, it can be shown that the probability
of each photon being projected into a PAD mode is

qn(P) ≡ 〈ψn| τ (P) |ψn〉 =
∫

|Cn(x)|2P(dx), (6.2)

Cn(x) ≡ 〈ψn| e−ik̂x |ψ〉 =
∞∑

p=0

(−ix)pin

p!
L̃pn, (6.3)

where L̃pn is now the Cholesky factor of the Hankel matrix
with respect to Q. A property of L̃pn is that it is zero for p < n
and nonzero for p = n (as per Lemma 4 in Appendix A), so

Cn(x) = L̃nn

n!
xn + O(�n+1), (6.4)

qn(P) = rnβ2n(P), rn ≡ L̃2
nn

n!2
, (6.5)

β2n(P) =
∫

[x2n + O(�2n+1)]P(dx). (6.6)

In other words, each probability qn is proportional to a certain
generalized object moment β2n of even order μ = 2n.

If Q is Gaussian, say,

Q(dk) =
√

2

π
e−2k2

dk, (6.7)

then its support is unbounded, but the preceding discussion
still holds, as Eq. (6.3) has the closed-form solution [8]

Cn(x) = e−x2/8 (x/2)n

√
n!

. (6.8)

There may exist more general conditions on Q for the results
in this section to be valid, but such a generalization does not
seem to be interesting from the physics perspective and is
therefore not pursued in this work.

Let {Nn : n ∈ N0} be the integrated photon counts from
the PAD-mode projections over the M temporal modes. The
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expected value of each count is

E(Nn) = Mεqn = Nrnβ2n. (6.9)

Assuming a known N (the theory for an unknown N is similar
[9,10]), an unbiased estimator of β2n(P) is therefore

β̌2n = Nn

rnN
. (6.10)

To estimate an odd generalized moment, consider the so-
called interferometric PAD (IPAD) modes [8,9]

|ψ+
n 〉 ≡ |ψn〉 + |ψn+1〉√

2
, |ψ−

n 〉 ≡ |ψn〉 − |ψn+1〉√
2

. (6.11)

Let the integrated photon counts resulting from projections in
this pair of modes be N+

n and N−
n . Proceeding in the same

way as before, it can be shown that

E(N+
n ) = N

2
[rnβ2n + snβ2n+1 + O(�2n+2)], (6.12)

E(N−
n ) = N

2
[rnβ2n − snβ2n+1 + O(�2n+2)], (6.13)

where sn ≡ 2L̃nnL̃n+1 n+1/[n!(n + 1)!] and

β2n+1(P) =
∫

[x2n+1 + O(�2n+2)]P(dx) (6.14)

is a certain odd generalized moment. An unbiased estimator
of β2n+1(P) is therefore

β̌2n+1 = N+
n − N−

n

snN
. (6.15)

See Refs. [8,9] for further details about how bases may be
constructed from the PAD and IPAD modes.

The following proposition summarizes the SPADE
performance.

Proposition 1. Assume that the spatial-frequency measure
Q either has an infinite and bounded support or is Gaussian.
Then projections into the PAD modes enable unbiased esti-
mation of a certain set of even generalized moments {β2n :
n ∈ N0}, with the variance of each estimator β̌2n given by

V
(
β̌2n

) = O(�2n)

N
[1 + O(ε)], (6.16)

while projections into the IPAD modes enable unbiased esti-
mation of a certain set of odd generalized moments {β2n+1 :
n ∈ N0}, with the variance of each estimator β̌2n+1 given by

V
(
β̌2n+1

) = O(�2n)

N
[1 + O(ε)]. (6.17)

The variances achieve the quantum-limited � scalings given
by Eq. (5.11) in Theorem 1.

Proof. Given Eq. (2.1), N is a binomial process [53], which
leads to

V (Nn) = Nqn(1 − εqn) = Nrnβ2n[1 + O(ε)]. (6.18)

The variance of the estimator given by Eq. (6.10) is then

V
(
β̌2n

) = V (Nn)

r2
nN2

= β2n

rnN
[1 + O(ε)], (6.19)

which gives Eq. (6.16), since β2n = O(�2n). The derivation of
Eq. (6.17) using the basic properties of a binomial process is
similar. �

Note that the conditions for Proposition 1 are more relaxed
than those for Theorem 1.

The important point is that, although a finite number of
PAD or IPAD modes cannot measure a simple moment of the
object exactly, they can provide exact unbiased estimators of
the moments they are naturally measuring. By considering the
latter as the parameters of interest, Proposition 1 proves the
quantum optimality of SPADE with just one or two modes, at
least in terms of the � scalings.

VII. BOUND FOR DIRECT IMAGING

The semiclassical model of direct imaging is to assume a
probability density η(ξ, P) for each photon with respect to the
Lebesgue measure that obeys

η(ξ, P) =
∫

h(ξ − x)P(dx), (7.1)

where h is the non-negative point-spread function for direct
incoherent imaging. For a diffraction-limited system, it is
given by

h(ξ ) =
∣∣∣∣ 1√

2π

∫ ∞

−∞
eikx 〈k|ψ〉 dk

∣∣∣∣2, (7.2)

where 〈k|ψ〉 is the optical transfer function [2]. Let ν (M,ε)[P]
denote the probability measure for the photon counts over
M temporal modes. Previous studies [8–10] have suggested
that, for the semiparametric model {ν (M,ε)[P] : P ∈ P} based
on Eq. (4.2), the Cramér-Rao bound for the estimation of a
simple moment with direct imaging is

E � C̃ = �(1)

N
. (7.3)

Unfortunately, this result is rigorously proven only when the
location family {h(ξ − x) : x ∈ suppP0} satisfies a special sta-
tistical property called completeness [54] (see Ref. [45], Sec.
6.5; Ref. [43], Sec. 25.5.2; and Ref. [10]). While a Gaussian
h satisfies the property, completeness turns out to be hard to
prove more generally, and Eq. (7.3) remains questionable for
any non-Gaussian h.

I turn again to the parametric-submodel approach in
Sec. IV, which leads to the following proposition.

Proposition 2. Assume that the derivatives h(n)(ξ ) of the
point-spread function h(ξ ) for direct imaging exist, up to
order n = μ + 1. If there exist non-negative x-independent
functions h(ξ ) and h̄(ξ ) such that, for all ξ ∈ R and for all
x ∈ suppP0,

h(ξ − x) � h(ξ ), (7.4)

|h(μ+1)(ξ − x)| � h̄(ξ ), (7.5)

and the functions satisfy∫ ∞

−∞

[h(μ)(ξ )]2

h(ξ )
dξ < ∞,

∫ ∞

−∞

[h̄(ξ )]2

h(ξ )
dξ < ∞, (7.6)
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then the Cramér-Rao bound for the estimation of a generalized
moment of order μ is

C̃ = �(1)

N
. (7.7)

The proof is deferred to Appendix E.
The conditions for Proposition 2 seem specific, but they

can be checked for simple functions such as

h(ξ ) = d1

(ξ/d2)2p + 1
, h(ξ ) = d1e−(ξ/d2 )2p

(7.8)

for some positive constants d1 and d2 and positive integer p.
The tails of h(p)(ξ − x) for these functions decay at least as
fast as the tails of h(ξ ), while an h(ξ ) to lower bound h(ξ − x)
can be obtained by replacing ξ 2 by (|ξ | + �0)2 in Eqs. (7.8)
for some �0 that upper bounds all � of interest, as that would
give |ξ − x| � |ξ | + |x| � |ξ | + � � |ξ | + �0 and a lower
bound on h(ξ − x) for all x ∈ suppP0. Then h(ξ ) remains
positive and has tails that decay in the same way as h(ξ ),
leading to the finite integrals in Eqs. (7.6). The advantage of
Proposition 2 over the previous approaches in Refs. [8–10]
is that the conditions for the former are still easier to check
than proving the completeness property and Proposition 2 can
remain valid even for an incomplete location family.

The physical implication of Proposition 2 is that, for a gen-
eralized moment of order μ � 2, both the quantum limit given
by Theorem 1 and the SPADE performance given by Propo-
sition 1 are substantial improvements over direct imaging.
Nevertheless, there exist counterexamples in which the point-
spread function has zeros and the conditions for Proposition 2
are violated. The argument by Paúr et al. [55,56] in particular
suggests that the zeros can enhance the Fisher-information
integral for the submodel by a �(1/�) factor, leading to

C̃ = �(�)

N
, (7.9)

but despite some numerical evidence (unpublished), I am
unable to prove this bound in a general fashion. It therefore
remains an open problem whether Eq. (7.9) is the ultimate
limit to direct imaging or by how much the zeros in its point-
spread function can improve it.

VIII. CONCLUSION

The key results of this work are the quantum limit given by
Theorem 1, the SPADE performance given by Proposition 1,
and the direct-imaging bound given by Proposition 2. They
confirm rigorously the prior intuition that the moments of
smaller subdiffraction objects are harder to estimate, espe-
cially for higher orders, although SPADE can estimate them
with optimal error scalings, while direct imaging is unlikely
to be nearly as efficient. Beyond the improved rigor, a useful
advance is the generalization of the results for a larger class of
moments such that the quantum optimality of SPADE with a
finite number of modes is proved and its experimental demon-
stration becomes much easier.

The price to pay for the generality of the results here is
their imprecise nature in terms of the asymptotic notions.
More precise results can be obtained numerically for more
special cases, as has been done in Refs. [8–10] regarding the

SPADE and direct-imaging performances. To compute con-
crete quantum and classical limits, the parametric-submodel
approach should help, as it is able to give bounds for
an infinite-dimensional model through 1D submodels. The
submodel bounds can be computed numerically without re-
sorting to purifications, at least for special cases of the true
measure P0.

Other interesting future directions include more rigorous
proofs of the convergence of thermal models to the binomial
and Poisson models considered here, the study of more gen-
eral types of parameters, Bayesian and minimax approaches
[57–59], and—of course—experimental demonstrations of
quantum-limited moment estimation. Beyond imaging, the
model and the results here may be applied or generalized to
other sensing applications, such as the estimation of diffusion
parameters in phase estimation and optomechanics [60,61].
The general principles established in this work thus give
rigorous underpinnings to the foundations of imaging theory
and possibly beyond.
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APPENDIX A: PROOF OF LEMMA 1

Before proving Lemma 1, I collect some basic facts in the
following lemma.

Lemma 4. In this lemma, the sample space is R, the inner
product is given by Eq. (2.4), and the measure P has finite
moments and #suppP = J , where J may be infinite. Let A( j)

denote the ( j + 1) × ( j + 1) upper left submatrix of a matrix
A for a j ∈ N[0,J ) ≡ { j ∈ N0 : j < J}.

(i) The H( j) for the Hankel matrix given by Eq. (2.19) is
positive definite (H( j) > 0) for any j ∈ N[0,J ).

(ii) The monomials {xp : p ∈ N[0,J )} are linearly
independent.

(iii) Define the orthonormal polynomials {an(x) : n ∈
N[0,J )} as

an(x) =
n∑

p=0

Anpxp, (A1)

where A is the lower triangular matrix (Anp = 0 if p > n)
obtained by applying the Gram-Schmidt procedure to the
monomials, such that

〈an, am〉P = δnm. (A2)

One can make Ann > 0 for all n. The orthonormality implies,
for any j ∈ N[0,J ),

A( j)H( j)A
�
( j) = I( j), H−1

( j) = A�
( j)A( j), (A3)

where � denotes the transpose and I is the identity matrix.
(iv) Let L be the lower triangular Cholesky factor of H .

Then, for any j, n, p ∈ N[0,J ),

L( j)L
�
( j) = H( j), L( j) = A−1

( j), (A4)
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Lnn = 1

Ann
> 0, (A5)

xp =
p∑

n=0

Lpnan(x), 〈xp, an〉P = Lpn. (A6)

Proof of Lemma 4. I prove only statement (i) here; the rest
is basic linear algebra (see, for example, Ref. [47]). Write
C = suppP for brevity in this proof. Recall that the support
is defined uniquely by the following conditions (see [32],
Theorem 2.1): (i) P(C) = 1 and (ii) if a closed set D satisfies
P(D) = 1, then C ⊆ D. In other words, the support is the
smallest closed set with unit probability. The second condition
is equivalent to the condition that any closed strict subset D of
C must give P(D) < 1.

Given any column vector u ∈ R j+1 with u�u �= 0, let

ũ(x) ≡
j∑

p=0

upxp, Z ≡ {x ∈ C : ũ(x) = 0}. (A7)

Then

[ũ(x)]2 > 0 ∀ x ∈ C − Z. (A8)

As any nonzero polynomial of degree j has at most j iso-
lated zeros, #Z � j and Z is closed. Since #C = J > j � #Z ,
C − Z cannot be empty, Z is a strict subset of C, and by the
definition of C,

P(Z ) < 1, P(C − Z ) = P(C) − P(Z ) > 0. (A9)

Now consider

u�H( j)u =
∫

C
[ũ(x)]2P(dx) =

∫
C−Z

[ũ(x)]2P(dx). (A10)

I wish to prove that the last expression is not zero by contra-
diction. Suppose that it is zero. Then, by Proposition 4.1.7 in
Ref. [31],

[ũ(x)]2 = 0 a.e. on C − Z, (A11)

where a.e. denotes almost everywhere. Equation (A11) im-
plies the existence of a set Y with P(Y ) = 0 such that
[ũ(x)]2 = 0 for all x ∈ C − Z − Y . Here C − Z − Y is not
empty, because P(C − Z − Y ) = P(C − Z ) > 0. Then, for
any x ∈ C − Z − Y ⊆ C − Z , the [ũ(x)]2 = 0 statement con-
tradicts Eq. (A8). By contradiction, Eq. (A10) cannot be zero
and must be strictly positive. As u is arbitrary, H( j) > 0. �

Proof of Lemma 1. If the support of P is infinite and
bounded, the set {an(x) : n ∈ N0} defined in Lemma 4 is an
orthonormal basis of L2(P) (see [31], Proposition 6.4.1). Let
its H′ representation be

an(x) ↔ an(x̂) |φ〉 ≡ |ϕn〉 . (A12)

Then {|ϕn〉 : n ∈ N0} is the same orthonormal basis in the new
representation and a resolution of the identity IH′ in the strong
operator topology (see [30], Sec. 1.6) is

IH′ =
∞∑

n=0

|ϕn〉 〈ϕn| . (A13)

An isometry U : H′ → H′′ can then be written as

U =
∞∑

n=0

|n〉 〈ϕn| , (A14)

also in the strong operator topology. A proof is as follows. Let

I j ≡
j∑

n=0

|ϕn〉 〈ϕn| , Uj ≡
j∑

n=0

|n〉 〈ϕn| . (A15)

Given any |u〉 ∈ H′ and J > j, consider

‖UJ |u〉 − Uj |u〉 ‖2 =
J∑

n= j+1

|〈ϕn|u〉|2 = sJ − s j, (A16)

where ‖ |·〉 ‖ ≡ √〈·|·〉 and s j ≡ ∑ j
n=0 | 〈ϕn|u〉 |2. {s j} is

monotonic, and since {|ϕn〉} is an orthonormal sequence,
{s j} is bounded by Bessel’s inequality [see [25],
Eq. (3.24)] and therefore convergent (see [24], Theorem
3.14) and Cauchy (see [24], Theorem 3.11). With
the Cauchy property, given any ε > 0, there exists
a j0 such that, for all J � j � j0, sJ − s j < ε2 and
‖UJ |u〉 − Uj |u〉 ‖ = √

sJ − s j < ε. Thus, {Uj |u〉} is also
Cauchy. Since a Hilbert space is by definition complete
(see [25], Definition 3.3.1), {Uj |u〉} converges (see [25],
Definition 1.4.5), and since |u〉 is arbitrary, {Uj} converges
strongly. By the same argument, {I j} and {U †

j } also converge

strongly. The strong convergences imply that {U †
j Uj = I j}

converges strongly to U †U = IH′ .
If the support of P is bounded, x̂ can be assumed to be

a bounded operator with a finite operator norm ‖x̂‖op, since
‖x̂ |u〉 ‖ = ‖xu‖P � �‖u‖P = �‖ |u〉 ‖ for any u ↔ |u〉. As
k̂ is also assumed to be bounded, the exponential operator in
Eq. (2.12) can be expressed as

e−ik̂⊗x̂ =
∞∑

p=0

(−ik̂)p ⊗ x̂p

p!
(A17)

in the sense of operator-norm convergence (see [29],
Sec. VIII.4), which implies strong convergence. Let

Fj ≡
j∑

p=0

(−ik̂)p ⊗ x̂p

p!
. (A18)

As {Uj} and {Fj} converge strongly, {(IH ⊗ Uj )Fj} also con-
verges strongly. With the aid of Lemma 4, I obtain

x̂p |φ〉 =
p∑

n=0

Lpnan(x̂) |φ〉 =
p∑

n=0

Lpn |ϕn〉 , (A19)

|
 j〉 ≡ (IH ⊗ Uj )Fj |ψ〉 ⊗ |φ〉 (A20)

=
j∑

p=0

p∑
n=0

(−ik̂)p

p!
Lpn |ψ〉 ⊗ |n〉 . (A21)

The strong convergence of {(IH ⊗ Uj )Fj} implies the strong
convergence of {|
 j〉}, leading to Eq. (2.18). �

Remark. Throughout this paper, the convergence of a se-
quence of Hilbert-space elements is always assumed to be
strong.
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APPENDIX B: PROOF OF LEMMA 2

Proof of Lemma 2. Equation (3.16) comes from the fact that
{e1 ≡ u/‖u‖ρ} is the orthonormal basis of spanu and

�(δ|spanu) = 〈δ, e1〉ρe1 = 〈δ, u〉ρ
‖u‖2

ρ

u. (B1)

Of course, �(δ|span0) = 0.
Now consider the supremum in Eq. (3.14), which is defined

by two conditions [24]: (i) H̃ is an upper bound on the set
{H(u) : u ∈ span{S}} and (ii) H̃ − ε is not an upper bound for
any ε > 0. Since δeff ∈ D [36], H(u) can also be expressed as

H(u) = ‖�(δeff |span u)‖2
ρ. (B2)

Then

H̃ = ‖δeff‖2
ρ � ‖�(δeff |spanu)‖2

ρ = H(u) ∀ u, (B3)

by the shrinking property of the projection [25]. The first
condition is therefore satisfied.

Assume now δeff �= 0, for H̃ = H(u) = 0 ∀u otherwise,
and the lemma is trivial. As δeff ∈ T and T is the closure
of span{S}, there exists a sequence {u j} ⊆ span{S} that con-
verges to δeff (see [25], Theorem 1.3.23). The convergence
means that ‖u j‖ρ → ‖δeff‖ρ and 〈u, u j〉ρ → 〈u, δeff〉ρ for any
u ∈ T (see [25], Theorem 3.3.12). With ‖δeff‖ρ > 0, I can
assume ‖uj‖ρ > 0 for all j � J and a sufficiently large J .
Thus,

H(u j ) = 〈δeff , u j〉2
ρ

‖u j‖2
ρ

→ ‖δeff‖2
ρ = H̃. (B4)

This limit implies that, given any ε > 0, there exists a u ∈
{u j} ⊆ span{S} such that

|H̃ − H(u)| = H̃ − H(u) < ε, H(u) > H̃ − ε. (B5)

Thus, the second condition is also satisfied. �

APPENDIX C: PROOF OF LEMMA 3

Before proving Lemma 3, I present a couple of needed
lemmas. The first is a trivial result regarding the partial trace
and the L2 spaces related by it. I write IH′ = I for brevity in
this Appendix.

Lemma 5. Let ω be a state on H ⊗ H′ and τ = tr′ω. Then

〈u, v〉τ = 〈u ⊗ I, v ⊗ I〉ω ∀ u, v ∈ L2(τ ), (C1)

‖u‖τ = ‖u ⊗ I‖ω ∀ u ∈ L2(τ ). (C2)

Proof of Lemma 5. By the definition of partial trace (see
[33], Proposition 16.6),

truτ = tr(u ⊗ I )ω ∀ u ∈ B(H). (C3)

Then, for all u, v ∈ B(H),

〈u, v〉τ = tr(u ◦ v)τ = tr[(u ⊗ I ) ◦ (v ⊗ I )]ω

= 〈u ⊗ I, v ⊗ I〉ω. (C4)

If any of u, v ∈ L2(τ ) are unbounded operators, let {u j} and
{v j} be sequences in the dense subset B(H) that converge to
them. Then (see [25], Theorem 3.3.12)

〈u j, v j〉τ → 〈u, v〉τ , (C5)

〈u j ⊗ I, v j ⊗ I〉ω → 〈u ⊗ I, v ⊗ I〉ω. (C6)

As Eq. (C4) holds for all u j, v j ∈ B(H), the right-hand sides
of Eqs. (C5) and (C6) are also equal, proving Eq. (C1).
Equation (C2) is a direct consequence of Eq. (C1).

I now present a useful lemma regarding a quantum general-
ization of the conditional expectation, which appears in many
other contexts [40,62,63]. The proof follows that of Theorem
6.1 in Ref. [40] for the finite-dimensional case.

Lemma 6. Let ω be a state on H ⊗ H′ and τ = tr′ω. For
each X ∈ L2(ω), 〈u ⊗ I, X 〉ω is a bounded linear functional of
u ∈ L2(τ ). Define π (X ) ∈ L2(τ ) as the unique Riesz represen-
tation that obeys

〈u, π (X )〉τ = 〈u ⊗ I, X 〉ω ∀ u ∈ L2(τ ). (C7)

Then the linear map � : L2(ω) → L2(ω) defined as

�X ≡ π (X ) ⊗ I (C8)

is a projection. In particular, π satisfies the shrinking property

‖π (X )‖τ = ‖�X‖ω � ‖X‖ω ∀ X ∈ L2(ω). (C9)

�
Proof of Lemma 6. First note that 〈u ⊗ I, X 〉ω is bilinear

with respect to u ∈ L2(τ ) and X ∈ L2(ω). For each X ∈ L2(ω),

|〈u ⊗ I, X 〉ω| � ‖u ⊗ I‖ω‖X‖ω = ‖u‖τ‖X‖ω (C10)

by the Cauchy-Schwarz inequality (CSI) and Lemma 5, so
〈u ⊗ I, X 〉ω is a bounded linear functional of u and the Riesz
representation theorem applies. Moreover, the theorem gives

‖π (X )‖τ = ‖π‖op = sup
‖u‖τ =1

|〈u ⊗ I, X 〉ω| � ‖X‖ω, (C11)

so π : L2(ω) → L2(τ ) is a bounded linear map.
Now consider the � map given by Eq. (C8). It is linear

because π is linear. It is bounded because, by Lemma 5 and
Eq. (C11),

‖�X‖ω = ‖π (X )‖τ � ‖X‖ω. (C12)

It is self-adjoint because, for any X,Y ∈ L2(ω),

〈Y,�X 〉ω = 〈Y, π (X ) ⊗ I〉ω = 〈π (Y ), π (X )〉τ (C13)

= 〈π (Y ) ⊗ I, X 〉ω = 〈�Y, X 〉ω. (C14)

It is also idempotent because, for any X,Y ∈ L2(ω),

〈Y,�2X 〉ω = 〈�Y,�X 〉ω = 〈π (Y ), π (X )〉τ (C15)

= 〈Y,�X 〉ω, (C16)

meaning that �2 = �. Hence � is a projection (see [25],
Theorem 4.7.7) and Eq. (C9) is a basic property. �

Proof of Lemma 3. Let T(H) be the Banach space of all
trace-class self-adjoint operators on H [34]. The partial trace
tr′ : T(H ⊗ H′) → T(H) is a bounded linear map (see [30],
p. 150) and therefore continuous (see [25], Theorem 1.5.7).
It follows that tr′ is differentiable and the derivative (as a
linear map) is given by tr′ itself (see [26], Example 8.1.3). As
{ωθ } is assumed to be regular, ωθ is differentiable at the truth.
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Thus, τθ = tr′ωθ is also differentiable at the truth (see [26],
Theorem 8.2.1) and τ̇ ∈ T(H) is determined by the chain rule

τ̇ = tr′ω̇. (C17)

Since {ωθ } is assumed to be regular, its score S ∈ L2(ω) exists.
The definition of the partial trace as per Eq. (C3) and the
definition of the score as per Eq. (3.6) can then be used
to give

tr uτ̇ = tr(u ⊗ I )ω̇ = 〈u ⊗ I, S〉ω ∀ u ∈ B(H). (C18)

The linear functional tr uτ̇ = 〈u ⊗ I, S〉ω of u is bounded with
respect to ‖u‖τ by Eq. (C10) and can therefore be extended
uniquely to be defined on L2(τ ). The score tr′

∗S ∈ L2(τ ) of
{τθ } then exists by definition, {τθ } is regular, and

〈u, tr′
∗S〉τ = 〈u ⊗ I, S〉ω ∀ u ∈ L2(τ ). (C19)

By Lemma 6, the score must be equal to the conditional
expectation

tr′
∗S = π (S), (C20)

which observes the shrinking property

‖tr′
∗S‖τ = ‖π (S)‖τ � ‖S‖ω. (C21)

�
Remark. Throughout this paper, differentiability is always

assumed to be in the Fréchet sense [27].

APPENDIX D: PROOF OF THEOREM 1

Before proving Theorem 1, I need a few lemmas. The first
lemma gives suppPθ = suppP0 under general conditions.

Lemma 7. If gθ (x) > 0 a.e. P0 on suppP0, the Pθ defined by
Eq. (4.5) and P0 have the same support.

Proof of Lemma 7. Write C = suppP0 for brevity in this
proof. First notice that, since P0(C) = 1,

Pθ (C) =
∫

C
gθ (x)P0(dx) =

∫
gθ (x)P0(dx) = 1, (D1)

and the first condition for suppPθ = C is satisfied. To
prove the second condition, consider, for any closed strict
subset D of C,

Pθ (D) =
∫

D
gθ (x)P0(dx) = 1 −

∫
C−D

gθ (x)P0(dx). (D2)

By the definition of C, P0(D) < 1 and P0(C − D) > 0. I can
then prove that the last integral in Eq. (D2) is not zero by
contradiction. Suppose that it is zero. Then, by Proposition
4.1.7 in Ref. [31],

gθ (x) = 0 a.e. P0 on C − D. (D3)

This statement contradicts the assumption that gθ (x) > 0 a.e.
P0 on C by the following argument. The assumption implies
the existence of a set Y1 with P0(Y1) = 0 such that

gθ (x) > 0 ∀ x ∈ C − Y1. (D4)

On the other hand, Eq. (D3) implies the existence of a Y2 with
P0(Y2) = 0 such that

gθ (x) = 0 ∀ x ∈ C − D − Y2. (D5)

The common domain (C − Y1) ∩ (C − D − Y2) = C − D −
(Y1 ∪ Y2) is not empty because P0[C − D − (Y1 ∪ Y2)] =
P0(C − D) > 0. Thus, for any x in the common domain, the
two statements in Eqs. (D4) and (D5) contradict each other.
By contradiction, the last integral in Eq. (D2) must be strictly
positive, Pθ (D) < 1, and the second condition for suppPθ = C
is also satisfied. �

The next lemma provides some bounds on gθ (x) given by
Eqs. (4.6) and (4.14), which lead to useful properties for the
submodels in Secs. IV and V.

Lemma 8. For the gθ (x) given by Eqs. (4.6) and (4.14),
there exist finite positive constants c3, c4, c5 such that, for all
|θ | � c < ∞ and |x| � � < ∞,

0 < c3 � gθ (x) � c4 < ∞, (D6)

|∂gθ (x)| � c5 < ∞, (D7)

where ∂ denotes ∂/∂θ . Moreover, defining

ū(θ ) ≡
∫

u(x)gθ (x)P0(dx) (D8)

for a P0 that obeys Eq. (2.17) and a P0-integrable function
u(x), ∂ can be taken inside the integral, viz.,

∂ ū(θ ) =
∫

u(x)∂gθ (x)P0(dx). (D9)

Proof of Lemma 8. Let

γθ (x) ≡ 1 + tanh[θaμ(x)] (D10)

be the numerator of gθ (x). Here γθ (x) is obviously continuous
with respect to θ and x. For all finite θ and x,

0 < γθ (x) < 2. (D11)

By the extreme value theorem (see [24], Theorem 4.16), there
exist θ1, θ2 ∈ [−c, c] and x1, x2 ∈ [−�,�] such that

inf
|θ |�c,|x|��

γθ (x) = γθ1 (x1), (D12)

sup
|θ |�c,|x|��

γθ (x) = γθ2 (x2). (D13)

It follows that

0 < c3 ≡ γθ1 (x1)

γθ2 (x2)
� gθ (x) � γθ2 (x2)

γθ1 (x1)
≡ c4 < ∞. (D14)

The proof of Eq. (D7) is similar, by noting that ∂γθ (x) is also
continuous and bounded. Equation (D7) then implies Eq. (D9)
by a corollary of the dominated convergence theorem (see
[28], Corollary 2.8.7). �

Next I define what it means exactly for a quantity to be a
function of � and also normalize the H, A, L, Ḣ matrices to
remove their dependence on �, for later use.

Definition 1. Let a function T� : R → R be

T�(x) ≡ x

�
. (D15)

Define a standard measure Rθ on (R, �) to describe the dis-
tribution of the object with standard size as

Rθ (·) = Pθ

[
T −1

� (·)] (D16)
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such that

sup
y∈suppRθ

|y| = 1. (D17)

As T� is invertible,

Pθ (·) = Rθ [T�(·)]. (D18)

A function of the true P0 is said to be a function of � if R0 is
fixed while P0 varies with � through Eq. (D18).

The Hankel matrix for Rθ is

Gpq(θ ) ≡ 〈yp, yq〉Rθ
= �−p−qHpq(θ ). (D19)

The orthonormal polynomials with respect to Rθ , satisfying
〈bn, bm〉Rθ

= δnm, are given by

bn(y) =
n∑

p=0

Bnp(θ )yp, Bnp(θ ) = Anp(θ )�p. (D20)

Let V (θ ) be the Cholesky factor of G(θ ). It is given by

Vpn(θ ) = 〈yp, bn〉Rθ
= �−pLpn(θ ). (D21)

At θ = 0, assuming the score given by Eq. (4.14), Ġpq is
given by

Ġpq = 〈yp+q, bμ〉R0 = Vp+q μ(0). (D22)

I need another lemma to evaluate the derivative of the
purification given by Eq. (5.6).

Lemma 9. Assume the conditions for Theorem 1 and con-
sider the submodel given by Eqs. (4.5)–(4.7), (4.14), (5.6), and
(5.7). Let

|
 j
θ 〉 ≡

j∑
p=0

p∑
n=0

(−ik̂)p

p!
Lpn(θ ) |ψ〉 ⊗ |n〉 (D23)

be a function of θ ∈ (−c, c) with values in H ⊗ H′′.
(i) The {|
 j

θ 〉} converges uniformly to the |
θ 〉 given by
Eq. (5.6) in the sense that

lim
j→∞

sup
θ∈(−c,c)

∥∥|
 j
θ 〉 − |
θ 〉

∥∥ = 0. (D24)

(ii) For any j and θ , the derivative of Eq. (D23) with respect
to θ exists in H ⊗ H′′ and is given by

∂ |
 j
θ 〉 =

j∑
p=0

p∑
n=0

(−ik̂)p

p!
∂Lpn(θ ) |ψ〉 ⊗ |n〉 . (D25)

(iii) The ∂ |
θ 〉 exists in H ⊗ H′′, and {∂ |
 j
θ 〉} converges

uniformly to it.
Proof of Lemma 9. Since each measure in the Szegő class

has an infinite and bounded support by definition, P0 satisfies
the condition for Lemma 1 by assumption. By Lemmas 7 and
8, suppPθ = suppP0, so Lemma 1 can be applied to the whole
submodel and Eqs. (5.6) and (D23) are well defined. To prove
statement (ii) of the lemma, note that ∂Lpn is given by the
formula (see [42], Theorem A.1)

∂Lpn = �p∂Vpn, (D26)

∂Vpn =
p∑

m=0

m∑
q=0

n∑
r=0

VpmWmnBmq(∂Gqr )Bnr, (D27)

Wmn ≡
⎧⎨
⎩

1, n < m
1
2 , n = m
0, n > m,

(D28)

in terms of the normalized quantities in Definition 1. By
Lemma 8 and Eq. (2.17),

|∂Gqr | =
∣∣∣∣
∫ ( x

�

)q+r
∂gθ (x)P0(dx)

∣∣∣∣ � c5, (D29)

so |∂Lpn| < ∞, ∂ |
 j
θ 〉 exists, and the basic rules of differen-

tiation give Eq. (D25) (see [27], Theorems 1.1.3 and 1.1.4).
To prove statements (i) and (iii), the plan is to prove

that the sequence of functions satisfy the two conditions for
Theorem 1.7.1 in Ref. [27], which implies the statements. The
first condition is that {|
 j

θ 〉} converges to |
θ 〉 at a point θ .
This condition is satisfied, as Lemmas 7, 8, and 1 imply the
pointwise convergence at any θ . The second condition is the
uniform convergence of {∂ |
 j

θ 〉}, which I prove next. Suppose
J > j and consider

‖∂ |
J
θ 〉 − ∂ |
 j

θ 〉 ‖2

=
∥∥∥∥∥

J∑
p= j+1

J∑
n=0

(−ik̂)p

p!
∂Lpn |ψ〉 ⊗ |n〉

∥∥∥∥∥
2

(D30)

=
J∑

n=0

J∑
q= j+1

J∑
p= j+1

iq(−i)p

q!p!
〈ψ | k̂q+p |ψ〉 (∂Lqn)(∂Lpn)

(D31)

�
J∑

n=0

(
J∑

p= j+1

‖k̂‖p
op

p!
∂Lpn

)2

(D32)

�
J∑

n=0

[
J∑

p= j+1

(‖k̂‖op�)2p

p!

]
J∑

p= j+1

(∂Vpn)2

p!
(D33)

=
[

J∑
p= j+1

(‖k̂‖op�)2p

p!

]
︸ ︷︷ ︸

sJ
1−s j

1

J∑
p= j+1

1

p!

p∑
n=0

(∂Vpn)2

︸ ︷︷ ︸
sJ

2 (θ )−s j
2(θ )

, (D34)

where the right-hand side of Eq. (D30) has used the lower
triangularity of ∂Lpn to replace

∑p
n=0 by

∑J
n=0, Eq. (D32)

has used the series of absolute values to bound Eq. (D31) and
the definition of the operator norm to bound | 〈ψ | k̂q+p |ψ〉 | �
‖k̂‖q+p

op , Eq. (D33) has used the CSI and Eq. (D26), and s j
1 and

s j
2(θ ) are defined as

s j
1 ≡

j∑
p=0

(‖k̂‖op�)2p

p!
, (D35)

s j
2(θ ) ≡

j∑
p=0

1

p!

p∑
n=0

[∂Vpn(θ )]2. (D36)

If {s j
1} converges and {s j

2(θ )} converges uniformly, then the
left-hand side of Eq. (D30) can be bounded uniformly. {s j

1}
converges to exp[(‖k̂‖op�)2] for a bounded k̂, so it remains to
be proved that {s j

2(θ )} converges uniformly.
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To bound (∂Vpn)2, apply the CSI to Eq. (D27) to obtain

(∂Vpn)2 �
[

p∑
m=0

(Vpm)2

]
p∑

m=0

(WmnDmn)2, (D37)

D ≡ B(p)[∂G(p)]B
�
(p), (D38)

p∑
n=0

(∂Vpn)2 � Gpp

p∑
n=0

p∑
m=0

(WmnDmn)2 (D39)

� Gpp

2
‖D‖2

HS � 1

2
‖D‖2

HS, (D40)

where Gpp = ∑p
m=0(Vpm)2 in Eq. (D39) comes from the

fact that V is the Cholesky factor of G, ‖ · ‖HS is the
Hilbert-Schmidt norm (also called the Frobenius norm)

‖D‖2
HS ≡

∑
m,n

(Dmn)2, (D41)

the first bound in Eq. (D40) comes from the definition of W
and the symmetry of D [see [12], Eq. (B34)], and the last
bound in Eq. (D40) comes from

Gpp = ‖yp‖2
Rθ

� 1, (D42)

by Eq. (D17). ‖D‖HS can be further bounded in terms of
‖∂G(p)‖HS and the operator norm ‖B(p)‖op as (see [64], Theo-
rems II.2.11 and II.3.9)

‖D‖HS � ‖∂G(p)‖HS‖B(p)‖2
op = ‖∂G(p)‖HS

λmin[G(p)]
, (D43)

where λmin denotes the smallest eigenvalue and the last step
has used B�

(p)B(p) = G−1
(p) from Lemma 4 and Eq. (II.2.10) in

Ref. [64] to obtain

‖B(p)‖2
op = λmax[G−1

(p)] = 1

λmin[G(p)]
. (D44)

To bound λmin[G(p)], first note that, for any column vector
u ∈ Rp,

u�G(p)(θ )u =
∫ [

p∑
q=0

uq

( x

�

)q
]2

gθ (x)P0(dx) (D45)

� c3u�G(p)(0)u, (D46)

where c3 > 0 comes from Lemma 8. Applying the Rayleigh
quotient theorem [65]

λmin[G(p)(θ )] = min
u�u=1

u�G(p)(θ )u (D47)

to Eq. (D46), I obtain

λmin[G(p)(θ )] � c3λmin[G(p)(0)]. (D48)

If P0 is in the Szegő class, R0 is also in the Szegő class, and
by a theorem of Widom and Wilf [51] there exists a constant
0 < r < 1 such that λmin of its Hankel matrix satisfies

λmin[G(p)(0)] = �(
√

prp), (D49)

where the � order here is in terms of p → ∞. To bound the
other quantity ‖∂G(p)‖HS in Eq. (D43), use Eq. (D29) to write

‖∂G(p)‖2
HS �

p∑
n=0

p∑
m=0

c2
5 = c2

5(p + 1)2. (D50)

Putting everything together, s j
2(θ ) in Eq. (D36) can be

bounded as

s j
2(θ ) �

j∑
p=0

c2
5(p + 1)2

p!2[c3�(
√

prp)]2
. (D51)

The right-hand side does not depend on θ and converges
by the ratio test, so {s j

2(θ )} converges uniformly by the
Weierstrass test (see [24], Theorem 7.10).

With the convergence of {s j
1} and the uniform convergence

of {s j
2(θ )}, given any ε > 0, there exists a θ -independent j0

such that, for all θ ∈ (−c, c) and J � j � j0, sJ
1 − s j

1 < ε,
sJ

2(θ ) − s j
2(θ ) < ε, and by Eqs. (D30)–(D34),∥∥∂ ∣∣
J

θ

〉 − ∂
∣∣
 j

θ

〉∥∥ < ε, (D52)

sup
θ∈(−c,c)

∥∥∂ ∣∣
J
θ

〉 − ∂
∣∣
 j

θ

〉∥∥ � ε, (D53)

which means that {∂ |
 j
θ 〉} is Cauchy in the space of

bounded Hilbert-space-valued functions BH⊗H′′ [(−c, c)]
with the supremum norm supθ∈(−c,c) ‖ |uθ 〉 ‖ for each |uθ 〉 ∈
BH⊗H′′ [(−c, c)] (see [26], Sec. 7.1). As the Hilbert space
H ⊗ H′′ is a Banach space, BH⊗H′′ [(−c, c)] is also a Banach
space (see [26], Theorem 7.1.3), the completeness of which
means that the Cauchy {∂ |
 j

θ 〉} converges uniformly. Hence,
the two conditions for Theorem 1.7.1 in Ref. [27] are satisfied
and the theorem implies statements (i) and (iii) of the lemma
here. �

Proof of Theorem 1. Consider the submodel given
by Eqs. (4.5)–(4.7), (4.14), (5.6), and (5.7). Let |
̇〉 ≡
∂ |
θ 〉 |θ=0. The Helstrom information of the purified model
is the Fubini-Study metric [66]∥∥S


∥∥2


0
= 4

(〈
̇|
̇〉 − | 〈
̇|
0〉 |2) � 4 〈
̇|
̇〉 . (D54)

Lemma 9 implies that, under the conditions for Theorem
1, 〈
̇|
̇〉 < ∞, {|
̇ j〉 ≡ ∂ |
 j

θ 〉 |θ=0} converges to |
̇〉, and
therefore the squared norm also converges to [see [25],
Eq. (3.9)]

〈
̇ j |
̇ j〉 → 〈
̇|
̇〉 < ∞. (D55)

With Eqs. (2.7), (2.8), and (D25), I can write

〈
̇ j |
̇ j〉 =
∫ j∑

n=0

∣∣∣∣∣
j∑

p=0

(−ik)p

p!
L̇pn

∣∣∣∣∣
2

Q(dk). (D56)

To evaluate this expression as a function of �, write the
formula for L̇pn in Eqs. (D26) and (D27) at θ = 0 as

L̇pn = �p
p∑

m=0

m∑
q=0

n∑
r=0

VpmWmnBmqVq+r μBnr, (D57)

where Ġqr = Vq+r μ comes from Eq. (D22). As V,W, B are
all lower triangular, for L̇pn to be nonzero, the indices in
Eq. (D57) should satisfy

p � m � n � r, m � q, q + r � μ, (D58)

which imply 2m � q + m � q + r � μ and

p � m �
⌈μ

2

⌉
. (D59)
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Thus,

L̇pn = 0 if p <
⌈μ

2

⌉
. (D60)

With L̇pn ∝ �p, Eq. (D56) is a power series of �. By
Eq. (D55), the power series converges, so I can conclude from
Eqs. (D55), (D56), and (D60) that [50]

〈
̇|
̇〉 = O(�2�μ/2�). (D61)

To evaluate the Helstrom bound, I also need β̇. Given
Eqs. (4.12), (4.14), and (5.10), it is given by

β̇ = 〈aμ, xμ + o(�μ)〉P0 = �μVμμ + 〈aμ, o(�μ)〉P0

= �(�μ), (D62)

where the second equality comes from Lemma 4 and
Eq. (D21) and the final equality comes from Vμμ > 0 by
Lemma 4 and the CSI

|〈aμ, o(�μ)〉P0 | � ‖aμ‖P0‖o(�μ)‖P0 = o(�μ). (D63)

Finally, the theorem is given by

H̃ � H � β̇2

N‖S
‖2

0

� β̇2

4N 〈
̇|
̇〉 = �(�2�μ/2�)

N
, (D64)

where the first inequality comes from the submodel bound
in Lemma 2, the second inequality comes from applying the
purification bound in Lemma 3 to the purification in Lemma
1, the third inequality comes from Eq. (D54), and the final
equality comes from Eqs. (D61) and (D62). �

Remark. Although the assumption of an infinite and
bounded suppP0 is central to Lemma 1, Lemma 8, and Theo-
rem 1, the more specific Szegő-class assumption is used only
in Eqs. (D49) and (D51) in Lemma 9, to ensure the con-
vergence of the Helstrom information of the purified model.
If λmin[G(p)(0)] can be lower bounded in another way that
still ensures the uniform convergence of {s j

2(θ )} in Eq. (D51),
then Lemma 9 and Theorem 1 still hold and the Szegő-
class assumption may be relaxed. For example, Theorem 3
in Ref. [67] gives the asymptotic behavior of λmin[G(p)(0)] for
a more general class of P0 that still makes {s j

2(θ )} converge
uniformly, although the conditions there are much harder to
state or check.

APPENDIX E: PROOF OF PROPOSITION 2

Proof of Proposition 2. Let ν[P] be the probability measure
for each photon, with a probability density given by Eq. (7.1),
and let {ν[Pθ ] : θ ∈ (−c, c)} be the 1D submodel based on the
{Pθ } given by Eqs. (4.5)–(4.7) and (4.14). The score ν∗S of
{ν[Pθ ]} is given by

(ν∗S)(ξ ) = η̇(ξ )

η0(ξ )
, (E1)

ηθ (ξ ) ≡ η(ξ, Pθ ) =
∫

h(ξ − x)Pθ (dx), (E2)

η̇(ξ ) =
∫

h(ξ − x)aμ(x)P0(dx). (E3)

Assume the normalized quantities defined in Definition 1
in the following. Using Taylor’s theorem [24], h(ξ − x) =

h(ξ − �y) becomes

h(ξ − �y) =
μ∑

p=0

h(p)(ξ )

p!
(−�y)p + r(ξ, y)�μ+1, (E4)

where the remainder is given by

r(ξ, y) ≡ h(μ+1)(ξ − �ȳ)

(μ + 1)!
(−y)μ+1 (E5)

for a certain ȳ(ξ, y) between 0 and y. Equation (E3) becomes

η̇(ξ ) = h(μ)(ξ )

μ!
(−�)μVμμ + �μ+1〈r(ξ, y), bμ〉R. (E6)

The last term can be bounded as

|〈r(ξ, y), bμ〉R| � ‖r(ξ, y)‖R (E7)

� h̄(ξ )

(μ + 1)!
‖yμ+1‖R (E8)

� h̄(ξ )

(μ + 1)!
, (E9)

where Eq. (E7) has used the CSI, Eq. (E8) has used Eq. (7.5)
to bound the |h(μ+1)(ξ − �ȳ)| in Eq. (E5), and Eq. (E9) comes
from Eq. (D17). Apply the triangle inequality to Eq. (E6) to
obtain

|η̇(ξ )| �
∣∣∣∣h(μ)(ξ )

μ!
(−�)μVμμ

∣∣∣∣ + |�μ+1〈r(ξ, y), bμ〉R| (E10)

� �μ

μ!

[
Vμμ

∣∣h(μ)(ξ )
∣∣ + �h̄(ξ )

μ + 1

]
. (E11)

The norm of the score given by Eq. (E1) can be bounded again
by the triangle inequality as∥∥∥∥ η̇

η0

∥∥∥∥
ν[P0]

� �μ

μ!

[
Vμμ

∥∥∥∥h(μ)

η0

∥∥∥∥
ν[P0]

+ �

μ + 1

∥∥∥∥ h̄

η0

∥∥∥∥
ν[P0]

]
. (E12)

Equation (7.4) implies that

η0(ξ ) � h(ξ ), (E13)

while Eqs. (7.6) imply that∥∥∥∥h(μ)

η0

∥∥∥∥2

ν[P0]

�
∫

[h(μ)(ξ )]2

h(ξ )
dξ < ∞, (E14)∥∥∥∥ h̄

η0

∥∥∥∥2

ν[P0]

�
∫

[h̄(ξ )]2

h(ξ )
dξ < ∞. (E15)

The convergence of these quantities means that Eq. (E12) can
be written as ∥∥∥∥ η̇

η0

∥∥∥∥
ν[P0]

= O(�μ) (E16)

and the Fisher information of the submodel becomes

‖ν∗S‖2
ν[P0] =

∥∥∥∥ η̇

η0

∥∥∥∥2

ν[P0]

= O(�2μ). (E17)

Given this expression and Eq. (D62), the Cramér-Rao
bound for the M-temporal-mode submodel {ν (M,ε)[Pθ ] :
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θ ∈ (−c, c)} is

C = β̇2

N‖ν∗S‖2
ν[P0]

= �(1)

N
, (E18)

and the fact that any submodel bound is a lower bound on
the semiparametric bound C̃ (see [43], Lemma 25.19) leads to
Eq. (7.7). �
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